A Silent Self-Stabilizing Algorithm for 1-Maximal Matching in Anonymous Networks

Yuma Asada and Michiko Inoue
Nara Institute of Science and Technology, Ikoma, Nara 630-0192 Japan
{asada.yuma.ar4, kounoe}@is.naist.jp

Abstract. We propose a new self-stabilizing 1-maximal matching algorithm which is silent and works for any anonymous networks without a cycle of a length of a multiple of 3 under a central unfair daemon. Let \(n \) and \(e \) be the numbers of nodes and edges in a graph, respectively. The time complexity of the proposed algorithm is \(O(e) \) moves. Therefore, the complexity is \(O(n) \) moves for trees or rings whose length is not a multiple of 3. That is a significant improvement from the best existing results of \(O(n^4) \) moves for the same problem setting.

Keywords: distributed algorithm, self-stabilization, graph theory, matching problem

1 Introduction

Self-Stabilization [5] can tolerate several inconsistencies of computer networks caused by transient faults, erroneous initialization, or dynamic topology change. It can recover and stabilize to consistent system configuration without restarting program execution.

Maximum or maximal matching is a well-studied fundamental problem for distributed networks. A matching is a set of pairs of adjacent nodes in a network such that any node belongs to at most one pair. It can be used in distributed applications where pairs of nodes, such as a server and a client, are required. This paper proposes an efficient anonymous self-stabilizing algorithm for 1-maximal matching. A 1-maximal matching is a \(\frac{2}{3} \)-approximation to the maximum matching, and expected to find more matching pairs than a maximal matching which is a \(\frac{1}{2} \)-approximation to the maximum matching.

Self-stabilizing algorithms for the maximum and maximal matching problems have been well studied[7]. Table 1 summarizes the results, where \(n \) and \(e \) denote the numbers of nodes and edges, respectively.

Blair and Manne[1] showed that a maximum matching can be solved with \(O(n^2) \) moves for non-anonymous tree networks under a read/write daemon. They proposed an algorithm to construct a rooted tree, and showed bottom-up algorithms including a maximum matching[2] can be combined with the proposed algorithm so that the combined algorithm simultaneously solves the two problems without increasing the time complexity. For anonymous networks, Karaata et
Table 1. Self-stabilizing matching algorithms.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Matching</th>
<th>Topology</th>
<th>Anonymous</th>
<th>Daemon</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>maximum</td>
<td>tree</td>
<td>no</td>
<td>read/write</td>
<td>$O(n^4)$ moves</td>
</tr>
<tr>
<td>[10]</td>
<td>maximum</td>
<td>tree</td>
<td>yes</td>
<td>central</td>
<td>$O(n^4)$ moves</td>
</tr>
<tr>
<td>[3]</td>
<td>maximum</td>
<td>bipartite</td>
<td>yes</td>
<td>central</td>
<td>$O(n^2)$ rounds</td>
</tr>
<tr>
<td>[9]</td>
<td>maximal</td>
<td>arbitrary</td>
<td>yes</td>
<td>central</td>
<td>$O(e)$ moves</td>
</tr>
<tr>
<td>[6]</td>
<td>1-maximal</td>
<td>tree, ring*</td>
<td>yes</td>
<td>central</td>
<td>$O(n^4)$ moves</td>
</tr>
<tr>
<td>[12]</td>
<td>1-maximal</td>
<td>arbitrary*</td>
<td>no</td>
<td>distributed</td>
<td>$O(n^2)$ rounds</td>
</tr>
<tr>
<td>this paper</td>
<td>1-maximal</td>
<td>arbitrary*</td>
<td>yes</td>
<td>central</td>
<td>$O(e)$ moves</td>
</tr>
</tbody>
</table>

* without a cycle of length a multiple of 3.

al.[10] proposed a maximum matching algorithm with $O(n^4)$ moves for trees under a central daemon, and Chattopadhyay et al.[3] proposed a maximum matching algorithm with $O(n^2)$ rounds for bipartite networks under a central daemon.

Recently, Datta and Larmore[4] proposed a silent weak leader election algorithm for anonymous trees. The algorithm elects one or two co-leaders with $O(n \cdot \text{Diam})$ moves in a bottom-up fashion under an unfair distributed daemon, where \text{Diam} is a network diameter. Though there is no description, it seems that it can be combined with the maximum matching algorithm[2] without increasing the time complexity.

Hsu and Huang[9] proposed a maximal matching algorithm for anonymous networks with arbitrary topology under a central daemon. They showed the time complexity of $O(n^3)$ moves, and, it has been revealed that the time complexity of their algorithm is $O(n^2)$ moves by Tel[13] and Kimoto et al.[11] and $O(e)$ moves by Hedetniemi et al. [8].

Goddard et al.[6] proposed a 1-maximal matching with $O(n^4)$ moves for anonymous trees and rings whose length is not a multiple of 3 under a central daemon. They also showed that there is no self-stabilizing 1-maximal matching algorithm for anonymous rings with length of a multiple of 3. Manne et al. [12] also proposed a 1-maximal matching algorithm for non-anonymous networks with any topology under a distributed unfair daemon. Their algorithm stabilizes in $O(n^2)$ rounds and $O(2^n \cdot \Delta \cdot n)$ moves, where Δ is the maximum degree of nodes.

Our contribution. In this paper, we propose a new self-stabilizing 1-maximal matching algorithm. The proposed algorithm is silent and works for any anonymous networks without a cycle of length a multiple of 3 under a central unfair daemon. We will show that the time complexity of the proposed algorithm is $O(e)$ moves. Therefore, the complexity is $O(n)$ moves for trees or rings whose length is not a multiple of 3. That is a significant improvement of the best existing result of $O(n^4)$ for the same problem setting[6].

The remaining of the paper is organized as follows. In Section 2, we define distributed systems and the 1-maximal matching problem. A 1-maximal matching algorithm is proposed in Section 3, and proves for its correctness and performance are given in Section 4. Finally Section 5 concludes this paper.
2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology is represented by an undirected connected graph $G = (V, E)$ where a node in V represents a process and an edge in E represents the interconnection between the processes. A node is a state machine which changes its states by actions. Each node has a set of actions, and a collection of actions of nodes is called a distributed algorithm. Let n and e denote the numbers of nodes and edges in a distributed system.

In this paper, we consider state-reading model as a communication model where each node can directly read the internal state of its neighbors. An action of a node is expressed $\langle \text{label} \rangle :: \langle \text{guard} \rangle \rightarrow \langle \text{statement} \rangle$. A guard is a Boolean function of all the states of the node and its neighbors, and a statement updates its local state. We say a node is privileged if it has an action with a true guard. Only privileged node can move by selecting one action with a true guard and executing its statement.

Moves of nodes are scheduled by a daemon. Among several daemons considered for distributed systems, we consider an unfair central daemon in this paper. A central daemon chooses one privileged node at one time, and the selected node atomically moves. A daemon is unfair in a sense that it can choose any node among privileged nodes.

A problem P is specified by its legitimate configurations where configuration is a collection of states of all the nodes. We say a distributed algorithm A is self-stabilizing if A satisfies the following properties. 1) convergence: The system eventually reaches to a legitimate configuration from any initial state, and 2) closure: The system once reaches to a legitimate configuration, all the succeeding moves keep the system configuration legitimate. A self-stabilizing algorithm is silent if, from any arbitrary initial configuration, the system reaches a terminal configuration where no node can move. A self-stabilizing algorithm is anonymous if it does not use global IDs of nodes. We only assume that nodes have pointers and a node can determine whether its neighbor points to itself, some other nodes, or no node.

A matching in an undirected graph $G = (V, E)$ is a subset M of E such that each node in V is incident to at most one edge in M. We say a matching is maximal if no proper superset of M is a matching as well. A maximal matching M is 1-maximal if, for any $e \in M$, any matching cannot be produced by removing e from M and adding two edges to $M - \{e\}$. A maximal matching is a $\frac{1}{2}$-approximation to the maximum matching. On the other hand, a 1-maximal matching is a $\frac{2}{3}$-approximation. In this paper, we propose a silent and anonymous self-stabilizing algorithm for the 1-maximal matching problem for graphs without a cycle of length of a multiple of 3.

3 Algorithm MM1

First, we will show an overview of a proposed self-stabilizing 1-maximal matching algorithm MM1. Each node i uses stages to construct 1-maximal matching. There
are seven stages; $S1a$, $S1b$, $S2a$, $S2b$, $S3$, $S4$, and $S5$. Stages $S1a$ and $S1b$ mean that the node is not matching with any node. A stage $S2a$ means the node is matching with a neighbor node, and, $S2b$, $S3$, $S4$, $S5$ mean the node is trying to increase matches. A node i has three variables; level_i, m-ptr_i, i-ptr_i. We describe how to use the variables in our algorithm.

S1a, S1b, S2a We say a node is free if the node is in $S1a$ or $S1b$. A node in $S1a$ does not invite any nodes, while a node in $S1b$ invites its neighbor node. Fig.1 shows how free nodes make a match. When a free node i finds a free neighbor node j, i invites j by i-ptr_i (i is in $S1b$). Then invited node j updates its level to 2 and points to i by m-ptr_j to accept the invitation (j is in $S2a$). Finally i points to j by m-ptr_i to make a match (i is in $S2a$). A node in $S2a$ is at level 2 and does not invite any nodes. If two adjacent nodes i and j point to each other by m-ptr, we consider they are matching, that is $(i,j) \in M$.

S2b, S3, S4, S5 Matching nodes try to increase the number of matches if they have free neighbor nodes. Fig.2 shows how to increase matches, where matches are increased by breaking a match between i and j, and creating new matches between i and k, and j and l. In Fig.2(a), nodes i and j invite their free neighbors k and l if they do not invite i and j, respectively (i and j are in $S2b$). When both nodes notice that i and j invite free neighbor nodes, they change their level to 3 (i and j are in $S3$). That indicates that they are ready to be approved as in Fig.2(b). Then k and l point to the inviting nodes by i-ptr to approve their invitations (k and l are in $S1b$). Node i and j change their level to 4 if the neighbors approve the invitations (i and j are in $S4$) as in Fig.2(c), and change their level to 5 when they notice that both invitations are approved (i and j are in $S5$). This indicates that they are ready to break a match as in Fig.2(d). Then they create new matches with the free nodes, where k and l first move to $S2a$ (Fig.2(e)) and then i and j move to $S2a$ (Fig.2(f)), respectively. A node in $S1a$ or $S1b$ can make a match with the other node while an inviting node is in $S3$. However, once the inviting node moves to $S4$, it cannot change its i-ptr while the inviting node is in $S4$.

![Fig. 1. Making a match between free nodes](image-url)
Reset Each node always checks its validity, and resets to S_{1a} if it finds its invalidity. We consider two kinds of validities, one node validity and two nodes validity. The one node validity means that a state represents some stage. For example, if a level is 1 and m-ptr points to some neighbor, the state is one node invalid. The two nodes validity means that a relation between states of two adjacent nodes is consistent. For example, if a node i is in S_{2a}, a node pointed to by m-ptr should point to i by m-ptr at level 2 or by i-ptr at level 1 or 5.

The full definition of the validity function is shown in Fig.3. A node does not move while some neighbor is one node invalid.

Cancel A node cancels an invitation or progress to increase matches, if it detects that the invitation cannot be accepted or it cannot increase matches. When canceling, a node goes back to S_{1a} if it is at level 1, and to S_{2a} if it is at level 2 or higher.

The algorithm MM1 uses some statement macros and a guard function. The variables, validity functions, statement macros and a guard function are shown in Fig.3, and a code of MM1 is shown in Fig.4. In the algorithm, each node i uses $N(i)$ to represent a set of its neighbors. That is a set of local IDs for each node and the algorithm does not use any global IDs. We only assume that each node can determine whether its neighbor point to itself, some other node, or no node by pointers i-ptr and m-ptr.

4 Correctness

Lemma 1. There are no nodes at level 5 in any terminal configuration of MM1.

Proof. By contradiction. Assume that a node i is in S_{5} in a terminal configuration. In this case, i-ptr$_i = k$ holds for some k, and $\text{level}_k = 1 \land i$-ptr$_k = i$ or
Variables
level_i ∈ {1, 2, 3, 4, 5}
m-ptr_i ∈ N(i) ∪ {⊥}
i-ptr_i ∈ N(i) ∪ {⊥}

Valid Predicates
S1b_valid(i,k): level_i = 1 ∧ m-ptr_i = 1 ∧ i-ptr_i = k
S2a_valid(i,j): level_i = 2 ∧ m-ptr_i = j ∧ m-ptr_j = i
S2b_valid(i,j,k): level_i = 2 ∧ m-ptr_j = j ∧ m-ptr_k = k ∧ j ≠ k
S3_valid(i,j,k): level_i = 3 ∧ m-ptr_i = j ∧ m-ptr_k = k ∧ j ≠ k
S4_valid(i,j,k): level_i = 4 ∧ m-ptr_i = j ∧ m-ptr_j = k ∧ j ≠ k
S5_valid(i,j,k): level_i = 5 ∧ m-ptr_i = j ∧ m-ptr_j = k ∧ j ≠ k

One Node Validity
S1a_valid1(i): level_i = 1 ∧ m-ptr_j = 1 ∧ i-ptr_j = i
S1b_valid1(i): ∃k ∈ N(i) S1b_valid(i,k)
S2a_valid1(i): ∃j, k ∈ N(i) S2a_valid(i,j)
S2b_valid1(i): ∃j, k ∈ N(i) S2b_valid(i,j,k)
S3_valid1(i): ∃j, k ∈ N(i) S3_valid(i,j,k)
S4_valid1(i): ∃j, k ∈ N(i) S4_valid(i,j,k)
S5_valid1(i): ∃j, k ∈ N(i) S5_valid(i,j,k)
valid1(i): S1a_valid1(i) ∨ S1b_valid1(i) ∧ S2a_valid1(i) ∨ S2b_valid1(i) ∧ S3_valid1(i) ∧ S4_valid1(i) ∧ S5_valid1(i)
invalid1(i): ¬ valid1(i)

Valid Functions (One Node Validity and Two Node Validity)
S1a(i): S1a_valid1(i)
S1b(i): S1b_valid1(i)
S2a(i): ∃j ∈ N(i) S2a_valid(i,j) ∧ (level_j = 2 ∧ m-ptr_j = i) ∨ (level_j = 1 ∧ i-ptr_j = i) ∨ (level_j = 5 ∧ i-ptr_j = i)
S2b(i): ∃j, k ∈ N(i) S2b_valid(i,j,k) ∧ (level_j = 2 ∨ level_j = 3 ∨ level_j = 4) ∧ m-ptr_j = i
S3(i): ∃j, k ∈ N(i) S3_valid(i,j,k) ∧ (level_j = 2 ∨ level_j = 3 ∨ level_j = 4) ∧ m-ptr_j = i
S4(i): ∃j, k ∈ N(i) S4_valid(i,j,k) ∧ (level_j = 2 ∨ level_j = 3 ∨ level_j = 4 ∨ level_j = 5) ∧ m-ptr_j = i ∧ i-ptr_j ∉ {⊥, level_k = 1 ∧ i-ptr_k = i}
S5(i): ∃j, k ∈ N(i) S5_valid(i,j,k) ∧ (level_k = 1 ∧ i-ptr_k = i) ∨ (level_k = 2 ∧ m-ptr_k = i)
valid(i): S1a(i) ∧ S1b(i) ∧ S2a(i) ∧ S2b(i) ∧ S3(i) ∧ S4(i) ∧ S5(i)
invalid(i): ¬ valid(i)

Statement Macros
make_match: i-ptr_i = ⊥, m-ptr_i = j, level_i = 2
reset_state: i-ptr_i = ⊥, m-ptr_i = ⊥, level_i = 1
abort_exchange: i-ptr_i = ⊥, level_i = 2

Guard Function
no_invalid1_neighbor(i): ∀x ∈ N(i) invalid1(x)

Fig. 3. Variables, validity functions, statement macros and guard function
Reset
reset1 :: invalid1(i) → reset_state
reset2 :: invalid1(i) ∧ no_invalid1_neighbor(i) → reset_state

S1a
match1 :: S1a(i) ∧ no_invalid1_neighbor(i) ∧ \exists x ∈ N(i)(i-ptr_x = i ∧ level_x = 1) → i-ptr_x = 1, m-ptr_x = x, level_x = 2
approve1 :: S1a(i) ∧ no_invalid1_neighbor(i) ∧ \exists x ∈ N(i)(i-ptr_x = i ∧ level_x = 3) → i-ptr_x = x
invite1 :: S1a(i) ∧ no_invalid1_neighbor(i) ∧ \exists x ∈ N(i)level_x = 1 → i-ptr_x = x

S1b
match2 :: S1b(i) ∧ no_invalid1_neighbor(i) ∧ \exists x ∈ N(i)(i-ptr_x = i ∧ level_x = 1) ∧ \exists k ∈ N(i)(S1b_valid(i,k) ∧ level_k < 4) → i-ptr_x = 1, m-ptr_x = x, level_x = 2
match3 :: S1b(i) ∧ no_invalid1_neighbor(i) ∧ \exists k ∈ N(i)(S1b_valid(i,k) ∧ m-ptr_k = i ∧ level_k = 2) → make_match
migrate1 :: S1b(i) ∧ no_invalid1_neighbor(i) ∧ \exists k ∈ N(i)(S1b_valid(i,k) ∧ i-ptr_k = i ∧ level_k = 5) → make_match
cancel1 :: S1b(i) ∧ no_invalid1_neighbor(i) ∧ \exists k ∈ N(i)(S1b_valid(i,k) ∧ (level_k = 2 ∨ (level_k = 3 ∧ i-ptr_k ≠ i) ∨ (level_k = 4 ∧ i-ptr_k ≠ i) ∨ (level_k = 5 ∧ i-ptr_k ≠ i))) → i-ptr_x = 1

S2a
invite2 :: S2a(i) ∧ no_invalid1_neighbor(i) ∧ \exists x ∈ N(i)(level_x = 1 ∧ i-ptr_x ≠ i) ∧ \exists j ∈ N(i)(S2a_valid(i,j) ∧ m-ptr_j = i) → i-ptr_x = x

S2b
cancel2 :: S2b(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S2b_valid(i,j,k) ∧ level_k ≥ 2) → abort_exchange
proceed1 :: S2b(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S2b_valid(i,j,k) ∧ i-ptr_j ≠ 1) → level_x = 3

S3
cancel3 :: S3(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S3_valid(i,j,k) ∧ ((level_j = 2 ∧ i-ptr_j = 1) ∨ level_k ≥ 2)) → abort_exchange
proceed2 :: S3(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S3_valid(i,j,k) ∧ i-ptr_j = i ∧ level_k = 1) → level_x = 4

S4
cancel4 :: S4(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S4_valid(i,j,k) ∧ level_j = 2 ∧ i-ptr_j = 1) → abort_exchange
proceed3 :: S4(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S4_valid(i,j,k) ∧ (level_j = 4 ∨ level_j = 5)) → level_x = 5

S5
migrate2 :: S5(i) ∧ no_invalid1_neighbor(i) ∧ \exists j, k ∈ N(i)(S5_valid(i,j,k) ∧ level_k = 2 ∧ m-ptr_k = i ∧ i-ptr_k = 1 ∧ level_j = 5) → i-ptr_x = 1, m-ptr_x = k, level_x = 2

Fig. 4. Algorithm MM1
\[\text{level}_k = 2 \land m\text{-ptr}_k = i \text{ holds since } i \text{ is in } S5. \] If it is \text{level}_k = 1, k \text{ can execute } \text{migrate1}. \text{ If it is } \text{level}_k = 2, i \text{ can execute } \text{migrate2}. \text{ A contradiction.} \ \Box

Lemma 2. A node that points to its neighbor node by \(m\text{-ptr} \) also pointed by the neighbor’s \(m\text{-ptr} \) in any terminal configuration of MM1.

Proof. By contradiction. There is no node at level 5 in any terminal configuration and all nodes are valid. Assume that there are adjacent nodes \(i \) and \(j \) such that \(m\text{-ptr}_i = j \land m\text{-ptr}_j \neq i \). A node \(i \) is in \(S2a \) since validity \(S2b(i), S3(i) \) or \(S4(i) \) do not hold. A node \(j \) is at level 1 and \(i\text{-ptr}_j = i \) from \(S2a(i) \). Since \(i \) is in \(S2a \) and \(j \) is \(\text{level}_j = 1 \land i\text{-ptr}_j = i, j \) can execute \text{match3}. A contradiction. \ \Box

Lemma 3. There are no two nodes \(i \) and \(j \) such that \(\text{level}_i = 1, \text{level}_j = 3 \) or \(4, i\text{-ptr}_i = j \) and \(i\text{-ptr}_j = i \) in any terminal configuration of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration and all nodes are valid. Assume that there are adjacent nodes \(i \) and \(j \) such that \(\text{level}_i = 1, \text{level}_j = 3 \) or \(4, i\text{-ptr}_i = j \) and \(i\text{-ptr}_j = i \). If \(\text{level}_j = 3, j \) can execute \text{proceed2} since \(j \) is in \(S3 \).

Consider the case of \(\text{level}_j = 4 \). There is a node \(k \in N(j) \) such that \(\text{level}_k = 2 \) or \(3 \) or \(4, m\text{-ptr}_j = k, i\text{-ptr}_k \neq i \). Node \(k \) can execute \text{proceed1} if \(\text{level}_k = 2 \) and \(j \) can execute \text{proceed3} if \(\text{level}_k = 4 \). Hence \(\text{level}_k \) is limited to 3. Therefore, there is a node \(l \in N(k) \) such that \(i\text{-ptr}_k = l \) and \(\text{level}_l = 1 \). Node \(l \) satisfies \(i\text{-ptr}_l \neq k \) because it is in a terminal configuration. Therefore, there is a node \(m \in N(l) \) such that \(i\text{-ptr}_m = m \) and \(\text{level}_m = 4 \). Repeating the above observation, we can show there is an infinite sequence of nodes at levels \(1, 4, 3, 1, 4, 3, \cdots \). However, there is no such a sequence since there is no cycle of length of a multiple of 3. A contradiction. \ \Box

Theorem 1. A maximal matching is constructed in any terminal configuration of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration and all nodes are valid. Assume that a matching is not maximal in some terminal configuration. There are adjacent nodes \(i \) and \(j \) at level 1 by the assumption and Lemma 2.

If a node \(i \) or \(j \) is in \(S1a \), it can execute \text{invite1}. Therefore, both nodes are in \(S1b \) (Observation 1). Let \(k \) be a node pointed by \(i\text{-ptr}_i \). The level of \(k \) is not 5 by Lemma 1.

In case of \(\text{level}_k = 1, k \text{ is in } S1b \text{ by Observation 1}. \text{ Let } x \text{ be a node pointed by } i\text{-ptr}_k \). A node \(k \) can execute \text{match2} to make a match with \(i \) if \(\text{level}_x \neq 4 \). Therefore, \(\text{level}_x = 4 \) and this implies \(i\text{-ptr}_x \neq k \) by Lemma 3, and \(k \) can execute \text{cancel1}. In case of \(\text{level}_k = 2, k \text{ can execute } \text{invite2} \text{ if } k \text{ is in } S2a \). Node \(i \) can execute \(\text{cancel1} \) if \(k \) is in \(S2b \) since \(m\text{-ptr}_k \neq i \) by Lemma 2. If \(\text{level}_k = 3 \) or \(4, i \) can execute \(\text{cancel1} \) since \(i\text{-ptr}_k \neq i \) by Lemma 3. A contradiction. \ \Box
Theorem 2. A 1-maximal matching is constructed in any terminal configuration of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. Assume that a matching is not 1-maximal in some terminal configuration. Since it is terminal, a maximal matching is constructed by Theorem 1. Therefore, there are matching nodes i and j and both have neighbors at level 1 from Lemma 2.

Both i and j are at level 2 or higher since they are matching. They are not in S_2a since they have level 1 neighbors and can execute invite1 if they are in S_2a, or not at level 5 by Lemma 1. Since i and j are in S_2b, S_3 or S_4, both nodes point to some neighbor by i-ptr, and the neighbors are at level 1. That is because, i or j can execute cancel2 in S_2b, cancel3 in S_3 and reset2 in S_4 if it points to a node at level 2 or higher.

 Nodes i and j are not in S_2b since i-ptr, $i \neq \bot$ and i-ptr, $j \neq \bot$, and therefore, they can execute proceed1 if they are in S_2b.

Consider the case where i or j is in S_3. Assume i is in S_3 w.l.o.g., and let k be a level 1 node that i points to by i-ptr. A node k can execute approve if i-ptr, $k \neq \bot$, and node i can execute proceed2 if i-ptr, $k = i$. Therefore, i-ptr, $k = x$ for some $x \neq i$. Since there is no adjacent level 1 nodes by Theorem 1, there is no level 5 node by Lemma 1, and m-ptrs point to each other between two matching nodes by Lemma 2, k is at level 2, 3, or 4, and m-ptr, $x \neq k$. A node x is not at level 2 since k can execute cancel1 if x is at level 2. In case where k is at level 3 or 4, i-ptr, $x \neq k$ by Lemma 3, and therefore, k can also execute cancel1. Therefore, none of i and j is not in S_3.

That is, both i and j are in S_4, however, both can execute proceed3 in this case. A contradiction.

Lemma 4. If a node i at level 1 is valid, that is $S_1a(i)$ or $S_1b(i)$ holds, i is valid while it is at level 1 in MM1.

Proof. Validity functions $S_1a(i)$ and $S_1b(i)$ check only the variables of a node i. That is the validity of a node at level 1 is independent of its neighbors’ states. Any move for S_1a or S_1b keeps the state of node valid, a valid node at level 1 is valid while it is at level 1.

Lemma 5. Once a node executes one of match1, match2, match3, migrate1 and migrate2, the node never executes reset1 or reset2 in MM1.

Proof. By contradiction. Assume some nodes execute resets (reset1 or reset2) after executing match1, match2, match3, migrate1 or migrate2. Let i be a node that executes such a move r of a reset first. Let m be the last move of among match1, match2, match3, migrate1 and migrate2 before the reset. Since no move except reset1 and reset2 brings invalid states and i already executed m, when i executes r, i is two nodes invalid. Therefore, i detects some invalidity between i and some neighbor.

Let k be a node such that i-ptr, k when i executes r. If k causes the reset r, i is at level 4 or 5 at that time. When i moves to S_4 by proceed2, i confirms
that k's validity, level\(_k\) = 1 and i-ptr\(_k\) = i. Node k never resets while it is at level 1 by Lemma 4 and the validity between i and k is preserved. Node k may move to S2a by migrate1 but never resets before r by the assumption, and therefore, the validity i and k is also preserved.

Therefore, i executes r by detecting invalidity between i and j such that m-ptr\(_i\) = j. Since m is the last chance to set m-ptr for i, i sets m-ptr\(_i\) = j by m. When i executes m, j is in S1b, S2a, or S5.

In case of S1b, when i executes m, i confirms j’s validity and i-ptr\(_j\) = i. Node j is valid while it is at level 1 by Lemma 4. Node i moves to S2b after j sets m-ptr\(_j\) = i and moves to S2a by match2 or match3. Therefore, while j is at level 1, i-ptr\(_j\) = i always holds and therefore i cannot reset. After j moves to level 2 by match2 or match3, j does not reset before r from the assumption. Therefore, the validity between i and j is preserved until r.

In case of S5, that is i migrates to j, when i executes m, i confirms i-ptr\(_j\) = i. Since the validity of a node in S5 only depends on its state and a state of a node pointing to by i-ptr, j is valid if the validity between i and j is preserved. Since i does not reset between m and r, the validity is preserved while j is in S5. After j moves to level 2 by migrate2, j does not reset before r from the assumption. Therefore, the validity between i and j is preserved until r.

In case of S2a, i confirms the validity between i and j and m-ptr\(_j\) = i when i executes m. Since j is in S2a, i-ptr\(_j\) does not point to any node. Therefore, even if j points to some node by i-ptr after m, the validity between j and the pointed node is preserved like between i and k. Therefore j is valid if the validity between i and j is preserved while m-ptr\(_j\) = i and level\(_j\) ≤ 4 (When j moves to S5, it does not take care of i). Since i does not reset between m and r, the validity is preserved.

We say a move is a progress move if it is by match1, match2, match3, or migrate1. A level of node changes from 1 to 2 by a progress move.

Lemma 6. Each node resets at most once in MM1.

Proof. Once a node executes reset1 or reset2, it moves to S1a. The node never resets while it is at level 1 from Lemma 4. The node executes a progress move to move to level 2, and never resets after that by Lemma 5.

Lemma 7. Each node execute a progress move at most once in MM1.

Proof. A progress move changes levels of a node from 1 to 2, and a node never resets if it executes a progress move by Lemma 5. That is the node never goes back to level 1. Therefore, once a node executes a progress move it never executes a progress move again.

Lemma 8. In MM1, cancel1, cancel2, cancel3 and cancel4 are executed \(O(e)\) times.

Proof. In MM1, a node i executes a cancel (cancel1, cancel2, cancel3 or cancel4) when it is initially possible, some neighbor node executed a cancel, or some neighbor node executed a progress move.
Consider that some node j executes a progress move that changes a stage of j to $S2a$. Nodes that point to j by i-ptr will execute a cancel as follows. If such a node k is in $S1b$, k will execute cancel1, and if such a node k is in $S2b$ or $S3$, k will execute cancel2 or cancel3.

If some node executes cancel2 or cancel3, it causes more cancels. If there is an adjacent node x and trying to increase matches, it will also cancels by cancel3 or cancel4. That cancel may further causes one more cancel. If x already invited some node y to migrate to x, y will execute cancel1.

Now we classify cancels with direct cancels and indirect cancels. The direct cancel is a cancel caused by some progress move or its initial state. The indirect cancel is a cancel caused by a cancel of its neighbor.

From the above observation, any cancel causes at most two indirect cancels. Let deg_j be the degree of j. There are at most deg_j nodes that execute a cancel due to the progress move of j. From Lemma 7, j executes a progress move at most once, and therefore there are at most $\Sigma_{i \in V} deg_i = e$ direct cancels caused by progress moves. Moreover, there are at most n direct cancels caused by initial states. Therefore, the total number of moves by cancels are $O(e)$.

Lemma 9. In MM1, migrate2 is executed $O(n)$ times.

Proof. Let m_1 and m_2 be two consecutive moves by migrate2 of a node i. The node i moves to $S2a$ by m_1 and then invites some neighbor node j at level 1 to migrate to i. Then, node j executes migrate1 that points to i by m-ptr. That is, there is a move by migrate1 that points to i between two consecutive moves by migrate2 of node i. Therefore, the total number of moves by migrate2 is at most the total number of moves by migrate1 + n. From Lemma 7, it is bounded by $O(n)$.

Theorem 3. MM1 is silent and takes $O(e)$ moves to construct 1-maximal matching for any graphs without a cycle of length of a multiple of 3.

Proof. Fig. 5 shows stage transition in MM1. In MM1, each node moves to a higher stage from the current stage in the order of $S1a, S1b, S2a, S2b, S3, S4$ and $S5$ except reset1, reset2, cancel1, cancel2, cancel3, cancel4 and migrate2. Therefore, if a node does not execute these actions, the number of moves is at most 6.
Let R_i, C_i and M_i be the numbers of moves of a node i by reset (reset1 or reset2), cancel (cancel1, cancel2, cancel3 or cancel4), and migrate2. Let MOV_i denote the total number of moves of a node i. From the observation, it is bounded as follows.

$$MOV_i \leq 7(R_i + C_i + M_i + 1)$$

From Lemmas 6, 8 and 9, we have

$$\sum_{i \in V} R_i = O(n), \sum_{i \in V} C_i = O(e), \text{ and } \sum_{i \in V} M_i = O(n).$$

Therefore, the total number of moves in MM1 can be derived as follows.

$$\sum_{i \in V} MOV_i \leq 7(\sum_{i \in V} R_i + \sum_{i \in V} C_i + \sum_{i \in V} M_i + \sum_{i \in V} 1) = O(e)$$

Since each node always takes a finite number of moves, MM1 always reaches a terminal configuration where 1-maximal matching is constructed by Theorem 2. This also implies MM1 is silent.

\[\square\]

5 Conclusion

We proposed a 1-maximal matching algorithm MM1 that is silent and works for any anonymous networks without a cycle of a length of a multiple of 3 under a central unfair daemon. The time complexity of MM1 is $O(e)$ moves. Therefore, it is $O(n)$ moves for trees or rings whose length is not a multiple of 3. We had a significant improvement from Goddard et al.\[6\] that is also an anonymous 1-maximal matching algorithm but works for only trees or rings which length is not a multiple of 3 and the time complexity is $O(n^4)$.

References