Interval-valued Fuzzy Normal Subgroups

Su Yeon Jang, Kul Hur and Pyung Ki Lim

Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Chonbuk, Korea 570-749

Abstract

We study some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characterizations of interval-valued fuzzy normal subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset and obtain several results which are analogous of some basic theorems of group theory.

Key Words: interval-valued fuzzy normal subgroup, interval-valued fuzzy coset, interval-valued fuzzy quotient group.

1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of interval-valued fuzzy sets as the generalization of fuzzy sets introduced by himself[10]. After that time, Biswas[1] applied the notion of interval-valued fuzzy set to group theory, and Samanta and Montal[9] to topology. Recently, Choi et al.[2] introduced the concept of interval-valued smooth topological spaces and studied some of its properties. Hur et al.[3] investigated interval-valued fuzzy relations, Kang and Hur[6] applied the concept of interval-valued fuzzy sets to algebra. In particular, Kang[7] studied interval-valued fuzzy subgroups preserved by homomorphisms. In this paper, we investigate some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characterizations of interval-valued fuzzy normal subgroups. introduce the concept of interval-valued fuzzy subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset and obtain several results which are analogous of some basic theorems of group theory.

Now, we will list some concepts and results related to interval-valued fuzzy set theory and needed in next sections.

Let $D(I)$ be the set of all closed subintervals of the unit interval $I = [0, 1]$. The elements of $D(I)$ are generally denoted by capital letters M, N, \cdots, and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and upper end points respectively. Especially, we denoted $0 = [0, 0], 1 = [1, 1], \alpha = [a, b]$ for every $\alpha \in (0, 1)$.

We also note that

\begin{enumerate}
 \item $(\forall M, N \in D(I)) (M = N \iff M^L = N^L, M^U = N^U)$,
 \item $(\forall M, N \in D(I)) (M \leq N \iff M^L \leq N^L, M^U \leq N^U)$.
\end{enumerate}

For every $M \in D(I)$, the complement of M, denoted by M^c, is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$ (See [9]).

Definition 1.1 [9, 11]. A mapping $A : X \to D(I)$ is called an interval-valued fuzzy set (in short, IVS) in X and is denoted by $A = [A^L, A^U]$. Thus $A(x) = [A^L(x), A^U(x)]$, where $A^L(x)$[resp. $A^U(x)$] is called the lower[resp. upper] end point of x to A. For any $[a, b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x) = [A^L(x), A^U(x)] = [a, b]$ for each $x \in X$ is denoted by $[a, b]$ and if $a = b$, then the IVS $[a, b]$ is denoted by simply \tilde{a}. In particular, 0 and 1 denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVSs in X as $D(I)^X$. It is clear that set $A = [A^L, A^U] \in D(I)^X$ for each $A \in I^X$.

Definition 1.2 [9]. Let $A, B \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then

\begin{enumerate}
 \item $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$.
 \item $A = B$ iff $A \subset B$ and $B \subset A$.
 \item $A^C = [1 - A^U, 1 - A^L]$.
 \item $A \cup B = [A^L \vee B^L, A^U \vee B^U]$.
 \item $\bigvee_{\alpha \in \Gamma} A_\alpha = \left[\bigvee_{\alpha \in \Gamma} A^L_\alpha, \bigvee_{\alpha \in \Gamma} A^U_\alpha \right]$.
 \item $A \cap B = [A^L \wedge B^L, A^U \wedge B^U]$.
 \item $\bigwedge_{\alpha \in \Gamma} A_\alpha = \left[\bigwedge_{\alpha \in \Gamma} A^L_\alpha, \bigwedge_{\alpha \in \Gamma} A^U_\alpha \right]$.
\end{enumerate}

Result 1. A [9, Theorem 1]. Let $A, B, C \in D(I)^X$ and let
An interval-valued fuzzy set
Definition 1.3 [6]. An interval-valued fuzzy set
\[
\text{Definition 1.3 [6]. An interval-valued fuzzy set}
\]

\[
\begin{align*}
\text{Definition 1.3 [6]. An interval-valued fuzzy set} & \\
\end{align*}
\]

\[
\begin{align*}
\text{Result 1.C [6, Proposition 4.7].} & \\
\end{align*}
\]

\[
\begin{align*}
\text{Let } A & \text{ be an IVG of a group } G, \text{ then for each } [\lambda, \mu] \in D(I) \text{ with } A(e) \geq [t, s], \text{ i.e., } A^L(e) \geq t \text{ and } A^U(e) \geq s, \text{ the level subset } A^{[\lambda, \mu]} \text{ is a subgroup of } G. \text{ If Im } A = \{[t_0, s_0], [t_1, s_1], \ldots, [t_n, s_n]\}, \text{ the family of level subgroups } A^{[\lambda_i, \mu_i]} : 0 \leq i \leq n \text{ constitutes the complete list of level subgroups of } A. \text{ If the image set of the IVG } A \text{ of a finite group } G \text{ consists of } \{[t_0, s_0], [t_1, s_1], \ldots, [t_n, s_n]\}, \text{ where } t_0 > t_1 > \cdots > t_n \text{ and } s_0 > s_1 > \cdots > s_n, \text{ then, by Results 1.D and 1.E, the level subgroups of } A \text{ form a chain:}
\]

\[
A^{[t_0, s_0]} \subset A^{[t_1, s_1]} \subset \cdots \subset A^{[t_n, s_n]} = G,
\]

where } A(e) = [t_0, s_0].

\[
\text{Notation. } N < G \text{ denotes that } N \text{ is a normal subgroup of } G.
\]

\[
\begin{align*}
\text{2. Interval-valued fuzzy normal subgroups} & \text{ and interval-valued fuzzy cosets} \\
\end{align*}
\]

\[
\text{Lemma 2.1. If } A \text{ is an IVGP of a finite group } G, \text{ then } A \text{ is an IVG of } G.
\]

\[
\text{Proof. Let } x \in G. \text{ Since } G \text{ is finite, } x \text{ has finite order, say } n. \text{ Then } x^n = e, \text{ where } e \text{ is the identity of } G. \text{ Thus }
\]

\[
x^{-1} = x^{n-1}. \text{ Since } A \text{ is an IVGP of } G,
\]

\[
A^L(x^{-1}) = A^L(x^{n-1}) = A^L(x^{n-2}) \geq A^L(x)
\]

and

\[
A^U(x^{-1}) = A^U(x^{n-1}) = A^U(x^{n-2}) \geq A^U(x).
\]

Hence } A \text{ is an IVG of } G.

\]

\[
\text{Lemma 2.2. Let } A \text{ be an IVG of a group } G \text{ and let } x \in G.
\]

\[
\text{Then } A(xy) = A(y), \text{ for each } y \in G \text{ if and only if }
\]

\[
A(x) = A(e).
\]

\[
\text{Proof. (⇒): Suppose } A(xy) = A(y), \text{ for each } y \in G. \text{ Then clearly }
\]

\[
A(x) = A(e).
\]

\[
\text{⇐: Suppose } A(x) = A(e). \text{ Then, by Result 1.B(b), } A^L(y) \leq A^L(x) \text{ and } A^U(y) \leq A^U(x) \text{ for each } y \in G.
\]

\[
\text{Since } A \text{ is an IVG of } G, \text{ then } A^L(xy) \geq A^L(x) \wedge A^L(y) \text{ and } A^U(xy) \geq A^U(x) \wedge A^U(y). \text{ Thus } A^L(xy) \geq A^L(y)
\]

and

\[
A^U(xy) \geq A^U(y) \text{ for each } y \in G.
\]

\[
\text{On the other hand, by the hypothesis and Result 1.B(b), }
\]

\[
A^L(y) = A^L(x^{-1}y) \geq A^L(x) \wedge A^L(xy) \text{ and } A^U(y) = A^U(xy^{-1}) \geq A^U(x) \wedge A^U(xy).
\]

\[
\text{Since } A(x) \geq A^L(y) \text{ for each } y \in G, A^L(xy) \wedge A^L(xy) = A^L(xy) \text{ and } A^U(x) \wedge A^U(xy) = A^U(xy). \text{ So }
\]

\[
A^L(y) \geq A^L(xy) \text{ and } A^U(y) \geq A^U(xy) \text{ for each } y \in G. \text{ Hence } A(xy) = A(y) \text{ for each } y \in G.
\]

\]

\[
\text{Remark 2.3. It is easy to see that if } A(x) = A(e), \text{ then }
\]

\[
A(xy) = A(xy) \text{ for each } y \in G.
\]
Definition 2.4. Let A be an IVS of a group G and let $x \in G$. We define two mappings $Ax, xA : G \rightarrow D(I)$ as follows, respectively: For each $g \in G$, $Ax(g) = A(gx^{-1})$ and $xA(g) = A(g^{-1}x)$. Then Ax [resp. xA] is called the interval-valued fuzzy right [resp. left] coset of A determined by x and A.

Remark 2.5. Definition 2.4 extends in a natural way to usual definition of a "coset" of a group. This is seen as follows: Let H be a subgroup of a group G and let $A = [\chi_H, \chi_H]$, where χ_H is the characteristic function of H. Let $x, y \in G$. Then $Ax = [\chi_H, \chi_H]$. Suppose $g \in H$. Then
\[
Ax(gx) = [\chi_H(g), \chi_H(gx)] \\
= [\chi_H(gxx^{-1}), \chi_H(gxx^{-1})] \\
= [\chi_H(g), \chi_H(g)] \\
= [1, 1].
\]
Suppose $g \notin H$. Then
\[
Ax(gx) = [\chi_H(g), \chi_H(gx)] \\
= [\chi_H(gxx^{-1}), \chi_H(gxx^{-1})] \\
= [\chi_H(g), \chi_H(g)] \\
= [0, 0].
\]
So $Ax = [\chi_H, \chi_H]$. The following is the immediate result of Definition 2.4.

Proposition 2.6. Let A be an IVG of a group G. Then
(a) $(xy)A = x(yA)$.
(b) $A(xy) = (Ax)y$.
(c) $xA = A$ if $A(x) = [1, 1]$.

We know that any two left [resp. right] cosets of a subgroup H of a group G are equal or disjoint. However this fact is not valid in the interval-valued fuzzy case as shown in the following example.

Example 2.7. Let $G = \{e, a, b, c, d\}$ be the Klein’s four group and let A be the IVG of G defined by:
$A(a) = [1, 1], A(b) = [t_1, t_1], A(c) = A(d) = [t_2, t_2]$, where $0 < t_2 \leq t_1 < 1$. Then $ba \neq cb$.

Definition 2.8 [6]. Let A be an IVG(G). Then A is called an interval-valued fuzzy normal subgroup (in short, IVNG) of G if $A(xy) = A(yx)$, for any $x, y \in G$.

We will denote the set of all IVNGs of a group G as $\text{IVNG}(G)$. The following is the immediate result of Definitions 2.4 and 2.8.

Theorem 2.9. Let A be an IVG of a group G. Then the followings are equivalent:
(a) $A^*(xyx^{-1}) \geq A^*(y)$ and $A^*(xyx^{-1}) \geq A^*(y)$, for any $x, y \in G$.
(b) $A(xy) = A(y)$ for any $x, y \in G$.
(c) $A \in \text{IVNG}(G)$.
(d) $xA = Ax, \forall x \in G$.
(e) $xA^{-1} = A, \forall x \in G$.

Remark 2.10. Let G be a group.
(a) If A is a fuzzy normal subgroup of G, then $[A, A] \in \text{IVNG}(G)$.
(b) If $A = [A^L, A^U] \in \text{IVNG}(G)$, then A^L and A^U are fuzzy normal subgroups of G.

Let G be a group and $a, b \in G$. We say that a is conjugate to b if there exists $x \in G$ such that $b = x^{-1}ax$. It is well-known that conjugacy is an equivalence relation on G. The equivalence classes in G under the relation of conjugacy are called conjugate classes [4].

Theorem 2.11. Let A be an IVG of a group G. Then $A \in \text{IVNG}(G)$ if and only if A is constant on the conjugate classes of G.

Proof. (\Rightarrow) : Suppose $A \in \text{IVNG}(G)$ and let $x, y \in G$. Then $A(y^{-1}xy) = A(xy^{-1}) = A(x)$. Hence A is constant on the conjugate classes.

(\Leftarrow) : Suppose the necessary condition holds and let $x, y \in G$. Then $A(xy) = A(xyx^{-1}) = A(xyx^{-1}) = A(yx^{-1}) = A(yx)$. Hence $A \in \text{IVNG}(G)$.

Let G be a group and $x, y \in G$. Then the element $x^{-1}y^{-1}xy$ is usually denoted by $[x, y]$ and called the commutator of x and y. It is clear that if x and y commute with each other, then clearly $[x, y] = e$. Let H and K be two subgroups of a group G. Then the subgroup $[H, K]$ is defined as the subgroup generated by the elements $\{[x, y] : x \in H, y \in K\}$. It is well-known that $N \triangleleft G$ if and only if $[N, G] \leq N$.

The following is the generalization of the above result using interval-valued fuzzy sets.

Theorem 2.12. Let A be an IVG of a group G. Then $A \in \text{IVNG}(G)$ if and only if $A^L([x, y]) \geq A^L(x)$ and $A^U([x, y]) \geq A^U(x)$, for any $x, y \in G$.

Proof. (\Rightarrow) : Suppose $A \in \text{IVNG}(G)$ and let $x, y \in G$. 207
By the similar arguments, we have that $A(x, z) \in \text{IVNG}(G)$. This completes the proof.

\[A^L([x, y]) = A^L(x^{-1}y^{-1}xy) = A^L(y^{-1}x y x^{-1}) \quad \text{(By the hypothesis)} \]
\[\geq A^L(y^{-1}x y) \land A^L(x^{-1}) \quad \text{(Since } A \in \text{IVNG}(G)) \]
\[= A^L(x) \land A^L(x) \quad \text{(By Theorem 2.9 and Result 1.B(a))} \]
\[= A^L(x). \]

By the similar arguments, we have that $A^U([x, y]) \geq A^U(x)$. Hence the necessary conditions hold.

(\(\Leftarrow\)): Suppose the necessary conditions hold and let $x, z \in G$. Then
\[A^L(x^{-1}z x) = A^L(z^{-1}x^{-1}z x) \]
\[\geq A^L(z) \land A^L(z x) \land A^L(x^{-1}) \quad \text{(Since } A \in \text{IVNG}(G)) \]
\[= A^L(z) \land A^L(z) \quad \text{(By the hypothesis)} \]
\[= A^L(z). \]

By the similar arguments, we have that $A^U(x^{-1}z x) \geq A^U(z)$. On the other hand,
\[A^L(z) = A^L(x x^{-1}z x x^{-1}) \]
\[\geq A^L(x) \land A^L(x^{-1}z x) \land A^L(x^{-1}) \quad \text{(Since } A \in \text{IVNG}(G)) \]
\[= A^L(x) \land A^L(x^{-1}z x). \quad \text{(By Result 1.B(a))} \]

By the similar arguments, we have that $A^U(z) \geq A^U(x) \land A^U(x^{-1}z x)$.

Case(i): Suppose $A^L(x) \land A^L(x^{-1}z x) = A^L(x)$ and $A^U(x) \land A^U(x x^{-1}z x) = A^U(x)$. Then $A^L(z) \geq A^L(x)$ and $A^U(z) \geq A^U(x)$ for any $x, z \in G$. Thus A is a constant mapping. So $A(xy) = A(yx)$ for any $x, z \in G$, i.e., $A \in \text{IVNG}(G)$.

Case(ii): Suppose $A^L(x) \land A^L(x^{-1}z x) = A^L(x^{-1}z x)$ and $A^U(x) \land A^U(x^{-1}z x) = A^U(x^{-1}z x)$. Then $A^L(z) \geq A^L(x^{-1}z x)$ and $A^U(z) \geq A^U(x^{-1}z x)$ for any $x, z \in G$, i.e., $A(x^{-1}z x) = A(z)$ for any $x, z \in G$. So A is constant on the conjugate classes. By Theorem 2.11, $A \in \text{IVNG}(G)$. Hence, in either cases, $A \in \text{IVNG}(G)$.

This completes the proof. \(\Box\)

Proposition 2.13. Let A be an IVNG of a group G and let $[\lambda, \mu] \in D(I)$ such that $\lambda \leq A^e(e), \mu \leq A^U(e)$, where e denotes the identity of G. Then $A^{[\lambda, \mu]} \triangleleft G$.

\[A^{[\lambda, \mu]} \triangleleft G. \]

Let A be an IVNG of a finite group G with $\text{Im} A = \{[t_0, s_0], [t_1, s_1], \ldots, [t_r, s_r]\}$, where $t_0 > t_1 > \cdots > t_r$, and $s_0 > s_1 > \cdots > s_r$. Then it follows from Theorem 2.7 that the level subgroups of A form a chain of normal subgroups:
\[A^{[t_0, s_0]} \subset A^{[t_1, s_1]} \subset \cdots \subset A^{[t_r, s_r]} = G. \quad (2.1) \]

The following is the immediate result of Proposition 2.13.

Corollary 2.13 [6, Proposition 5.4]. Let A be an IVNG of a group G with identity e. Then $G_A \triangleleft G$, where $G_A = \{x \in G : A(x) = A(e)\}$.

The following is the converse of Proposition 2.13.

Proposition 2.14. If A is an IVNG of a finite group G such that all the level subgroups of A are normal in G, then $A \in \text{IVNG}(G)$.

Proof. Let $\text{Im} A = \{[t_0, s_0], [t_1, s_1], \ldots, [t_r, s_r]\}$, where $t_0 > t_1 > \cdots > t_r$, and $s_0 > s_1 > \cdots > s_r$. Then the family $\{A^{[i, s_i]} : 0 \leq i \leq r\}$ is the complete set of level subgroups of G. By the hypothesis, $A^{[i, s_i]} \triangleleft G$ for each $0 \leq i \leq r$. From the definition of the level subgroup, it is clear that $A^{[i, s_i]} \setminus A^{[i-1, s_{i-1}]} = \{x \in G : A(x) = [t_i, s_i]\}$. Since a normal subgroup of a group is a complete union of conjugate classes, it follows that in the given chain (2.1) of normal subgroups, each $A^{[i, s_i]} \setminus A^{[i-1, s_{i-1}]}$ is a union of some conjugate classes. Since A is constant on the level subgroups $A^{[i, s_i]} \setminus A^{[i-1, s_{i-1}]}$, it follows that A must be constant on each conjugate class of G. Hence, by Theorem 2.11, $A \in \text{IVNG}(G)$. \(\Box\)

Example 2.15. Let G be the group of all symmetries of a square. Then G is a group of order 8 generated by a rotation through $\pi/2$ and a reflection along a diagonal of the square. Let us denote the elements of G by $\{1, 2, 3, 4, 5, 6, 7, 8\}$, where 1 is the identity, 2 is rotation through $\pi/2$ and 5 is a reflection along a diagonal: the multiplication table of G is as shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1.
We can easily see that the conjugate classes of G are \{1, 3, 5, 7, 6, 8\}, \{2, 4\}.

Let $H = \{1, 3\}$ and let $K = \{1, 2, 3, 4\}$. Then clearly, $H \triangleleft G$ and $K \triangleleft G$ (in fact, H is the center of G). Thus we have a chain of normal subgroups given by

$$\{1\} \subset H \subset K \subset G. \quad (2.2)$$

Now we will construct an IVG of G whose level subgroups are precisely the members of the chain (2.2). Let $[t_0, s_0] \in D(I), 0 \leq i \leq 3$ such that $t_0 > t_1 > t_2 > t_3$ and $s_0 > s_1 > s_2 > s_3$. Define a mapping $A : G \rightarrow D(I)$ as follows:

$A(1) = [t_0, s_0], A(H \setminus \{1\}) = [t_1, s_1], A(K \setminus H) = [t_2, s_2], A(G \setminus K) = [t_3, s_3]$.

From the definition of A, it is clear that $A(x) = A(x^{-1})$ for each $x \in G$. Also, we can easily check that for any x, y, G,

$A^L(xy) \geq A^L(x) \land A^L(y)$ and $A^U(xy) \geq A^U(x) \land A^U(y)$.

Furthermore, it is clear that A is constant on the conjugate classes. Hence, by Theorem 2.11, $A \in IVNG(G)$. \hfill \Box

The following can be easily proved and the proof is omitted.

Lemma 2.16. Let A be an IVG of a group and let $x \in G$. Then $A(x) = [\lambda, \mu]$ if and only if $x \in A^{[\lambda, \mu]}$ and $x \notin A^{[t,s]}$ for each $[t, s] \in D(I)$ such that $t > \lambda$ and $s > \mu$.

It is well-known that if N is a normal subgroup of a group G, then $xy \in N$ if and only if $yx \in N$ for any $x, y \in G$.

The following result is the generalization of Proposition 2.14.

Proposition 2.17. Let A be an IVG of a group G. If $A^{[\lambda, \mu]}, [\lambda, \mu] \in \text{Im} \, A$, is a normal subgroup of G, then $A \in IVNG(G)$.

Proof. For any $x, y \in G$, let $A(x, y) = [\lambda, \mu]$ and let $A(xy) = [t, s]$ be such that $t > \lambda$ and $s > \mu$. Then, by Lemma 2.16, $xy \in A^{[\lambda, \mu]}$ and $x \notin A^{[t,s]}$. Thus $yx \in A^{[\lambda, \mu]}$ and $y \notin A^{[t,s]}$. So $A(yx) = [\lambda, \mu]$, i.e., $A(xy) = A(yx)$. Hence $A \in IVNG(G)$. \hfill \Box

3. Homomorphisms

Definition 3.1 [9]. Let $f : X \rightarrow Y$ be a mapping, let $A = [A^L, A^U] \in D(I)^X$ and let $B = [B^L, B^U] \in D(I)^Y$. Then

(a) the image of A under f, denoted by $f(A)$, is an IVS in Y defined as follows: For each $y \in Y$,

$$f(A^L(y)) = \begin{cases} \bigvee_{y \in f(x)} A^L(x), & \text{if } f^{-1}(y) \neq \emptyset; \\ 0, & \text{otherwise.} \end{cases}$$

and

$$f(A^U(y)) = \begin{cases} \bigwedge_{y \in f(x)} A^U(x), & \text{if } f^{-1}(y) \neq \emptyset; \\ 0, & \text{otherwise.} \end{cases}$$

(b) the preimage of B under f, denoted by $f^{-1}(B)$, is an IVS in X defined as follows: For each $y \in Y$,

$$f^{-1}(B^L(y)) = (B^L \circ f)(x) = B^L(f(x))$$

and

$$f^{-1}(B^U(y)) = (B^U \circ f)(x) = B^U(f(x)).$$

It can be easily seen that $f(A) = [f(A^L), f(A^U)]$ and $f^{-1}(B) = [f^{-1}(B^L), f^{-1}(B^U)]$.

Result 3.A [9, Theorem 2]. Let $f : X \rightarrow Y$ be a mapping and $g : Y \rightarrow Z$ be a mapping. Then

(a) $f^{-1}(B^c) = f^{-1}(B^c), \forall B \in D(I)^Y$.

(b) $[f(A)]^c \subset f(A^c), \forall A \in D(I)^Y$.

(c) $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in D(I)^Y$.

(d) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, where $A_1, A_2 \in D(I)^X$.

(e) $f(f^{-1}(B)) \subset B, \forall B \in D(I)^Y$.

(f) $A \subset f(f^{-1}(A)), \forall A \in D(I)^Y$.

(g) $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)), \forall C \in D(I)^Z$.

(h) $f^{-1}(\bigcup_{\alpha \in \Gamma} B_{\alpha}) = \bigcup_{\alpha \in \Gamma} f^{-1}B_{\alpha}$, where $\{B_{\alpha}\}_{\alpha \in \Gamma} \subset D(I)^Y$.

(i) $f^{-1}(\bigcap_{\alpha \in \Gamma} B_{\alpha}) = \bigcap_{\alpha \in \Gamma} f^{-1}B_{\alpha}$, where $\{B_{\alpha}\}_{\alpha \in \Gamma} \subset D(I)^Y$.

Proposition 3.2. Let $f : X \rightarrow Y$ be a groupoid homomorphism. If $A \in IVGP(X)$, then $f(A) \in IVGP(Y)$.

Proof. For each $y \in Y$, let $X_y = f^{-1}(y)$. Since f is a homomorphism, it is clear that $X_yX_{y'} \subset X_{yy'}$ for any $y, y' \in Y$. \hfill (*)

Let $y, y' \in Y$.

Case (i): Suppose $yy' \notin f(A)$. Then clearly $f(A)(yy') = [0, 0]$. Since $yy' \notin f(X), X_{yy'} = \emptyset$. By (*)& $X_y = \emptyset$ or $X_{y'} = \emptyset$. Thus $f(A)(y) = [0, 0]$ or $f(A)(y') = [0, 0]$. So

$$f(A)(yy') = [0, 0]$$

and

$$f(A)(y) \land f(A)(y') = f(A)(y') \land f(A)(y') = [f(A)^L(y'), f(A)^U(y')] = [0, 0].$$

$$f(A)^L(y) \land f(A)^U(y') = [f(A)^L(y), f(A)^U(y')] = [0, 0].$$
Case (ii): Suppose $yy' \in f(X)$. Then $X_{yy'} \not= \emptyset$. If $X_y = \emptyset$ and $X_{y'} = \emptyset$, then $f(A)(y) = [0, 0]$ and $f(A)(y') = [0, 0]$. Thus

$$f(A)^L(yy') \geq f(A)^L(y) \land f(A)^L(y')$$

and

$$f(A)^U(yy') \geq f(A)^U(y) \land f(A)^U(y').$$

If $X_y \not= \emptyset$ or $X_{y'} \not= \emptyset$, then, by (*),

$$f(A)^L(yy') = \bigvee_{x \in X_{yy'}} A^L(z) \geq \bigvee_{x \in X_y, x' \in X_{y'}} A^L(x')$$

$$\geq \bigvee_{x \in X_y, x' \in X_{y'}} (A^L(x) \land A^L(x'))$$

(Since $A \in \text{IVGP}(X)$)

$$= \bigvee_{x \in X_y, x' \in X_{y'}} A^L(x') = f(A)^L(y') \land f(A)^L(y').$$

By the similar arguments, we have that

$$f(A)^U(yy') \geq f(A)^U(y) \land f(A)^U(y').$$

Consequently,

$$f(A)^U(yy') \geq f(A)^U(y) \land f(A)^L(y')$$

and

$$f(A)^U(yy') \geq f(A)^U(y') \land f(A)^U(y').$$

Hence $f(A) \in \text{IVGP}(Y)$. \hfill \Box

Definition 3.3 [1, 6]. Let A be an IVS in a groupoid G. Then A is said to have the sup-property if for any $T \in P(G)$, there exists a $t_0 \in T$ such that $A(t_0) = \bigcup_{t \in T} A(t)$, i.e., $A^L(t_0) = \bigvee_{t \in T} A^L(t)$ and $A^U(t_0) = \bigvee_{t \in T} A^U(t)$, where $P(G)$ denotes the power set of G.

Result 3.B [6, Proposition 4.11]. Let $f : G \rightarrow G'$ be a group homomorphism, let $A \in \text{IVG}(G)$ and let $B \in \text{IVG}(G')$. Then the followings hold:

(a) If A has the sup property, then $f(A) \in \text{IVG}(G')$.

(b) $f^{-1}(B) \in \text{IVG}(G)$.

Proposition 3.4. Let $f : X \rightarrow Y$ be a group[resp. ring, algebra and field] homomorphism. If $A \in \text{IVG}(X)[resp.\ IVR(X), \text{IVA}(X) and \text{IVF}(X)]$, then $f(A) \in \text{IVG}(Y)[resp. \ IVR(Y), \text{IVA}(Y) and \text{IVF}(Y)]$, where $\text{IVG}(X)[resp. \ IVR(X), \text{IVA}(X) and \text{IVF}(X)]$ denotes the set of all interval-valued fuzzy subgroups[resp. subrings, subalgebras and subfields] of a group[resp. ring, algebra and field] X.

Proof. Suppose $f : X \rightarrow Y$ is a group homomorphism and let $A \in \text{IVG}(X)$. Then, we need only to show that $f(A)^L(y^{-1}) \geq f(A)^L(y)$ and $f(A)^U(y^{-1}) \geq f(A)^U(y)$ for each $y \in Y$. Let $y \in Y$.

Case (i): Suppose $y^{-1} \not\in f(X)$. Then $y \not\in f(X)$. Thus $f(A)(y^{-1}) = [0, 0] = f(A)(y)$.

Case (ii): Suppose $y^{-1} \in f(X)$. Then $y \in f(X)$. Thus

$$f(A)^L(y^{-1}) = \bigvee_{t \in f^{-1}(y^{-1})} A^L(t) \geq A^L(y) = f(A)^L(y)$$

and

$$f(A)^U(y^{-1}) = \bigvee_{t \in f^{-1}(y^{-1})} A^U(t) \geq A^U(y) = f(A)^U(y).$$

Hence $f(A) \in \text{IVG}(Y)$. The proofs of the rest are omitted. This completes the proof. \hfill \Box

Another Proof : Let $[\lambda, \mu] \in \text{Im} f(A)$. Then there exists a $y \in Y$ such that

$$f(A)(y) = \bigvee_{x \in f^{-1}(y)} A^L(x), \bigvee_{x \in f^{-1}(y)} A^U(x) = [\lambda, \mu].$$

Since $A \in \text{IVG}(X)$, by Result 1.B(b), $\lambda \leq A^L(e)$ and $\mu \leq A^U(e)$.

Case (i): Suppose $[\lambda, \mu] = [0, 0]$. Then clearly $(f(A)[\lambda, \mu]) = Y$. So, by Result 1.D, $f(A) \in \text{IVG}(Y)$.

Case (ii): Suppose $\lambda > 0$. Then $z \in (f(A)[\lambda, \mu]) \Leftrightarrow f(A)^L(z) \geq \lambda$ and $f(A)^U(z) \geq \mu \Leftrightarrow \bigvee_{x \in f^{-1}(z)} A^L(x) \geq \lambda$ and $\bigvee_{x \in f^{-1}(z)} A^U(x) \geq \mu \Leftrightarrow$ there exists an $x \in X$ such that $f(x) = z$, $A^L(x) \geq \lambda$ and $A^U(x) \geq \mu \Leftrightarrow z \in (f(A)[\lambda, \mu])$.

Thus $(f(A)[\lambda, \mu]) = f(A[\lambda, \mu])$. Since f is a homomorphism and $A[\lambda, \mu]$ is a subgroup of X, $f(A[\lambda, \mu])$ is a subgroup of Y. So, by Result 1.D, $f(A) \in \text{IVG}(Y)$. Hence, in all, $f(A) \in \text{IVG}(X)$. \hfill \Box

Remark 3.5. In Result 3.B, A has the sup property but in Proposition 3.4, there is no restriction on A.

Proposition 3.6. Let $f : G \rightarrow G'$ be a group homomorphism, let $A \in \text{IVNG}(G)$ and let $B \in \text{IVNG}(G')$. Then the followings hold:

(a) If f is surjective, then $f(A) \in \text{IVNG}(G')$.

(b) $f^{-1}(B) \in \text{IVNG}(G)$.

Proof. (a) By Proposition 3.4, $f(A) \in \text{IVG}(G')$. Let $[\lambda, \mu] \in \text{Im} f(A)$. From the process of the another proof of Proposition 3.4, it is clear that $\lambda \leq A^L(e)$, $\mu \leq A^U(e)$ and $(f(A)[\lambda, \mu]) = f(A[\lambda, \mu])$. Since $A \in \text{IVNG}(G)$, by Proposition 2.13, $A[\lambda, \mu] \subset G$. Since f is an epimorphism, $(f(A)[\lambda, \mu]) = f(A[\lambda, \mu]) \subset G'$. Hence, by Proposition 2.17, $f(A) \in \text{IVG}(G')$.

210
Thus A is constant on the conjugate classes of G. So, by Theorem 2.11, $A \in \text{IVNG}(G)$.

Now let $g \in N$. Then $A(g) = \tilde{B}(N_g) = \tilde{B}(N) = A(e)$. Thus $g \in G_A$. So $N \subseteq G_A$. Let $x \in G_A$. Then $A(x) = A(e)$. Thus $\tilde{B}(N) = \tilde{B}(N)$. So $x \in N$, i.e., $G_A \subset N$. Hence $N = G_A$. Furthermore, $\tilde{A} = \tilde{B}$. This completes the proof.

\hfill \Box

4. Interval-valued fuzzy Lagrange’s Theorem

Let A be an IVS in a group G and for each $x \in G$, $xf : G \rightarrow G$ [resp. $fx : G \rightarrow G$] be a mapping defined as follows, respectively: For each $g \in G$,

$x(f(g)) = xg$ [resp. $f(x)(g) = gx$].

Proposition 4.1. Let A be an IVG of a group G. Then $xf(A) = xA$ [resp. $f_x(A) = Ax$] for each $x \in G$.

Proof. Let $g \in G$. Then

$$f_x(A)^L(g) = \bigvee_{g' \in f_x^{-1}(g)} A^L(g')$$

$$= \bigvee_{g' \neq g} A^L(g') = A^L(gx^{-1})$$

and

$$f_x(A)^U(g) = \bigvee_{g' \in f_x^{-1}(g)} A^U(g')$$

$$= \bigvee_{g' \neq g} A^U(g') = A^U(gx^{-1})$$.

Hence, $f_x(A) = Ax$. Similarly, we can see that $xf(A) = xA$.

\hfill \Box

Theorem 4.2. Let A be an IVG of a group G and let $g_1, g_2 \in G$. Then $g_1A = g_2A$ [resp. $Ag_1 = Ag_2$] if and only if $A(g_1^{-1}g_2) = A(g_2^{-1}g_1) = A(e)$ [resp. $A(g_1g_2^{-1}) = A(g_2g_1^{-1}) = A(e)$].

Proof. (\Rightarrow): Suppose $g_1A = g_2A$. Then $g_1A(g_1) = g_2A(g_2)$ and $g_1A(g_1^{-1}g_2) = g_2A(g_2^{-1}g_1)$. Hence $A(g_1g_2^{-1}) = A(g_2g_1^{-1}) = A(e)$.

(\Leftarrow): Suppose $A(g_1^{-1}g_2) = A(g_2^{-1}g_1) = A(e)$. Let $x \in G$. Then $g_1A(x) = A(g_1^{-1}x) = A(g_1^{-1}g_2g_2^{-1}x)$. Since A is a IVS in G,

$$A^L(g_1^{-1}x) = A^L(g_1^{-1}xg_2g_2^{-1}x)$$

$$= A^L(g_1^{-1}g_2) \land A^L(g_2^{-1}x)$$

$$= A^L(g_2^{-1}x).$$

(By Result 1.B(b))
By the similar arguments, we have that $A^U(g_1^{-1}x) \geq A^U(g_2^{-1}x)$. Thus $g_2A \subset g_1A$. Similarly, we have that $g_1A \subset g_2A$. Hence $g_1A = g_2A$. This completes the proof.

Proposition 4.3. Let A be an IVNG of a group G. If $Ag_1 = Ag_2$ for any $g_1, g_2 \in G$, then $A(g_1) = A(g_2)$.

Proof. Suppose $Ag_1 = Ag_2$ for any $g_1, g_2 \in G$. Then $Ag_1(g_2) = Ag_2(g_2)$. Thus $A(g_2g_1^{-1}) = A(e)$. Hence, by Result 1.C, $A(g_1) = A(g_2)$. □

Proposition 4.4. Let A be an IVNG of a group G. If $A^{[\lambda, \mu]}(x) = A^{[\lambda, \mu]}y$ for any $x, y \in G \setminus A^{[\lambda, \mu]}$ and each $[\lambda, \mu] \in D(I)$, then $A(x) = A(y)$.

Proof. Suppose $A^{[\lambda, \mu]}(x) = A^{[\lambda, \mu]}y$ for any $x, y \in G \setminus A^{[\lambda, \mu]}$ and each $[\lambda, \mu] \in D(I)$. Then $yx^{-1} \in A^{[\lambda, \mu]}$. Thus $A^U(yx^{-1}) \geq \lambda$ and $A^U(yx^{-1}) \geq \mu$. Since $x \in G \setminus A^{[\lambda, \mu]}$, $A^L(x) \geq \lambda$ and $A^U(x) \leq \mu$. On the other hand,

$$A^L(y) = A^L(yx^{-1}x) \geq A^L(yx^{-1}) \geq A^L(x)$$

and

$$A^U(y) = A^U(yx^{-1}x) \geq A^U(yx^{-1}) \geq A^U(x).$$

Thus $A^L(y) \geq A^L(x)$ and $A^U(y) \geq A^U(x)$. By the similar arguments, we have that $A^L(y) \leq A^L(x)$ and $A^U(y) \leq A^U(x)$. Hence $A(x) = A(y)$. □

Proposition 4.5. Let A be an IVNG of a group G and let $x \in G$. Then $Ax(xg) = Ax(gx) = A(g)$ for each $g \in G$.

Proof. Let $g \in G$. Then

$$Ax(xg) = [A^L(xg), A^U(xg)]$$

$$= [A^L(xgx^{-1}x), A^U(xgx^{-1}x)]$$

$$= [A^L(xgx^{-1}x), A^U(xgx^{-1}x)]$$

(By the definition of Ax)

$$= [A^L(xgx^{-1}), A^U(xgx^{-1})]$$

$$= [A^L(g), A^U(g)]$$

(By Theorem 2.11)

$$= A(g).$$

Similarly, we have that $Ax(gx) = A(g)$. This completes the proof.

Remark 4.6. Proposition 4.5 is analogous to the result in group theory that if $N \triangleleft G$, then $N：<x \in G$. For IVNG, we have the analogous result:

Proposition 4.7. Let A be an IVNG of a group G and let H/A be the set of all the interval-valued fuzzy cosets of A. We define an operation $*$ on G/A as follows: For any $x, y \in G$, $Ax * Ay = Axy$. Then $(G/A, *)$ is a group. In this case, A is called the interval-valued fuzzy quotient group induced by A.

Proof. Let $x, y, z, x_0, y_0 \in G$ such that $Ax = Ax_0$ and $Ay = Ay_0$, and let $g \in G$. Then $Ax_0y(g) = A(gy^{-1}x^{-1})$ and $Ax_0y_0(g) = A(gy_0^{-1}x_0^{-1})$. On the other hand,

$$A^L(gy^{-1}x^{-1}) = A^L(gy_0^{-1}y_0^{-1}x^{-1})$$

$$A^L(gy_0^{-1}x_0^{-1}x_0) = A^L(gy_0^{-1}x^{-1}) \\ A^L(gy_0^{-1}x^{-1}) \geq A^L(gy_0^{-1}x_0^{-1}) \wedge A^L(gy_0^{-1}x^{-1}).$$

(See $A \in IVG(G))$ (4.1)

By the similar arguments, we have that

$$A^U(gy^{-1}x^{-1}) \geq A^U(gy_0^{-1}x_0^{-1}) \wedge A^U(gy_0^{-1}x_0^{-1}).$$

(4.2)

Since $Ax = Ax_0$ and $Ay = Ay_0$, $A(gx^{-1}) = A(gx_0^{-1})$ and $A(gy^{-1}) = A(gy_0^{-1})$. In particular,

$$A(x_0y_0^{-1}x_0^{-1}) = A(x_0y_0^{-1}x_0^{-1})$$

$$A(Ay_0^{-1}) (Since A \in IVNG(G))$$

$$= A(e).$$

So $[A^L(gy_0^{-1}x^{-1}), A^U(gy_0^{-1}x_0^{-1})] = [A^L(e), A^U(e)]$. By Result 1.B(b), $A^L(e) \geq A^L(gy_0^{-1}x_0^{-1})$ and $A^U(e) \geq A^U(gy_0^{-1}x_0^{-1})$. Thus, by (4.1) and (4.2),

$$A^L(gy^{-1}x^{-1}) \geq A^L(gy_0^{-1}x_0^{-1})$$

and

$$A^U(gy_0^{-1}x_0^{-1}) \geq A^L(gy_0^{-1}x_0^{-1}).$$

(See $A \in IVNG(G)$)

$$A(gy_0^{-1}x_0^{-1}) = A(gy_0^{-1}x_0^{-1}).$$

(i) * is associative.

(ii) Ax^{-1} is the inverse of Ax for each $x \in G$.

(iii) $Ae = A$ is the identity of G/A. Therefore $(G/A, *)$ is a group. This completes the proof. □

Proposition 4.8. Let A be an IVNG of a group G. We define a mapping $\bar{A} : G/A \rightarrow D(I)$ as follows: For each $x \in G$, $\bar{A}(Ax) = Ax$. Then \bar{A} is an IVG of G/A. In this case, \bar{A} is called the interval-valued fuzzy subquotient group determined by A.

Proof. From the definition of \bar{A}, it is clear that $\bar{A} \in$...
Let \(x, y \in G \). Then
\[
D(I)^G_A := \{ (Ax) \mid x \in G \}.
\]
By the similar arguments, we have that \(B^U(xy) \geq B^U(x) \wedge B^U(y) \). Since \(A^* \in \text{IVG}(G/A) \),
\[
A^*(Ax) = A^*(Ay).
\]
We define a mapping \(\overline{H} \). Hence
\[
\overline{H} : G/A \rightarrow \overline{G}/A,
\]
Let \(\pi \in \text{ker}(\overline{H}) \). We define a mapping \(\overline{K} \).
Thus
\[
\overline{K} : A \rightarrow \overline{A}
\]
and
\[
\overline{A}(x) = \overline{A}(y).
\]
Hence \(A \in \text{IVG}(G/A) \).

Proposition 4.9. Let \(A \) be an IVNG of a group \(G \). We define a mapping \(\pi : G \rightarrow G/A \) as follows: For each \(x \in G \), \(\pi(x) = Ax \). Then \(\pi \) is a homomorphism with \(\text{ker}(\pi) = G_A \). In this case, \(\pi \) is called the natural homomorphism.

Proof. Let \(x, y \in G \). Then \(\pi(xy) = Axy = Ax \ast Ay = \pi(x) \ast \pi(y) \). So \(\pi \) is a homomorphism. Furthermore,
\[
\text{ker}(\pi) = \{ x \in G : \pi(x) = Ae \}
\]
\[
= \{ x \in G : A(x) = Ae \}
\]
\[
= \{ x \in G : Ax(x) = Ae(x) \}
\]
\[
= \{ x \in G : A(e) = A(e) \}
\]
\[
= G_A.
\]
This completes the proof.

Now we obtain for interval-valued fuzzy subgroups an analogous result of the “Fundamental Theorem of Homomorphism of Groups”.

Proposition 4.10. Let \(A \in \text{IVNG}(G) \). Then each interval-valued fuzzy(normal) subgroup of \(G/A \) corresponds in a natural way to an interval-valued fuzzy(normal) subgroup of \(G \).

Proof. Let \(A^* \) be an interval-valued fuzzy subgroup of \(G/A \). Define a mapping \(B : G \rightarrow D(I) \) as follows: For each \(x \in G \), \(B(x) = A^*(Ax) \). By the definition of \(B \), it is clear that \(B \in D(I)^G \). Let \(x, y \in G \). Then
\[
B^U(xy) = A^U(Axy)
\]
\[
= A^*(Ax) \ast Ay
\]
\[
\geq A^L(Ax) \wedge A^L(Ay) \quad \text{(Since } A^* \in \text{IVG}(G/A) \text{)}
\]
\[
= B^L(x) \wedge B^L(y).
\]
Since \(k \) divides the order of \(G \), \(|G/A| \) also divides the order of \(G \). This completes the proof.

References

