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Abstract 

Study Objectives:  We sought to develop behavioral sleep measures from passively sensed human-smartphone interactions and 
retrospectively evaluate their associations with sleep disturbance, anxiety, and depressive symptoms in a large cohort of real-world 
patients receiving virtual behavioral medicine care.

Methods:  Behavioral sleep measures from smartphone data were developed: daily longest period of smartphone inactivity 
(inferred sleep period [ISP]); 30-day expected period of inactivity (expected sleep period [ESP]); regularity of the daily ISP compared 
to the ESP (overlap percentage); and smartphone usage during inferred sleep (disruptions, wakefulness during sleep period). 
These measures were compared to symptoms of sleep disturbance, anxiety, and depression using linear mixed-effects modeling. 
More than 2300 patients receiving standard-of-care virtual mental healthcare across more than 111 000 days were retrospectively 
analyzed.

Results:  Mean ESP duration was 8.4 h (SD = 2.3), overlap percentage 75% (SD = 18%) and disrupted time windows 4.85 (SD = 3). There 
were significant associations between overlap percentage (p < 0.001) and disruptions (p < 0.001) with sleep disturbance symptoms 
after accounting for demographics. Overlap percentage and disruptions were similarly associated with anxiety and depression symp-
toms (all p < 0.001).

Conclusions:  Smartphone behavioral measures appear useful to longitudinally monitor sleep and benchmark depressive and anxi-
ety symptoms in patients receiving virtual behavioral medicine care. Patterns consistent with better sleep practices (i.e. greater regu-
larity of ISP, fewer disruptions) were associated with lower levels of reported sleep disturbances, anxiety, and depression.
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Statement of Significance

Smartphone usage proximal to sleep is considered a risk factor for sleep disturbances and mental health symptoms. Currently, 
there is a lack of evidence for the associations between smartphone-based measurements and clinical symptoms in patients. 
From a large cohort of patients receiving virtual behavioral medicine care, we provide evidence that supports the utility of hu-
man-smartphone interaction behavior as an unobtrusive monitoring tool for symptoms that are highly prevalent in both clinical 
and nonclinical populations, specifically sleep disturbances, anxiety, and depression. This provides a basis for further study and 
refinement of the associations between human-smartphone behaviors and their timing with self-reported symptoms to integrate 
this model into clinical practice.
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INTRODUCTION
Smartphone usage is ubiquitous throughout society with 85% of 
adults owning a smartphone [1]. However, there is some variation 
in ownership, with 95% of adults younger than 49 years having a 
smartphone compared to 61% in adults greater than 65 years of 
age [2]. These devices, through their multiple sensors, can pro-
vide insight into an individual’s health-related behaviors [3, 4], 
circadian rhythms, and sleep-related outcomes [5, 6]; however, 
the current evidence exploring the negative impacts on sleep 
and mental health from smartphone usage during and around 
periods of sleep does not include large real-world clinical cohorts 
followed over long durations.

While there have been a growing number of studies, espe-
cially in the mental health and physical activity domains, these 
studies have been performed in small samples (often fewer than 
50 participants who are typically not clinical patients) for rela-
tively short, or unspecified, durations of data collection [7]. In one 
review which specifically focused on smartphone-based sleep 
assessments in clinical mental health cohorts, Aledavood et al. [8] 
evaluated tracking of sleep in patients with depression, anxiety, 
and psychotic disorders: Only eight studies were identified that 
evaluated mobile sleep sensing in serious mental illness (SMI), 
with sample sizes ranging from 7 to 61 patients and all studies 
lasting less than 12 months.

In contrast to clinical populations, the temporal pattern of 
smartphone usage behavior in nonclinical populations has been 
relatively well established to correlate with standard circadian 
patterns [9–11]—for example usage increasing in the morning, 
peaking in the early evening, and subsequently decreasing during 
the nighttime—and was initially shown capable of inferring rele-
vant aspects of sleep, such as sleep duration and circadian pref-
erence in [12]. A larger subsequent study demonstrated that sleep 
measures from standard wrist-worn actigraphy, including sleep 
onset and offset correlated well with smartphone tappigraphy 
(i.e. touchscreen interactions while the device is in the unlocked 
state) [13]; however, sleep duration measured by smartphone 
usage was shorter than actigraphy in the majority of participants, 
with ~80% having smartphone usage—consistent with wakeful-
ness—during their actigraphy detected sleep periods. These stud-
ies provide a basis that periods of smartphone inactivity follow a 
circadian pattern and correlate with sleep onset, offset, and dura-
tion, and that smartphone usage during the inferred sleep period 
(ISP) may be frequent and indicative of sleep fragmentation or 
disruptions.

The importance of sleep health, which includes sleep dura-
tion, timing or regularity, and efficiency, for both physical and 
mental wellbeing, is increasingly recognized throughout society 
[13]. While smartphone applications can evaluate sleep and cir-
cadian rhythms [14], and act as a screening tool for some sleep 
disorders [15], smartphone usage prior to, and during, the sleep 
period can result in sleep disturbances including difficulties fall-
ing asleep, shortened sleep duration and daytime impairment 
[16]. A majority of the evidence on the impacts of smartphone 
usage in and around bedtime has been performed in children and 
adolescents: in a meta-analysis of 20 studies including 125 198 
US children with a mean age of 14.5 ± 2.2 years, phone usage 
pre-bedtime significantly increased the likelihood of having 
insufficient sleep duration and daytime sleepiness [17]. Studies in 
adults are more limited: the emerging evidence, though, supports 
nocturnal smartphone use as being associated with worse overall 
sleep quality, daytime impairment, and fatigue [18], and that 2–3 
nights or more of smartphone use can have a significant impact 

on daytime sleepiness, fatigue, and depressive symptoms when 
compared with no nocturnal smartphone use. The observation 
that sleep disturbances associated with nocturnal smartphone 
usage are associated with mental health symptoms is consistent 
with the growing recognition that sleep disturbances are a rec-
ognized risk factor for, and marker of, mental health disorders 
including anxiety and depression [19–21].

The outlined body of evidence suggests that evaluating smart-
phone usage patterns for regularity of inactivity, duration of 
inactivity, and usage during periods of sleep, is an increasingly 
important area of study to provide insight into sleep-related 
behavioral patterns. Further evidence has been compiled to sup-
port that passively assessed, objective smartphone measures, 
correlate with self-reported mental health symptoms and can be 
used to evaluate movement and mobility in nonclinical popula-
tions [7, 22]. However, this evidence arises from studies with small 
sample sizes (< 50 participants) across relatively short periods of 
time (i.e. < 3 months), which may not necessarily apply to real-
world clinical populations. While these pilot studies demonstrate 
feasibility and acceptability of smartphone-based assessments in 
patients with SMI, to the best of our knowledge, the use of passive 
smartphone assessments to longitudinally evaluate both sleep 
and mental health symptoms in a large clinical cohort—includ-
ing SMI—receiving treatment has not been reported.

In order to further expand and build upon the existing litera-
ture, we performed a retrospective analysis on existing passively 
collected smartphone data and self-reported clinical outcomes 
from a large clinical cohort of adult patients receiving virtual 
behavioral medicine care via their smartphones. We developed 
a framework for identifying periods of inferred sleep at the indi-
vidual level and subsequently assessed the relationship between 
smartphone behavioral patterns within (and around) this period 
and multiple patient-reported clinical measures including sleep 
disturbances as well as symptoms of anxiety and depression. Our 
primary hypothesis was that lower regularity of, or greater disrup-
tions during, the expected sleep period (ESP) would be associated 
with higher levels of reported sleep disturbances: The secondary 
hypotheses were that these behaviors would be associated with 
higher levels of depressive and anxiety symptoms.

METHODS
Participants
In this retrospective study, patients who received standard-of-
care virtual mental healthcare facilitated through the HEALTH 
mobile application (Mindstrong, Inc., Menlo Park, CA) between 
November 2020 and June 2022 were considered. Patients engaged 
with this system had previously been diagnosed with behavioral 
health conditions and referred to the sponsor through partnered 
healthcare plans, where licensed clinicians subsequently evalu-
ated clinical status, including diagnoses. The inclusion require-
ments for the analysis sample were exclusively related to data 
properties, requiring at least 4 weeks of adequate data (described 
below in the Data Processing and Operational Procedures section and 
in Figure 1) and at least one applicable symptom severity meas-
ure. These requirements were defined as the minimum neces-
sary data to conduct subsequent modeling between behavioral 
measures and clinical outcome reports (see cohort flow chart in 
Figure 1). Patient demographics are provided in Table 1 and sum-
marized here: patient ages in the analysis sample ranged from 
19 to 78 years old, with a mean of 56.7 (SD ± 11.3) years; 73.6% of 
the cohort identified as female, 25.1% as male and 0.3% did not 
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specify their gender identity; race/ethnicity consisted of 48.9% 
white, 10.5% African American, 3.4% Hispanic/Latino, 2.1% mul-
tiracial, and 34.3% of the cohort did not specify their race/ethnic-
ity; The most prevalent primary behavioral medicine diagnoses 
among patients in the analysis sample were major depression 
(40.6%), bipolar disorder (20.0%), and smaller samples of schizo-
phrenia/schizoaffective disorder (6.5%), and personality disorder 
(3.5%). Of note, 55.3% of the patients in this sample resided in a 
rural setting.

The average number of days of smartphone behavior data per 
patient was 310 (SD = 196.8, min = 15, max = 1088). Among these 
patients, 1586 had more than 180 days of smartphone behavior 
data. The quartile cutoffs for the empirical distribution of smart-
phone data (days of data) were 147, 285, and 447 days, respec-
tively. There were differences in the availability of data across age 
groups, which was mitigated through inclusion of these demo-
graphic factors in the regression models (for more details, see 
Table 1 and Supplementary Report Part 2). The observation win-
dow for each individual was defined only by their duration—and 
extent—of engagement with virtual behavioral health care from 
the sponsor.

Data processing and operational procedures
As part of routine clinical care, patients were asked to report 
their mental health symptoms at regular intervals (60 days prior 
to September 2021; 30 days after September 2021). Mental health 

symptoms were self-reported using the DSM-5 Self-Rated Level 1 
Cross-Cutting Symptom Measure—Adult survey (DSM-5 L1) [23] 
on the HEALTH mobile application.

Smartphone keyboard and app usage metadata was col-
lected unobtrusively on the Android operating system. The 
metadata includes various de-identified human-smartphone 
interactions (e.g. typing, scrolling, app change). The starting 
time of each event was recorded with a timestamp as granular 
as a millisecond. There were 5603 patients that had passively 
sensed human-smartphone interaction data and 1.25 million 
person-days throughout the observation period (see Figure 1 for 
details). To ensure sufficient smartphone usage data was present 
for analysis, there were two requirements for patient data: First, 
we required at least 4 unique hours of passive smartphone activ-
ity in a minimum of 28 days (4 weeks) across patients; and sec-
ond, for each of the ESP intervals, which consisted of 30 days, at 
least half of the days (i.e. 15 days) were required to have adequate 
smartphone usage data in order to generate behavioral measures 
for that interval. After applying these criteria, the final sample for 
behavioral measures data was 4134 patients and approximately 
997 000 person days (Figure 1). After subsequently merging the 
human-smartphone interaction data with the self-reports from 
the DSM-5 L1 data, there were between 2319 and 2352 patients 
across the three symptom domains of interest. The slight differ-
ences in sample sizes arise as there was no criteria that required 
patients to finish entire surveys on the HEALTH app, meaning 

Figure 1. Flowchart of sample size (person, person-days, and self-reports) across the data processing steps.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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each survey may have contained responses for all, some, or none 
of the desired domains.

Informed consent to use the app and have clinical and pas-
sively collected smartphone data used for research purposes was 
obtained from all patients before being enrolled into clinical care. 
This retrospective study was conducted under a secondary data 
analysis protocol to identify clinically relevant associations in 
active and passive data collection, which has been reviewed and 
approved as exempt by the WCG Institutional Review Board (for-
merly Western Institutional Review Board).

Clinical measures
The clinical measures used in this study encompassed the 
domains of sleep disturbance, depression, and anxiety. These 
domains are part of the American Psychiatric Association’s 
DSM-5 L1 which was developed to evaluate initial symptoms and 
monitor treatment response across domains [24]. This question-
naire uses self-reported responses on a five-point Likert scale (0 = 
not at all/none, 1 = rare, less than a day or two/slight; 2 = several 
days/mild, 3 = more than half the days/moderate; 4 = nearly every 
day/severe) to evaluate how much or how often an individual has 
been bothered by a symptom during the last 2 weeks. The DSM-5 
L1 questions can be used serially over regular intervals to track 
changes in symptoms over time. This questionnaire has been 
found to be clinically useful with test-retest reliabilities that are 
good to excellent [24]. For the purposes of this study, the following 
questions were used:

Sleep disturbance.
The symptom of sleep disturbance is assessed by one item on the 
DSM-5 L1. This question contains the prompt “during the past 2 
weeks, how much (or how often) have you been bothered by prob-
lems with sleep that affected your sleep quality over all?”

Depressive symptoms.
Depressive symptoms are assessed by two items on the DSM-5 
L1. Both items contain the prompt “during the past 2 weeks.” 
Item 1 measures anhedonia, which prompts “how often have 
you had little interest or pleasure in doing things?", item 2 meas-
ures depressed mood, which prompts “how often have you been 
feeling down, depressed, or hopeless?” We utilized the average of 
these two items as one depressive symptom score for the out-
come variable in this analysis.

Anxiety symptoms.
Anxiety symptoms are assessed by three items on the DSM-5 L1. 
All items utilized the prompt “during the past 2 weeks.” Item 1 
prompts “how often have you been bothered by feeling nervous, 
anxious, frightened, worried, or on edge”, item 2 prompts “how 
often have you been bothered by feeling panic or being fright-
ened?”, item 3 prompts “how often have you been bothered by 
avoiding situations that make you anxious.” We averaged these 
three items as one anxiety symptom score for the outcome vari-
able in this analysis.

Smartphone behavioral measures
Pre-processing of smartphone data.
An individual’s interactions with their smartphone were col-
lected unobtrusively in real-time and then securely transmitted 
and stored in HIPAA-compliant servers. Such interactions with 
the smartphone include: changing foreground applications, click-
ing, scrolling, typing, and changing views within an application 
(e.g. selecting a contact to message from a list of contacts), and 
turning the smartphone screen on. Phone activity was aggre-
gated into 15-min bins to represent whether the person had 
interacted with the phone or not during that interval. Previous 
research has demonstrated that 15-min bins of screen on/off 
activity used to analyze inferred sleep were 89% accurate com-
pared to sleep measured by consumer wearable technology [25]. 
The 15-min bins that have any human-smartphone interaction 
are considered active periods, and the 15-min bins that have no 
human-smartphone interaction are considered inactive periods. 
In sum, each day of a person’s phone activity is represented by 

Table 1. Descriptives of Demographics.

Descriptive

Sample size, count 2352

Age, mean (SD) 56.7 (11.3)

  Younger than 20 years old < 0.01%

  20-29 years old 1.8%

  30-39 years old 7.1%

  40-49 years old 15.6%

  50-59 years old 28.4%

  60-69 years old 35.0%

  70-79 years old 11.7%

Identified gender, percentage

  Female 73.6%

  Male 25.1%

  Unspecified 1.0%

Ethnicity, percentage

  White 48.9%

  Black or African American 10.5%

  Hispanic/Latino 3.4%

  Multiracial 2.1%

  Other 0.9%

  Unspecified 34.3%

Primary diagnosis

  Major depression 955 (40.6%)

  Bipolar 471 (20%)

  Personality disorder 81 (3.4%)

  Schizophrenia (or Schizoaffective) 152 (6.5%)

  Other 685 (29.1%)

  Missing 8 (0.3%)

Number of days regarding smartphone 
behavior data, mean (SD)

310 (196.8)

  Younger than 20 years old NA

  20-29 years old 270.5 (174.7)

  30-39 years old 317.7 (224.4)

  40-49 years old 337.5 (205.8)

  50-59 years old 319.8 (198.6)

  60-69 years old 297.7 (189.5)

  70-79 years old 287.5 (181.1)

Location

  Urban 44.7%

  Rural 55.3%
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a sequence of 96 active or inactive values (1 for active or 0 for 
inactive) corresponding to the ninety-six 15-min bins which fully 
encompass the 24-h period.

Longest period of smartphone inactivity.
Defined as the longest consecutive period where there was no 
human-smartphone interaction and can be used to determine 
an inferred sleep period (ISP) [12, 26]. We computed sleep in two 
ways in this analysis—a daily approach for the ISP, and a 30-day 
windowed approach for the expected sleep period (ESP).

Inferred sleep period.
The daily ISP constitutes the longest consecutive stretch of inac-
tive bins in each day. Specifically, the ISP was computed by apply-
ing the run-length encoding (RLE) function in R (version 4.2.0) [27] 
to the 96-value sequence of daily smartphone activity from 00:00 
am to 11:59 pm of the same day. The RLE function returns a list of 
consecutive active/inactive periods, and each consecutive active/
inactive period in the list is represented with the starting bin 
index and the duration of this specific period. The ISP is selected 
as the inactive period of the longest duration in each day.

Expected sleep period.
The 30-day windowed approach for the ESP represents a consist-
ent pattern of low smartphone inactivity over a longer period, 
and thereby a more stable representation of expected behavior. 
The 30-day windowed approach consists of three steps. First, for 
each 15-min bin the percentage of days with activity in a consec-
utive 30-day window (no overlap between windows) was identi-
fied as the activity percentage (Figure 2A and B highlights the raw 
activity for an individual across time bins, and the 30-day aggre-
gate fraction, respectively). Second, the percentage of activity was 
converted to a binary activity variable to allow for computing the 
ESP: K-means clustering was utilized to identify the person-level 
distribution of the percentage of activity into two clusters, with 
the cluster having a lower percentage centroid being considered 
the inactive data (binarized to 0), otherwise, the cluster was con-
sidered active (binarized to 1). Finally, with the binarized 96-value 
sequence (as shown in Figure 2C) for each 30-day window, we 
computed the ESP in the same fashion as the computation of the 
daily ISP.

Overlap percentage.
The overlap percentage of the ESP is defined as the proportion of 
the ISP on each day that falls within the ESP. See Figure 3a for a 
visualization of the daily ISP (gray bar) overlapping with the ESP 
(blue dashed line starting at bin index 96, now moved to index 0 
to illustrate the window, and ending at bin index 31). The num-
ber of overlapping bins with the ESP for these 5 days are 25, 12, 
27, 23, and 24, respectively (percentage: 100%, 92%, 66%, 100%, 
and 100% of the daily ISP). The intent of the overlap percentage 
was to quantify the regularity of the daily period of smartphone 
nonusage as a marker approximating sleep onset and offset, not 
the regularity of the duration of smartphone nonusage periods. 
Thus, this calculation allowed periods of nonusage, regardless of 
duration, that were within the 30-day windowed ESP to have an 
overlap percentage of 100%.

Disruption.
Disruption, or presumed periods of wakefulness, is defined as the 
total smartphone interactions in each day which occur during the 
corresponding 30-day ESP. To characterize disruption, the number 

of 15-min bins with activity during the ESP are counted. See 
Figure 3b for visualization of 5 days’ disruption (white space indi-
cates activity, gray indicates inactivity) within the ESP (marked by 
a blue dashed line starting at 00:00 am, and ending at 07:45 am). 
The sum of 15-min bins with disruptions for these 5 days are 5, 2, 
4, 3, and 4 disruptions, respectively.

Analysis procedures
Given the nested nature of repeated measures longitudinal 
data, hypotheses were examined within a hierarchical modeling 
framework. Following the recommended practice [28], the pre-
dictor variables were split into time-invariant (between-person 
differences) and time-varying (within-person changes) compo-
nents. We evaluated associations between the inferred sleep 
behavioral measures (ESP and ISP) and three outcome varia-
bles, namely sleep disturbances, depressive symptoms, and 
anxiety symptoms. Thus, three independent models were run 
where the first model used sleep disturbances as the depend-
ent variable, the second model used depressive symptoms 
as the dependent variable, and the third model used anxiety 
symptoms as the dependent variable, while keeping the predic-
tors the same. Behavioral measures were aggregated to average 
values for the fourteen days prior to each survey response—
only intervals that had at least 3 days of viable behavioral data 
were included in the analysis.

In order to control for potential confounding impacts from 
demographics and clinical profiles, all demographics listed in 
Table 1—with the exception of ethnicity (due to high missing-
ness)—were independently regressed against the three symp-
tom report variables to identify significant relationships (see 
Supplementary Report Section 1). All variables that were signif-
icant with at least one outcome variable (p < 0.05) were included 
in the three separate hierarchical models. The significant demo-
graphic variables included were: age, identified gender, primary 
behavioral medicine diagnoses of major depression, personality 
disorder, or schizophrenia, and urban/rural location.

Relationships among the extended set of variables were then 
modeled using two-level models of the following form:

{SleepDisturbanceit, Depressiveit, Anxietyit}
= βoi + β1i ×wp.OverlapPercentageit + β2i×
wp.SleepDisruptionit + β3i ×wp.Durationit + eit (1)

β0i = γ00 + γ01 × bp.OverlapPercentagei + γ02×
bp.SleepDisruptioni + γ03 × bp.Durationi + γ04 × Agei
+γ05 × Genderi + γ06 × Y _ MajorDepi+

γ07 × Y _ PersonalityDisorderi + γ08 × Y _ Schizophreniai
+γ09 × Locationi + u0i (2)

β1i = γ10 + u1i (3)

β2i = γ20 + u2i (4)

β3i = γ30 + u3i (5)
where the repeated measures of sleep disturbances, depressive, 
or anxiety symptoms for individual i on survey t are modeled as a 
function of person-specific intercepts (β0i) that indicate baseline 
level of the outcome variable, and the “ Y_ *” nomenclature repre-
sents a binary variable equal to 1 if individual i has that primary 
diagnosis and 0 if not. The person-specific coefficients (β{1−3}i) 
indicate the extent of within-person associations between behav-
ioral measures and the outcome variable of interest. γ00 to γ30 are 
the sample-level parameters. u0i to u3i are the residuals of unex-
plained between-person differences and are assumed multivari-
ate normal with mean equal to zero and variances σ2

u0i
, σ2

u1i
, …, σ2

u3i
.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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The models were fit to the data using the lme4 package in R 
(version 1.1-29) [29] with incomplete data (3.5%) treated as miss-
ing at random. To avoid undue influence of extreme values in the 
regression models, data points that were more than four times 
Cook’s distance [30] were removed prior to modeling. Cook’s dis-
tance was generated from an initial regression of the data using 
(1)–(2) with no demographic variables. The decision to leverage 
Cook’s distance and remove data points with disproportionate 
impacts on the behavioral regressions—as opposed to data mod-
ification techniques such as winsorization—was rooted in the 
intention to explicitly focus the definition of extreme values to 
the context of the defined linear model: given the lack of char-
acterization in the literature of these novel behavioral measures, 
adopting data modification techniques to conform the data to 
the observed distributions may not be appropriate at this time. 
Data comparisons between the distributions of dependent and 
independent variables for the unadjusted and adjusted data sets 

were performed using the nonparametric Kolmogorov–Smirnoff 
test. Model diagnostics and goodness-of-fit plots are provided in 
Supplementary material, Supplementary S1 Part 4). Note that 
standard goodness-of-fit statistics are not presented in Table 2 for 
two reasons: (1) In the DSM-5 L1, all three of the presented symp-
tom domains have different numbers of questions, and thereby 
different levels of detail/specificity representing their magnitude, 
indicating that cross-model comparisons of fits is not truly rep-
resentative of relative performance; and (2) it is not the inten-
tion of this analysis to present the most appropriate model for 
the clinical domains under investigation—rather, the intention is 
to identify if significant relationships exist between the mental 
health symptoms of interest and the defined smartphone behav-
ioral metrics after controlling for available relevant clinical and 
demographic factors.

Finally, we performed bootstrapping of the data to assess how 
robust the associations on the larger data set would be on smaller 

Figure 2. Illustration of the 30-day window approach. Panel A is a heatmap of one person’s human-smartphone interaction data over 499 days. Each 
row is a day, and each column is a 15-min bin from midnight of day N to midnight of day N + 1. The bins are colored from yellow to orange to red. Bins 
colored yellow indicate no smartphone activity, orange are some activity while bins colored red constitute the highest activity. Panel B is zooming into 
the first 30 days of the phone activity heatmap. Panel C is the binarized phone activity over the 30-day window per 15-min bin. Each smaller panel 
has the label of the starting date of the 30-day window. The x-axis is time, from midnight to midnight of the next day, and the y-axis is the percentage 
of phone activity. The background is colored as pink for periods classified as inactive or blue as active. Using the heatmap (A–B) and binarized phone 
activity (C) one can observe phone behavior usage shifting during the active periods from periods of consistent high activity (Month 1) to periods of 
relatively low phone use (e.g. Month 8) leading to more identified periods of inactivity. Figure 3C also highlights the personalized nature of the ESP, 
which allows this approach to change expectations and adapt if user behavior shifts on a monthly scale.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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sample populations (in the same cohort). During this process the 
models were re-estimated on 500 random samples (with replace-
ment) using 20% of the original population sampled at the ID 
level—all data for each selected ID was retained in each sample. 
These results are briefly discussed in the main body of the text 
with details provided in Supplementary Report Part 7.

RESULTS
Summary statistics of the measurements
Summary statistics of the behavioral measurements of 
human-smartphone interactions and symptom survey reports 
are described briefly here and provided in more detail in 
Supplementary Report Part 2.

The median observed completion rate within the individ-
ual observation windows (elapsed duration between first and 
last observed survey) for patients in this data set was 78% for 

depression and anxiety, and 75% for sleep disturbances. The 
25th-percentile and 75th-percentile for all three outcomes were 
50% and 100%, respectively. The data contained slight differences 
in the average symptom survey count available for each patient 
across the acuity spectrum; however, there was not a systematic 
trend observed across all symptoms, and the differences were 
only between 1 and 2 surveys. Further details can be found in 
Supplementary Material, Supplementary S1 Part 3.

The mean level of overlap percentage was 74% (SD = 18%), the 
mean number of time windows during the ESP with disruptions 
was 4.85 (SD = 3.03), and the mean duration of the ESP was 8.4 h 
(SD = 2.3). For symptom severity reports, the mean self-reported 
sleep disturbance level was 2.16 (SD = 1.37), the mean depressive 
symptom level was 2.15 (SD = 1.23), and the mean anxiety symp-
tom level was 1.86 (SD = 1.36). All correlations between behavioral 
measures and clinical reports at the population level were neg-
ligible (none exceeded an absolute value 0.3, details provided in 
Supplementary Report Part 2).

Figure 3. Illustration of daily overlap percentage and daily disruption. Panel A shows the daily overlap percentage for 5 days. The gray bar is the daily 
ISP and the blue dashed line is the 30-day windowed ESP. The 30-day windowed ESP starts at 00:00 am and ends at 07:45 am. Panel B shows daily 
disruptions within the 30-day windowed ESP for the same corresponding 5 days. The gray bar indicates smartphone inactivity, and the white bar 
indicates smartphone activity. ISP = inferred sleep period; ESP = expected sleep period.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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Associations between self-reported sleep 
disturbance and human-smartphone interaction 
behavior
For reported sleep disturbances, 5.99% of the observations fit the 
Cook’s distance criteria for removal. There were no changes in 
the distributions of the symptom severity reports or the behavio-
ral distributions (see Supplementary S1 Part 3) following the data 
cleaning.

The degree of self-reported sleep disturbances on the DSM-5 
L1 for a typical individual was 2.49 (γ00 = 2.49, p < 0.001) on a 0 to 
4 scale (see Table 2). The within-person association between sleep 
disturbances and overlap percentage was significant (γ10 = −0.21, 
p < 0.05), meaning that when a participant’s overlap percentage 
was compared with their own average, higher values (greater reg-
ularity) were associated with lower degrees of self-reported sleep 
disturbances. The between-person association between sleep dis-
turbance and overlap percentage was also significant (γ01 = −0.90, 
p < 0.001), indicating that participants with higher overlap per-
centages (greater regularity of smartphone inactive periods) had 
lower levels of self-reported sleep disturbance. The within-per-
son association between sleep disturbances and disruption was 
also significant (γ20 = 0.045 p < 0.001): When comparing a par-
ticipant’s daily disruption with their own average, higher values 
were associated with higher degrees of self-reported sleep dis-
turbance. Furthermore, the between-person association between 
sleep disturbance and disruption was also significant (γ02 = 0.098, 
p < 0.001), meaning that participants with more disruptions dur-
ing the ESP also reported higher levels of sleep disturbances. The 

within-person estimate of ESP duration was significant (γ30 = 
−0.03, p < 0.01): comparing a participant’s ESP duration with their 
own average, longer durations were associated with lower levels 
of self-reported sleep disturbance. Visualizations for relation-
ships between self-reported sleep disturbances and behavioral 
measure are provided in the Supplementary Report Part 5.

For the within-person effects, disruptions had 88% agreement 
across sub-samples (detection power at 0.05 significance level) 
during the bootstrapping process indicating a strong and repli-
cable significant association between degrees of reported sleep 
disturbance and the amount of disruptions observed from the 
data. Within-person effects of ESP duration and overlap per-
centage were less consistent at 22% and 12% detection power, 
respectively, indicating that these values likely impact subgroups 
of patients differently and would be hard to replicate on smaller 
data sets. For the between-person effects, disruption had perfect 
agreement across sub-samples, while the overlap percentage was 
significant in around 39% of the sample populations.

Associations between depression or anxiety 
symptoms and human-smartphone interaction 
behavior
For reported depression and anxiety data, 5.89% and 5.7% of 
the observations fit the Cook’s distance criteria for removal, 
respectively. There were no changes in the distributions of the 
symptom severity reports or the behavioral distributions (see 
Supplementary S1 Part 3) from the data cleaning process.

Table 2. Results From the Multilevel Model Examining the Association Between Sleep Disturbance, Depressive and Anxiety Symptoms 
and Human-Smartphone Interaction Behavior

Parameters (unstandardized values) Sleep disturbance Depressive symptoms Anxiety symptoms

Estimate CI Estimate CI Estimate CI

Fixed effects

  Intercept (γ00) 2.49*** 0.54 2.37*** 0.44 2.51*** 0.46

  wp.OverlapPercentage (γ10) −0.21* 0.40 0.015 0.31 −0.07 0.28

  wp.Disruption (γ20) 0.045*** 0.027 0.0004 0.021 0.013** 0.019

  wp.Duration (γ30) −0.03** 0.040 0.0055 0.032 −0.0078 0.028

  bp.OverlapPercentage (γ01) −0.90*** 0.86 −0.80*** 0.69 −0.66*** 0.72

  bp.Disruption (γ02) 0.098*** 0.038 0.053*** 0.031 0.048*** 0.033

  bp.Duration (γ03) 0.015 0.066 0.061*** 0.053 0.069*** 0.056

  Age −0.0044† 0.0089 −0.0034† 0.0072 −0.011*** 0.0075

  Gendera (Female reference) −0.0012 0.22 −0.020 0.18 0.077 0.18

  Location (Urban reference) −0.065 0.19 −0.065 0.15 −0.076† 0.16

  PD major depression −0.0052 0.20 0.086* 0.16 −0.078† 0.17

  PD personality disorder 0.11 0.51 0.28** 0.41 0.21† 0.44

  PD schizophrenia −0.40*** 0.40 −0.27** 0.32 −0.17* 0.34

Random effects

  Variance of Intercept (σ2
u0i

) 0.97 0.65 0.75

  Variance of random slope wp.OverlapPercentage (σ2
u1i

) 0.28 0.020 0.0000

  Variance of random slope wp.Disruption (σ2
u2i

) 0.0012 0.0005 0.0008

  Variance of random slope wp.Duration (σ2
u3i

) 0.0082 0.0033 0.0023

  Variance of residual (σ2
eit) 0.67 0.43 0.35

a= Patient’s identified gender; PD = Primary Diagnosis; CI = 95% confidence interval; wp = within-person portion of the predictor; bp = between-person portion of 
the predictor; †p < 0.1, *p < 0.05, ** p < 0.01, ***p < 0.001.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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For depressive symptoms, the between-person associations 
with overlap percentage, disruptions, and ESP duration were sig-
nificant (see Table 2) and directionally consistent with the original 
hypotheses—patients with higher levels of regularity, as meas-
ured by the overlap percentage, reported lower levels of depres-
sive symptoms, while patients with higher levels of disruptions 
during their ESP and/or longer ESP durations, reported higher lev-
els of depressive symptoms. Regarding the stability of these rela-
tionships to sub-sampling on the data, disruption was identified 
as significant around 84% of the time, while overlap percentage 
and ESP duration were both detected roughly 47% of the time.

For anxiety symptoms, the between-person relationships 
for the behavioral measures and symptom severity were qual-
itatively similar, and directionally identical, to the depressive 
symptom reports (see Table 2); however, there were differences in 
the robustness of these relationships to be detected in the boot-
strapped sub-populations. The between-person effects of disrup-
tions and overlap percentage with anxiety symptom severity each 
had lower power to be detected on the bootstrapped samples: The 
impacts of disruptions and overlap percentage on anxiety symp-
toms were detected with around 68% and 32% power, respectively 
(as opposed to around 84% and 47%, respectively, for depression), 
while the impact of ESP duration was detected in around 56% of 
the bootstrapped samples (as opposed to 47% for depression). See 
Supplementary Report Part 7 for full details.

In addition to the between-person effects with anxiety symp-
toms, the within-person relationship with ESP disruptions was 
also significant (γ20 = 0.013, p < 0.01) but had low power to be 
detected across smaller bootstrapped samples—around 19% 
of bootstrapped populations identified significant relation-
ships between anxiety symptom levels and within-person ESP 
disruptions.

DISCUSSION
A framework for passive smartphone usage 
patterns to infer sleep
The ability to leverage passively collected smartphone usage 
data to address sleep and mental health symptoms has long 
been postulated [31]. As a majority of smartphone users bring 
their devices to bed [32, 33], their usage patterns during this time 
period provide the ability to evaluate wakefulness and inferred 
sleep. Previous studies have evaluated small nonclinical popu-
lations using objective smartphone measurements (i.e. screen 
on/off [25], accelerometry [34], light sensing, passive usage [12], 
tappigraphy [13]) to determine inferred sleep. In order to meas-
ure sleep-related outcomes from passively collected smartphone 
data we developed a novel approach with a large clinical popu-
lation to calculate and expand upon previously described meas-
ures, including the ESP, the daily longest period of inactivity (ISP), 
disruptions (daily phone usage during the ESP), and the overlap 
percentage (regularity of the ISP compared to the expected period 
of smartphone inactivity, ESP). The basis of our calculations for 
the overlap percentage and disruptions was the ESP—in this 
instance calculated using a 30-day historical window—which 
provided a more robust foundation for a habitual sleep pattern. 
While the period of inactivity does not definitively determine 
sleep, a similar smartphone-based assessment performed as 
well as, if not better than, actigraphy [13]. This was primarily due 
to the disruptions captured with active smartphone usage that 
definitively establish periods of wakefulness but were not cap-
tured by actigraphy and highlight that smartphone and wearable 

devices likely form complementary behavioral data sets with dis-
tinct and unique value.

Sleep disturbances
Utilizing passively collected objective smartphone data to assess 
sleep disturbances in a large cohort of patients receiving virtual 
behavioral medicine care, our primary finding is that distur-
bances from smartphone usage (i.e. disruptions) during the ESP 
are associated with greater self-reported sleep disturbances. This 
finding was consistent at both an individual (within person) and a 
population (between person) level, and was additionally captured 
as significant across bootstrapped sub samples of the data. This 
provides ecologically valid objective findings that support pre-
vious studies which found self-reported nocturnal smartphone 
usage to be associated with poor quality sleep and sleep distur-
bances [15, 35]. Given the current view that sleep disturbances 
are considered a “predictive prodromal symptom” [36] of behav-
ioral medicine disorders as opposed to the previous view of an 
epiphenomenon, the finding that smartphone usage patterns can 
potentially facilitate earlier diagnosis and treatment of sleep dis-
turbances in patients with mental health disorders is important 
[37].

Overlap percentage: a potential measure of sleep 
regularity
An evolving concept of sleep health is sleep regularity, or sleep 
patterns, whereby an individual has either regular sleep with a 
consistent onset and offset, or variable sleep with changes in the 
onset and offset of their sleep period [38–40]. It is postulated that 
regularity of sleep is likely as important as sleep duration, noting 
a regular sleep pattern is not only an important marker of good 
quality sleep, but also for physical and mental health, as well as 
performance [39, 41]. Historically, sleep regularity has been pri-
marily evaluated with sleep diaries and actigraphy [42]. Given the 
regular and habitual use of smartphones, we utilized the over-
lap percentage as a potential way to assess sleep regularity on 
a longer-term basis. Overlap percentage, which measured how 
much a given day’s ISP overlapped with the ESP, is similar to meas-
ures of sleep regularity [35]: this is supported by the alignment 
between a mean overlap percentage of 75% in the present cohort 
and a median sleep regularity index score of 81% in a cohort of 
60 997 study participants in the United Kingdom [40]. The lower 
overlap percentage in our cohort may be due to evaluating this in 
patients with SMI as opposed to volunteer participants. Our find-
ing that a lower overlap percentage was associated with greater 
self-reported sleep disturbances and increased symptoms of anx-
iety and depression is consistent with the literature that variabil-
ity in an individual’s sleep-wake pattern is detrimental to overall 
physical and mental health [40, 43].

Although the relationship between overlap percentage and 
reported sleep disturbances was moderately replicable across 
sub-populations, for example those patients with higher overlap 
percentages had lower levels of reported sleep disturbances, this 
behavioral measure was found to have low concordance across 
smaller sub-populations when comparing individuals to their 
own data. More accurately, our findings suggest that the impor-
tance of shifting measures of regularity with respect to sleep 
patterns at an individual level is likely context dependent. This 
is different from the findings of the impacts of disruptions dur-
ing the ESP, which were robustly identified as significant for both 
changes within an individual, as well as across individuals.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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One factor that may impact the sensitivity of the overlap per-
centage at an individual level is that the current implementation 
is naïve to the duration of that day’s ISP and the duration of the 
ESP. Together, the existence of a moderate correlation between 
overlap percentage and ESP duration (r = 0.6, see Supplementary 
Report Part 2), as well as the observation that the impact of 
within-person changes in ESP duration was more often found 
to be significant across bootstrapped sample populations (see 
Supplementary Report Part 7), suggest that including the dura-
tion of daily sleep for measures of regularity would be more ben-
eficial from an analysis standpoint than keeping them separate. 
It is also possible that simple benchmarking of individual patient 
levels would inform whether or not changes in regularity meas-
ures would be expected to be impactful: For instance, in patients 
who have high levels of sleep regularity, intermittent deviations 
may be natural and not impactful to overall sleep quality, whereas 
for patients who have historically low levels of sleep regularity, 
improving this measure of sleep health may have large impacts.

Mental health symptoms of depression and 
anxiety
In this analysis, increased disruptions and a lower overlap per-
centage were associated with greater symptoms of anxiety and 
depression. This is consistent with previous research in smaller 
clinical populations [8]. One such study evaluated passive smart-
phone usage in 47 patients with diabetes in which those with 
co-occurring depression had significantly greater usage from 
midnight to 06:00 than those without depression [44]. Conversely, 
in a study of 815 university students leveraging self-reported 
sleep periods over 16 weekdays, nocturnal smartphone usage was 
not strongly associated with increased depressive symptoms [45]. 
The findings in the current work—that increased disruptions to, 
and lower overlap percentages with, the ESP were associated with 
greater symptoms of depression and anxiety—suggests not only 
support for the concept that poor sleep quality in a clinical pop-
ulation (as opposed to healthy young adults) is associated with 
the exacerbation of mental health symptoms [46], but also that 
utilizing fixed windows of expected behavior (e.g. midnight to 
06:00, or the ESP used here) when assessing the impacts of sleep 
disruptions on mental health symptoms may be a more sensitive 
approach than using shifting daily sleep periods by themselves.

While the underlying pathophysiology for the association 
with sleep and mental health is not fully understood, one study 
compared scheduled nocturnal awakenings to a similar dura-
tion of sleep restriction without awakenings to determine which 
aspect of sleep disturbances had a greater impact on mood [47]. 
Following sleep periods with nocturnal awakenings, participants 
had a significantly lower mood than those with shortened sleep 
periods; thus, it does not appear to be sleep duration per se, but 
awakening during sleep that likely contributes to depressive 
symptoms. This provides a potential basis for how disturbances 
or awakenings related to smartphone usage are associated with 
increased mental health symptoms.

While the duration of the ESP was significantly associated 
with symptoms of anxiety and depression—whereby a longer 
ESP was associated with increased anxiety and depressive symp-
toms—this finding is likely due to the nature of our clinical men-
tal health cohort, where evidence from similar populations has 
demonstrated long sleep duration to be associated with depres-
sion, and has been found to be predictive of the persistence of 
symptoms of anxiety and depression [42, 43]. However, additional 
studies evaluating inferred sleep in patients with and without 

behavioral medicine disorders are required to further elucidate 
this finding.

Strengths and limitations
The major strength of our study is that it was performed using 
objective smartphone data from a large cohort of clinical patients 
undergoing routine virtual mental healthcare. This differs from 
previous studies which utilized self-reported smartphone usage 
or were performed using objective measures in small or nonclin-
ical cohorts for relatively short periods of time.

Despite the size of the data, this was a retrospective study 
utilizing observational data, which had limitations. First, only 
primary mental health diagnoses were included. This excluded 
the potential for robust clinical characterization of comorbidities 
and how those comorbidities may influence the identified associ-
ations—this is an important area of future studies. Furthermore, 
generalizability of these findings across the acuity spectrum 
requires further investigation, which is supported in the data 
through the identification of a subset of high acuity patients 
(with fewer symptom observations) that were removed from the 
analysis sample as disproportionately impactful to the regres-
sion models. Second, the ability to determine the directionality of 
the findings was not possible—specifically, if smartphone usage 
during the ISP contributed to the self-reported sleep distur-
bances or if sleep disturbances associated with sleep or behav-
ioral medicine disorders resulted in greater smartphone usage 
during this time. Given that the data was exclusively generated 
from virtual behavioral medicine patients who had self-selected 
to receive care in this fashion across (often) multiple years, the 
findings may also not generalize across all healthcare popula-
tions; however, given the high prevalence of mental health disor-
ders [48] and near-universal use of smartphones, these findings 
further develop the potential to assess smartphone usage and its 
relationship with symptoms of sleep disturbances, anxiety, and 
depression.

When quantifying behavior, it is important to consider the 
impact that the act of observation will have on its natural state. 
Indeed, it has been suggested that even passive tracking can 
influence smartphone usage [49]; however, given the extended 
duration of the data collection, which ranged from 15 days to 
1088 days (Mean = 310, see Table 2), it is likely that this potential 
limitation was overcome.

Regarding our framework to assess inferred sleep, the ISP, 
ESP, and overlap percentage were established by defined meas-
urements, whereas the nature of disruptions is not necessarily 
as clear. Specifically, disruptions may stem from awakening and 
subsequently using the smartphone, or from incoming commu-
nications to the smartphone leading to disruption. Further clar-
ification of the nature of disruptions is important as those from 
alerts or external communication could be remedied by using 
sleep mode on the smartphone while usage upon awakening dur-
ing the night would likely require education and counseling.

Another area that was not addressed in this study was the 
characterization of weekday-weekend differences in the behav-
ioral measures, and how those differences may be related to 
mental health symptom status. The present study focused on 
2-week aggregate behavioral measures as a representative value 
encompassing both weekday and weekend variation; however, 
a cursory post hoc analysis was conducted on the data (see 
Supplementary Material S1 Part 8) investigating the relation-
ship between weekday-weekend differences across age groups 
for the presented behavioral metrics. The analysis identified 

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad027#supplementary-data
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a 2%–3% difference in weekday versus weekend overlap per-
centages across groups of 40 years and above. No consistent 
differences across weekday-weekend behaviors were observed 
for disruptions, but a general decreasing trend towards fewer 
disruptions in older age groups was present. Although there is 
limited data regarding objective measures of nocturnal smart-
phone usage parameters, these exploratory weekday-weekend 
results for disruptions are consistent with a previous study 
evaluating overall usage patterns across weekdays and week-
ends where no significant differences in usage patterns were 
found [50]. While the observed weekday-weekend differences in 
behaviors from our post hoc exploratory analysis were not large 
at the population level, the analysis did not include informa-
tion on employment status, seasonal variations, or other crit-
ical measures necessary to fully contextualize such behavior; 
however, this study does highlight the potential value in the 
presented methodology to begin addressing such an important 
topic.

Conclusions
In this study, we analyzed the associations between passively 
sensed human-smartphone interactions and clinical outcomes 
in a large clinical cohort, and we provide evidence that sup-
ports the utility of human-smartphone interaction behavior as 
an unobtrusive monitoring tool for symptoms that are highly 
prevalent in both clinical and nonclinical populations—specifi-
cally sleep disturbances, anxiety, and depression. This provides 
a basis for further study and refinement of the associations 
between human-smartphone behaviors, and their timing, with 
self-reported symptoms to integrate this model into clinical 
practice.
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