Guaranteed Synchronization of Huffman Codes

Marek Biskup
University of Warsaw, Poland

Data Compression Conference, 2008-03-27
Huffman Codes

- Each letter has a corresponding binary string (its codeword)
- The codewords form a complete binary tree
- The depth of a letter depends on its probability
- The code is uniquely decodable

\[
\begin{align*}
 a & \rightarrow 00 \\
 b & \rightarrow 01 \\
 c & \rightarrow 10 \\
 d & \rightarrow 110 \\
 e & \rightarrow 111
\end{align*}
\]

\[
\begin{align*}
 h = 3 & \quad N = 5
\end{align*}
\]
Why Huffman Codes?

- Arithmetic coding or LZ generally perform better
 - But they need to be decoded sequentially
 - They have no easy correspondence of between source letters and bit strings

- Huffman Codes use-cases:
 - Large static Information Retrieval System
 - Short fragments decoded on demand
 - Searching in a compressed text
 - Decompressing in parallel
 - Final stage of some other compression (e.g. LZW)
Bit corruption

- Correct:
 - $0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0$
 - b b e a a c b c e c

- Bit error:
 - $1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0$
Bit corruption

- **Correct:**
 - \[0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0\]
 - \[b \quad b \quad e \quad a \quad a \quad a \quad c \quad b \quad c \quad e \quad c\]

- **Bit error:**
 - \[1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0\]
 - \[d \quad e \quad c \quad a \quad b \quad d \quad d \quad e \quad c\]
Bit corruption

- Correct:
 - `0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0`
 - `b b e a a c b c e c`

- Bit error:
 - `1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0`
 - `d e c a b d d e c`
Bit corruption

- Correct:
 - 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0
 - b b e a a c b c e c

- Bit error:
 - 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0
 - d e c a b d d e c

Synchronization!
Bit corruption

- Correct:
 - 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0
 - b b e a a c b c e c

- Bit error:
 - 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0
 - d e c a b d d e c

Synchronization delay

Synchronization!
Definitions

- Huffman code is statistically synchronizable if the decoder always eventually synchronizes.

- A synchronizing string (SS) is such a string that when received by the decoder always puts it into synchronization.

- A synchronizing codeword is a SS that is a codeword.

```
SS: 0110
```

```
SC: 010 or 011
```
Known facts

- A code is statistically synchronizable iff it has a synchronizing string (Capocelli et al., 1988)

- Almost all Huffman codes have a synchronizing string (Freiling et al., 2003)

- If GCD(lengths of codewords) = 1 then there exists a HC with a synchronizing string (Shützenberger, 1967)

- Each code can be made statistically synchronizable by adding a little redundancy (Capocelli et al. 1992)
Known facts (2)

- For some cases there are algorithms that construct a code with a synchronizing codeword (e.g. Ferguson and Rabinowitz 1984)
- The average synchronization delay is usually low (e.g. 3.8 symbols for a 26-elem. code (Maxted and Robinson 1985))
- There are heuristics that give codes with low average synchronization delay (e.g. Zhou and Zhang, 2002)
Problems

- Synchronization is only **statistical** – no upper bound on the synchronization delay
- Example:

<table>
<thead>
<tr>
<th>c</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>

 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
 | e | a | a | c | b | e | a | a | c | b |
Guaranteed synchronization

- **Definition:**
 - A decoder D_k is a decoder that starts at the k-th bit

- **Goal:**
 - Limit the synchronization delay of any decoder to $< L$ bits

- **Input:** C – a code with a synchronizing codeword s
 - Assume that s does not correspond to any source letter
 - s will be a synchronization marker (SM)

- **Naïve approach:**
 - Insert SM between codewords in regular intervals
Guaranteed synchronization (2)

- **New approach:**
 - Check the synchronization delay of each decoder (i.e. starting from every bit) at each bit
 - Insert SM iff the delay of some decoder would exceed L

- The synchronization delay of decoders is computed during encoding

- On decoding just **skip** SM
Computing the sync. delay

- Two algorithms:
 - **Slow**: $O(h)$ per encoded codeword (worst-case)
 - Preprocessing – time: $O(N^2)$; memory: $O(N^2)$
 - Good for small trees, unusable for large trees
 - Simple implementation
 - **Fast**: $O(1)$ per encoded bit (worst-case)
 - Preprocessing – time: $O(N)$; memory: $O(N)$
 - Good for any trees
Zero-redundancy sync.

- Previously:
 - SM was a codeword that did not correspond to any letter
 - Suboptimal code: redundancy even if no SM inserted

- New setting: SM is any synchronizing string
 - No assumption that SM:
 - is a codeword
 - does not appear in the message
Zero-redundancy sync. (2)

• Idea:
 • The decoder *mimics the encoder* and locates the places where the SM was inserted

• Properties:
 • The redundancy depends only in the number of SM insertions
 • No redundancy if any decoder always synchronizes in \(L \) bits
Results for guaranteed sync.

- Compression with <256 and <4096 element codes
- The delay of the order of 30|SM|

| File | size | compr. | h | $|SM|$ | max del. [b] | redun. [%] | A1 | A2 |
|---------------|-------|--------|-----|--------|--------------|------------|----|----|
| dickens | 9.7MB | 5.6MB | 23 | 10 / 5 | 226 / 106 | 0.0 / 0.0 | 5.4| 4.7|
| mozilla | 48.8MB| 38.1MB | 11 | 13 / 7 | 16460 / 3112| 0.05 / 0.02| 6.8| 4.8|
| samba | 20.6MB| 15.8MB | 12 | 13 / 8 | 14419 / 1107| 0.15 / 0.05| 7.2| 5.0|
| xml | 5.1MB | 3.5MB | 22 | 9 / 6 | 331 / 141 | 0.002 / 0.0| 6.4| 4.8|
| dickens.lzw | 5.4MB | 4.54MB | 22 | 20 / 8 | 934 / 306 | 0.06 / 0.003| 12.8| 6.0|
| mozilla.lzw | 49.3MB| 35.1MB | 25 | 21 / 8 | 6351 / 1433 | 0.3 / 0.06 | 8.4| 4.8|
| samba.lzw | 18.7MB| 13.6MB | 24 | 20 / 8 | 12485 / 12388| 0.4 / 0.06 | 9.3| 5.0|
| xml.lzw | 4.8MB | 3.0MB | 22 | 17 /10 | 2773 / 287 | 0.05 / 0.0 | 9.9| 4.6|
Pros and cons

• Pros (applications):
 • Limited error propagation
 • Parallel decoding (cf. Klein and Wiseman, 2003)
 • Decoding of any fragment of an encoded message

• Cons:
 • The need to modify both the coder and the decoder
 • Time overhead for both coding and decoding
 • Difficult search in compressed data
Further research

- Already done:
 - Guaranteed synchronization with **known start bit number** (ESA 2008?)
 - Explicit synchronization markers (ITW 2008)
 - Finding all the synchronizing codewords (ESA 2008?)
 - Bounds on the length of a synchr. string (MFCS 2008?)
Further research

• Already done:
 • Guaranteed synchronization with known start bit number (ESA 2008?)
 • Explicit synchronization markers (ITW 2008)
 • Finding all the synchronizing codewords (ESA 2008?)
 • Bounds on the length of a synchr. string (MFCS 2008?)

• To be done:
 • Applications
 • N-ary codes and other coding methods (arithmetic?)
 • Reduction of the time overhead
 • Search in data compressed with this method
 • Is finding the shortest synchronizing string polynomial time?
Summary

• Modification of Huffman coding

• The decoder always resynchronizes in L bits
 • L is a parameter

• The optimality of the code is kept

• The redundancy depends only on the number of SM insertions

• Markers are inserted only when needed