Handbook of 3D Integration. Volume 3 - 3D Process Technology

Description: Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology. As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading for materials scientists, semiconductor physicists, and those working in the semiconductor industry, as well as IT and electrical engineers.

Contents:

List of Contributors XVII

1 3D IC Integration Since 2008 1
Philip Garrou, Peter Ramm, and Mitsumasa Koyanagi

1.1 3D IC Nomenclature 1
1.2 Process Standardization 2
1.3 The Introduction of Interposers (2.5D) 4
1.4 The Foundries 6
1.4.1 TSMC 6
1.4.2 UMC 7
1.4.3 Global Foundries 7
1.5 Memory 7
1.5.1 Samsung 7
1.5.2 Micron 8
1.5.3 Hynix 9
1.6 The Assembly and Test Houses 9
1.7 3D IC Application Roadmaps 10

References 11

2 Key Applications and Market Trends for 3D Integration and Interposer Technologies 13
Rozalia Beica, Jean-Christophe Eloy, and Peter Ramm

2.1 Introduction 13

2.2 Advanced Packaging Importance in the Semiconductor Industry is Growing 16
2.3 3D Integration-Focused Activities – The Global IP Landscape 18
2.4 Applications, Technology, and Market Trends 22

References 32
3 Economic Drivers and Impediments for 2.5D/3D Integration 33
Philip Garrou

3.1 3D Performance Advantages 33
3.2 The Economics of Scaling 33
3.3 The Cost of Future Scaling 34
3.4 Cost Remains the Impediment to 2.5D and 3D Product Introduction 37
3.4.1 Required Economics for Interposer Use in Mobile Products 38
3.4.2 Silicon Interposer Pricing 38

References 40

4 Interposer Technology 41
Venky Sundaram and Rao R. Tummala

4.1 Definition of 2.5D Interposers 41
4.2 Interposer Drivers and Need 42
4.3 Comparison of Interposer Materials 44
4.4 Silicon Interposers with TSV 45
4.5 Lower Cost Interposers 48
4.5.1 Glass Interposers 48
4.5.2 Low-CTE Organic Interposers 53
4.5.3 Polycrystalline Silicon Interposer 55
4.6 Interposer Technical and Manufacturing Challenges 57
4.7 Interposer Application Examples 58
4.8 Conclusions 60

References 61

5 TSV Formation Overview 65
Dean Malta

5.1 Introduction 65
5.2 TSV Process Approaches 67
5.2.1 TSV-Middle Approach 68
5.2.2 Backside TSV-Last Approach 68
5.2.3 Front-Side TSV-Last Approach 69
5.3 TSV Fabrication Steps 70
5.3.1 TSV Etching 70
5.3.2 TSV Insulation 71
7.3 TSV Process for D2D 105
7.3.1 Front-Side Bump Forming 106
7.3.2 Attach WSS and Thinning 106
7.3.3 Deep Si Etching from the Backside 107
7.3.4 Liner Deposition 107
7.3.5 Removal of SiO2 at the Bottom of Via 107
7.3.6 Barrier Metal and Seed Layer Deposition by PVD 110
7.3.7 Cu Electroplating 110
7.3.8 CMP 110
7.3.9 Backside Bump 111
7.3.10 Detach WSS 111
7.3.11 Dicing 112
7.4 TSV Process for W2W 113
7.4.1 Polymer Layer Coat and Development 114
7.4.2 Barrier Metal and Seed Layer Deposition 114
7.4.3 Cu Plating 114
7.4.4 CMP 115
7.4.5 First W2W Stacking (Face to Face) 116
7.4.6 Wafer Thinning and Deep Si Etching 116
7.4.7 TSV Liner Deposition and SiO2 Etching of Via Bottom 117
7.4.8 Barrier Metal and Seed Layer Deposition and Cu Plating 117
7.4.9 CMP 117
7.4.10 Next W2W Stacking 118
7.5 Conclusions 119

References 119

8 Laser-Assisted Wafer Processing: New Perspectives in Through-Substrate Via Drilling and Redistribution Layer Deposition 121
Marc B. Hoppenbrouwers, Gerrit Oosterhuis, Guido Knippels, and Fred Roozeboom

8.1 Introduction 121
8.2 Laser Drilling of TSVs 121
8.2.1 Cost of Ownership Comparison 121
8.2.2 Requirements for an Industrial TSV Laser Driller 123
8.2.3 Drilling Strategy 124
Wilfried Bair

10.1 Introduction 147
10.2 Carrier Selection for Temporary Bonding 148
10.3 Selection of Temporary Bonding Adhesives 151
10.4 Bonding and Debonding Processes 152
10.5 Equipment and Process Integration 155

References 156

11 ZoneBOND1: Recent Developments in Temporary Bonding and Room-Temperature Debonding 159
Thorsten Matthias, Jürgen Burggraf, Daniel Burgstaller, Markus Wimplinger, and Paul Lindner

11.1 Introduction 159
11.2 Thin Wafer Processing 159
11.2.1 Thin Wafer Total Thickness Variation 161
11.2.2 Wafer Alignment 163
11.3 ZoneBOND Room-Temperature Debonding 163
11.4 Conclusions 165

References 166

12 Temporary Bonding and Debonding at TOK 167
Shoji Otaka

12.1 Introduction 167
12.2 Zero Newton Technology 168
12.2.1 The Wafer Bonder 168
12.2.2 The Wafer Debonder 170
12.2.3 The Wafer Bonder and Debonder Equipment Lineups 170
12.2.4 Adhesives 170
12.2.5 Integration Process Performance 172
12.3 Conclusions 174

References 174

13 The 3M™ Wafer Support System (WSS) 175
Blake Dronen and Richard Webb

13.1 Introduction 175
13.2 System Description 175
13.3 General Advantages 177
13.4 High-Temperature Material Solutions 178
13.5 Process Considerations 180
13.5.1 Wafer and Adhesive Delamination 180
13.5.2 LTHC Glass Delamination 181
13.6 Future Directions 181
13.6.1 Thermal Stability 181
13.6.2 Elimination of Adhesion Control Agents 182
13.6.3 Laser-Free Release Layer 183
13.7 Summary 183
Reference 184

14 Comparison of Temporary Bonding and Debonding Process Flows 185
Matthew Lueck
14.1 Introduction 185
14.2 Studies of Wafer Bonding and Thinning 186
14.3 Backside Processing 186
14.4 Debonding and Cleaning 188
References 189

15 Thinning, Via Reveal, and Backside Processing – Overview 191
Eric Beyne, Anne Jourdain, and Alain Phommahaxay
15.1 Introduction 191
15.2 Wafer Edge Trimming 192
15.3 Thin Wafer Support Systems 194
15.3.1 Glass Carrier Support System with Laser Debonding Approach 196
15.3.2 Thermoplastic Glue Thin Wafer Support System – Thermal Slide Debondable System 196
15.3.3 Room-Temperature, Peel-Debondable Thin Wafer Support Systems 197
15.4 Wafer Thinning 198
15.5 Thin Wafer Backside Processing 202
15.5.1 Via-Middle Thin Wafer Backside Processing: "Via-Reveal" Process 202
15.5.2 Via-Last Thin Wafer Backside Processing 203
References 205

16 Backside Thinning and Stress-Relief Techniques for Thin Silicon Wafers 207
Christof Landesberger, Christoph Paschke, Hans-Peter Sp€ohrle, and Karlheinz Bock
16.1 Introduction 207
16.2 Thin Semiconductor Devices 207
16.3 Wafer Thinning Techniques 208
16.3.1 Wafer Grinding 209
16.3.2 Wet-Chemical Spin Etching 210
16.3.3 CMP Polishing 211
16.3.4 Plasma Dry Etching 212
16.3.5 Dry Polish 213
16.3.6 Chemical–Mechanical Grinding (CMG) 214
16.4 Fracture Tests for Thin Silicon Wafers 214
16.5 Comparison of Stress-Relief Techniques for Wafer Backside Thinning 216
16.6 Process Flow for Wafer Thinning and Dicing 220
16.7 Summary and Outlook on 3D Integration 222
References 223

17 Via Reveal and Backside Processing 227
Mitsumasa Koyanagi and Tetsu Tanaka
17.1 Introduction 227
17.2 Via Reveal and Backside Processing in Via-Middle Process 227
17.3 Backside Processing in Back-Via Process 232
17.4 Backside Processing and Impurity Gettering 234
17.5 Backside Processing for RDL Formation 237
References 239

18 Dicing, Grinding, and Polishing (Kiru Kezuru and Migaku) 241
Akihito Kawai
18.1 Introduction 241
18.2 Grinding and Polishing 241
18.2.1 Grinding General 241
18.2.2 Thinning 243
18.2.3 Grinding Topics for 3DIC Such as TSV Devices 246
18.3 Dicing 250
18.3.1 Blade Dicing General 250
18.3.2 Thin Wafer Dicing 253
18.3.3 Low-k Dicing 254
18.3.4 Other Laser Dicing 254
18.3.5 Dicing Topics for 3D-IC Such as TSV 257
22.3.1 Wafer-to-Wafer Bonding 299
22.3.2 Die-to-Wafer Bonding in Pick-and-Place Equipment 299
22.3.3 Die-to-Wafer by the Self-Assembly Technique 300
22.4 Blanket Metal Direct Bonding Principle 302
22.5 Electrical Characterization 304
22.5.1 Wafer-to-Wafer and Die-to-Wafer Copper-Bonding Electrical Characterization 304
22.5.2 Reliability 307
22.5.3 Thermal Cycling 307
22.5.4 Stress Voiding (SIV) Test on 200°C Postbonding Annealed Samples 308
22.5.5 Package-Level Electromigration Test 309
22.6 Conclusions 310

References 311

23 Bump Interconnect for 2.5D and 3D Integration 313
23.1 History 313
23.2 C4 Solder Bumps 315
23.3 Copper Pillar Bumps 316
23.4 Cu Bumps 319
23.5 Electromigration 320

References 322

24 Self-Assembly Based 3D and Heterointegration 325
24.1 Introduction 325
24.2 Self-Assembly Process 325
24.3 Key Parameters of Self-Assembly on Alignment Accuracies 327
24.4 How to Interconnect Self-Assembled Chips to Chips or Wafers 328
24.4.1 Flip-Chip-to-Wafer 3D Integration 329
24.4.2 Reconfigured-Wafer-to-Wafer 3D Integration 331

References 332

25 High-Accuracy Self-Alignment of Thin Silicon Dies on Plasma-Programmed Surfaces 335
25.1 Introduction 335
25.2 Principle of Fluidic Self-Alignment Process for Thin Dies 335
28.3 Impacts of Local Stress and Strain on Device Reliabilities in Thinned 3DLSI

28.3.1 Microbump-Induced Stresses in Stacked LSIs

28.3.2 Microbump-Induced TMS in LSI

28.3.3 Microbump-Induced LMS

References

29 Metrology Needs for 2.5D/3D Interconnects

Victor H. Vartanian, Richard A. Allen, Larry Smith, Klaus Hummler, Steve Olson, and Brian Sapp

29.1 Introduction: 2.5D and 3D Reference Flows

29.2 TSV Formation

29.2.1 TSV Etch Metrology

29.2.2 Liner, Barrier, and Seed Metrology

29.2.3 Copper Fill Metrology (TSV Voids)

29.2.4 Cross-Sectional SEM (Focused Ion Beam Milling Sample Preparation)

29.2.5 X-Ray Microscopy and CT Inspection

29.2.6 Stress Metrology in Cu and Si

29.3 MEOL Metrology

29.3.1 Edge Trim Inspection

29.3.2 Bond Voids and Bond Strength Metrology

29.3.3 Bond Strength Metrology

29.3.4 Bonded Wafer Thickness, Bow, and Warp

29.3.5 TSV Reveal Metrology

29.4 Assembly and Packaging Metrology

29.4.1 Wafer-Level C4 Bump and Microbump Metrology and Inspection

29.4.2 Package-Level Inspection: Scanning Acoustic Microscopy

29.4.3 Package-Level Inspection: X-Rays

29.5 Summary

References

Index
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Handbook of 3D Integration. Volume 3 - 3D Process Technology
Web Address: http://www.researchandmarkets.com/reports/2586494/
Office Code: SCAYON5F

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Hard Back)</th>
<th>USD 159 + USD 28 Shipping/Handling</th>
</tr>
</thead>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________
Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: 

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World