
 1

Abstract – A new concept for cooperatively coordinating large-
scale autonomous robot exploration teams having populations in 
the thousands is introduced along with four mapping scenarios.  
Inspired by constructs found within the human immune system, 
the Immunology-derived Distributed Autonomous Robotics Ar-
chitecture (IDARA) was developed so that routine actions are 
refined and followed by specific and mediated responses based on 
each unit’s utility and capability to timely address the system’s 
perceived need(s).  This method improves on initial developments 
in this emerging area by including often overlooked interactions 
resulting from the innate immune system to yield a stronger first-
order, all purpose exploration mechanism.  Using the IDARA 
architecture as a foundation, this work develops methods for 
flexible, kilorobotic exploration in dynamic environments.   As 
characterized via a computer simulation with robot populations 
of up to 1,500 robots, IDARA-based exploration proved to be an 
efficient, robust, and compact method for large-scale multirobot 
control that to combine reflexive and deliberative control meth-
ods in an opportunistic fashion. 
Index Terms: kilorobotics, distributed robots, exploration and 
mapping, artificial immune systems 
 

I INTRODUCTION 
 Exploration is an integral feature of many robotic applica-

tions ranging from planetary exploration, hazardous environ-
ment assessment, urban warfare, to even domestic servitude.  
The use of robots for these exploration tasks minimizes human 
exposure to harm and automates banal operations.  However, 
in hostile or dangerous environments the use of robotic plat-
forms may become a necessity.   

 In this paper, we consider kilorobotics – robot colonies 
with large populations (in the thousands) – for exploration of 
uncertain and potentially dangerous environments that are 
complicated by variable, dynamic changes.  To fully serve the 
needs of an operator or higher level layers of an automation 
system, these robot colonies need a coordination method that 
distributes exploration tasks and allocates resources such that 
not only is the environment fully characterized, but that this is 
achieved in manner that takes into account any priors.  

 In nature, we observe several cases where large popula-
tions work cooperatively in a cohesive and productive manner 
to achieve complex goals in a far more efficient manner than 
may be accomplished individually.  Many of these groups of 
robots or agents consist of large populations that coordinate 
and cooperate on tasks as needed in the presence of substantial 
complexity resulting from a variety of factors including envi-
ronmental uncertainty, noisy inputs, adversarial agents, and 
external threats.   One prime example of this type of system in 
nature is the human immune system.  The immune system is a 
remarkable example of a highly scalable distributed control 
and coordination system [1].  In nature, we observe that the 
human immune system is able to control and coordinate a 
massively scaled distributed object environment in a meas-
ured, decisive, dynamic, and seamless manner to deter bacte-

rial or viral threats.   For example, the immune system in an 
adult male coordinates over a trillion lymphocyte cells, which 
together utilize about 1020 (100 quintillion) antibody mole-
cules.  Equally remarkable is the immune system’s dynamic 
nature, which allows it to respond to dynamically changing 
macroscopic and microscopic conditions.  As an example, in 
the time it takes to make a cup of coffee the immune system 
produces 8 million new lymphocytes and releases nearly a bil-
lion antibodies.  In other words, the immune system acts like a 
protective force that continually monitors the bioenvironment 
and, depending upon a perceived threat to the body, activates 
the necessary multi-agent control systems and responses [2,3].  

 Using the IDARA architecture and immunity-based 
methods, this paper outlines the development of methods for 
exploration based on the human immune system.  Kilorobotics 
will be able to more fully exploit the comparative advantages 
inherent in autonomous multi-robot systems, namely: parallel 
execution, redundant operations, increased reliability, and ro-
bustness to point failures.  They also give the system more de-
grees of freedom so that it may adapt to a wide range of varia-
tions in the environment.   

 However, kilorobotics comes with a caveat – to be effec-
tive they need an efficient and intelligent method for control, 
coordination, and communication.  Without this, parallel re-
sources are misallocated and may be counterproductive.  
Moreover, kilorobotics is not amenable to classic multi-robot 
control strategies as they can not be reasonably scaled to this 
domain.  For example, one of the principal characteristics of 
traditional centralized coordination architectures is that they 
are highly communications dependent and exponential in 
complexity [4].  Newer behavioral artificial intelligence (AI) 
based methods are an increasingly active area of research in 
this area; however, many of its macroscopic, “bottom-up” 
(i.e., unified system level) approaches do not have the plan-
ning and strategy necessary for operations in complex envi-
ronments [5].  Therefore, in order to fully reap the potential of 
kilorobotics, an architecture is needed that can dynamically 
optimize their function of simple, yet specific, plastic agents, 
especially in changing, unpredictable environments.   

 Traditionally the use of immunity-based approaches and 
artificial immune system models has been as a decentralized 
behavior arbitration mechanism for behavior-based AI.  Using 
the human immune system as a basis, the IDARA-based 
methods uses a more extensive model of the immune system 
to not only arbitrate behaviors, but to coordinate the interac-
tion of heterogeneous groups of robots/agents such that the 
unique talents of any individual are fully exploited [6-8].  In 
particular, IDARA’s modeling of the general, first-order re-
sponse of the immune system allows these robots to interact in 
new environments before they have an opportunity to fully 
learn or acquire information about these environments.  The 
importance/necessity of this approach is evident by the ana-
logue – when one travels to a “foreign” location their immune 
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system may require time to fully adjust to the environment, 
but is still capable of providing basic defenses. 

The paper investigates the development of this facet of the 
immunology-based algorithm.  As detailed in the next section, 
the human immune system has evolved into a network of spe-
cialized interconnected systems that range from general im-
mune cells to antigen specific lymphocytes.  Together these 
systems perform various levels of immune response and func-
tionality in efficient manner.  The IDARA architecture de-
scribed in this paper uses this facet of the immune system as a 
control and coordination mechanism for discovery with re-
spect to directed interior exploration.  This, in turn, allows 
IDARA to be capable of responding dynamically and effi-
ciently without detailed data about the area to be explored.   

 
II IMMUNE  SYSTEM  OVERVIEW & RELATED WORK 
 On the surface, the human immune system has a clear and 

basic role: the monitoring and preservation of the identity of 
the body.  The operations of this diffuse system (it is scant 
more than 1-2% of a person’s body weight) are individually 
simple, but combine to construct a rich and complex web of 
interaction and coordination that, while not optimal, display 
exceptional levels of robustness and flexibility, especially with 
regards to unknown situations and conditions. 

1. Innate and Acquired Immunity 
To appreciate the operation and interactions within artificial 

immune systems, it helps to have a general understanding of 
the immune system on which the IDARA metaphor is based.  
The human immune system works on two levels: a general 
response mechanism that is not directed at any specific disease 
organism/pathogen (i.e., innate immunity) and a specific, anti-
body mediated response that encompasses many of the pattern 
recognition and situational memory aspects that are a core as-
pect of the human immune system (i.e., acquired immunity).  
This behavior can be viewed as a tradeoff between response 
time and specificity/effectiveness and is illustrated in Figure 1. 
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Figure 1:  Process Diagram for Immune System Responses 
(Response becomes more specific and advanced with time) 

Innate immunity is the natural and omnipresent resistance to 
a variety of pathogens.  Its purpose is to act as the first-order, 
general defense mechanism.  These innate mechanisms then 
couple with principal members of the acquired immune sys-
tem to form a rapid, yet targeted, response that uses gradient 
decent as its primary recruitment method (see also Figure 2).  
This mechanism primarily operates by permitting self/non-self 
discrimination and by activating certain general kill mecha-
nisms [3].  

Figure 2:  Model of Human Innate Immunity 
 
In contrast to the innate system, acquired immunity is about 

specific responses to specific and known threats.  Specific 
higher-level responses provide life-long critical immunity 
(e.g., a person with normal immunity can survive up to 
100,000 times the dose/exposure of a pathogen that would be 
lethal without having acquired immunity).  There are two 
types of acquired immunity: humoral (i.e., B-cells and anti-
body control/regulation) and cell-mediated (i.e., T-cells prov-
ing B-cell assistance and orchestration).  Both are initiated by 
antigens and signaled by antibodies (i.e., Y-shaped molecules 
which match key proteins based upon their encoded specific-
ity; there are some 10 million in the immune system) [3].   

As detailed in the next section these characteristics have 
spawned a new and growing research area in the development 
of algorithms and theories based upon this result.  

2. Artificial Immunity Theory 
Initial modeling of the human immune system was begun 

almost thirty years ago with the hope of applying “classical” 
systems and control theory to the immune system [9].Recently 
there has been a reversal of roles, now control and multi-robot 
theory is looking to immunology to gather insight on new 
methods of control. This has resulted in the relatively new area 
of artificial immune theory and simple artificial immune sys-
tem (SAIS) research for a variety of research applications.   

 The use of immunity-based control in the form of SAIS 
algorithms is a developing area of research in AI and robotics.  
Often implemented through a probabilistic approach based on 
Jerne’s Idiotopic Network Hypothesis whereby acquired im-
munity is used as a model for a new, intelligent problem solv-
ing technique.  However, theses techniques are based on a 
very simplistic model of the acquired immune system and do 
not model more the more advanced learning and communica-
tions aspects of the immune system [2,3].  While principally 
being researched in software-agent coordination applications, 
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the SAIS model research suggests that adoption of a control 
architecture based on the immune’s systems compound archi-
tecture will result in a powerful, yet dynamic, multi-robot con-
trol and coordination schemes [9].   

 Most of the activity in this new and diverse field has cen-
tered on the modeling and use of the acquired immune system 
as a mechanism for mediating behaviors in behavior-based AI 
systems.  Hofmeyr and Forrest have described the distributiv-
ity and robustness of SAIS [1].  Segal and Bar-Or have de-
scribed how simple immunology models can be used to opti-
mize effector performance and how the immune system can be 
seen as a distributed system [10]. Hunt has developed a so-
phisticated machine learning algorithm set (JISYS) that util-
izes SAIS principles to perform a variety of “fuzzy” tasks 
(e.g., task classification, refinement, network generation, and 
interrelations) [9-11].  Finally, [12] discusses how to augment 
and enhance these architectures by employing statistical tech-
niques and a recursive mechanism that varies generalization 
with refinement similar to the ladder shown in Figure 1. 

3. Present Distributed Autonomous Mobile 
   Robotics Approaches 

Since the introduction of nouvelle (non-symbolic) AI algo-
rithms over a decade ago, there has been an ever-growing in-
terest in the development of multi-robotic systems.  While 
many of these systems have been in the software-agent do-
main, many of the concepts under consideration can be suc-
cessfully applied to the physical domain in the form of a non-
linear control and planning algorithms.   

 Many of popular multi-robot control systems available for 
object recovery and detection are based on centralized control 
and operations.  For example, Albus and Stentz both base their 
results on the centralized, hierarchical approach to control a 
multi-robot system [13, 15].  While relatively easy to imple-
ment, the application and scaling of these systems has often 
been limited by the large computational and communications 
burden associated with their (centralized) operation [14].   

A second approach is to use a highly distributed robot sys-
tem that communicates via a series of peer-to-peer or implicit 
communications systems that are often based on the use of 
biologically inspired behavior-based control mechanisms.  
These approaches have been applied in various domains, but 
can be complicated to scale to larger, more complicated do-
mains as many behavior-based approaches do not provide a 
convenient method for integration of learning throughout the 
whole system nor and applying machine learning algorithms 
(e.g., to filter large levels of sensor noise).  Further examples 
of the principal research efforts in this field are outlined in 
Matarić’s survey paper on distributed robotics [1,14].     

 Recently, hybrid approaches have been developed to 
combine the qualities of deliberative, centralized methods and, 
behavioral architectures.  While these approaches resolve 
many of the problems associated with these two architectures,  
hybrid architectures have the disadvantage of increased system 
complexity, which limits how scaleable this architecture is to 
large heterogeneous colonies [9].  In addition, several more 
specific architectures exist for use in complex task domains.  
For example, Dias and Sentz’s macroeconomic approach to 
mobile robot control resulted in a dynamic robot system that 

can simply and successfully execute tasks in dangerous envi-
ronments [14].  In addition, Feddema has applied statistical 
methods and graph-theoretic approaches to coordinating hun-
dreds to thousands of cooperative robotic agents [16].  

 A second approach that can be applied for coordinating 
robot colonies in dynamic environments with a relatively slow 
rate of change is to repeatedly apply a method with guaranteed 
coverage, such as [17], at a sufficiently high frequency.  The 
most significant problem with this approach is that it essen-
tially entails that the frequency of any environmental change is 
less than the bandwidth (or “refresh frequency”) of the method 
being considered.  Also, most of these methods operate in a 
“pseudo-steady” mode and make extensive use of the steady-
state assumption.  Thus, it is possible that transient effects of a 
dynamic environment could present unforeseen stability diffi-
culties to this method. 

 
III THE IDARA ARCHITECTURE 

 IDARA’s central tenet is that immunology is a promising 
approach to the command and control of unprecedented num-
bers of robots.  By focusing on the solution of general macro-
scopic guidance and coordination issues, rather than specific 
individual command and control, IDARA has lead to the de-
velopment of a self-optimizing and dynamic robotic control 
architecture.  While the current research has emphasized the 
use of these algorithms towards the development and demon-
stration of a first-order distributed robotics system, it is envi-
sioned that the intelligence and robustness inherent to IDARA 
can be extended to other robot domains (e.g., to aid in task 
planning and allocation). . 

 One of the principal advances of the proposed immu-
nological control model over traditional SAIS approaches is 
the consideration of the entire response and not just mecha-
nisms based on cell-mediated object recognition [3].   This 
consideration allows the system to respond quickly via a di-
rected, but general, method and then focus its response in time 
as it proceeds through various levels of response.  Finally, this 
model (unlike many SAIS approaches) can include interac-
tions not easily linked to immune cell actions.  Using the 
aforementioned model as a basis, the IDARA architecture was 
made by basing the fundamental immune functions of the im-
mune system as modules in the software architecture.   

 The IDARA system builds upon immunology models and 
other related concepts and in the end results in a directed, but 
flexible, system that mimics that nature of the immune sys-
tem’s control structure. Furthermore, it does so in a diverse 
manner so that unknown events and dynamic variations can be 
investigated efficiently.  The IDARA architecture uses a 
multi-tiered response ladder to yield rapid, reactionary re-
sponses followed by deliberative responses that are focused 
and specific.  No longer does an agent’s design need to be 
constrained by traditional instability and recovery criteria, 
since the failure of an individual (disposable) agent is not det-
rimental to the entire system and may actually be beneficial to 
the overall action.  Via this structure (as illustrated in Figure 
3), the IDARA architecture combines the power of classic de-
liberative, thorough planning architectures with the relative 
simplicity and rapid response of reactionary architectures in a 
unified framework. 
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Figure 3: IDARA Software Architecture (Immunology analogous are shown 

in gray and (for comparison) the typical execution paths of reactive and 
deliberative/planner-based architectures are shown as dashed lines) 
 
While particular details vary with the implementation and 

arbitration mechanism, a general description of the standard 
hierarchy used by IDARA is given as follows: 

Unknown Response – The response used in the event when 
there is no information being perceived (such as during 
startup/bootstrapping, near completion, or in poor environ-
ment where antigens to be discovered are “rare” and sparsely 
located), the objective is to act in a manner that tries to change 
this situation in a fashion that does not disrupt the operation of 
the entire system.  For example, this might be to randomly se-
lected an action. 

Default (Routine) Response – In the default case where 
there is some minimum level of information (i.e., sensor in-
puts are above some sensitivity threshold), the method should 
apply a general response that is often effective, but may not be 
optimal or fully exploiting all the information available. 

Triggered Response – When the system is able to make a 
deeper inference or obtains more detailed information, such as 
a gradient signal communicating a previously located goal, a 
mediated response is initiated. 

Deliberative Reponses – This level of response is the most 
intensive and complex and includes “machine learning” as-
pects of the immune system (i.e., the ability to use “memory 
B-cells” and recall patterns associated with certain cases of a 
task).  In addition, this method would use the internal state and 
deliberative reasoning to try to develop a more optimal re-
sponse.  This approach allows the architecture a means of ex-
ploring around local-optima that would “trap” the triggered 
response level. 

IDARA’s multi-facetted response mechanism is a central 
feature of the architecture and the basis of the architecture’s 
dynamic and scalable response mechanisms.  Furthermore, it 
is also represents a significant difference between IDARA and 
traditional SAIS algorithms; in that, IDARA maps different 
aspects and features of the immune system to various modules 
and tiers of the response ladder and not as to actions or certain 
robots.  By placing the analogous operations at a high level of 
abstraction, the IDARA architecture becomes more flexible 
and easier to implement.  In other words, the response mecha-
nisms and actions employed are no longer constrained by the 
low-level mappings of immune theory to robotic operations.  
However, this approach does not conflict with traditional 
SAIS design approaches as they can be implemented by vary-
ing the response blocks and placing the onus of control on 

them.  An additional benefit of this design approach is that the 
IDARA architecture can be expanded to include features and 
mechanisms from other multi-robot coordination and control 
architectures, which should accelerate implementation and de-
velopmental process.   

 Similar to several hybrid architectures, IDARA uses a 
heuristically driven arbitration module to combine action di-
rectives being advanced by various levels of the architecture 
[13].  By using a vector-based approach in combination with 
the system‘s default random exploration routines, the arbitra-
tion mechanism calculates the best resultant action.  The result 
of this procedure is a form of “directed randomness,” in which 
the architecture varies and tunes the general nature or diction 
of its response from random exploration to specifically guided 
paths and actions.  

 The IDARA architecture has a variety of features com-
pared to other algorithms and AI methods for the coordination 
of teams of robots (see Table 1).  When applied directly at a 
lower level to a population of robots, this architecture will 
yield a mobile, robust, and adaptive control method.  Such a 
method will combine the functions and critical mass of simple 
robots to solve complex tasks.  This provides numerous ad-
vantages.  First, the system will be more robust as failure in 
one component will have a minimal impact on the entire net-
work.  Second, the system will be more economically viable 
as simple, standard components could be used, as the individ-
ual failure modes no longer critically affect the device. 

Table 1: Comparison of IDARA to Other Algorithms 
 
 While the IDARA architecture has a number of strengths, 

especially in the coordination and control of large robot colo-
nies, it is not perfect.  One weakness is that agents initially 
base interaction on Brownian motion until an antigen is found 
locally and then use local gradient optimization to follow the 
signals from initial interactions.  This, however, predicates 
that there is an initial interaction between the two effectors.  
Thus, this architecture needs an inherent “critical mass” and 
may not operate well in small teams.  Further, gradient tech-
niques are only locally optimal.  Thus, in order to obtain a 
highly (and perhaps globally) optimal solution, IDARA needs 
to be somewhat random in its initial motion so that it will be 
fairly well distributed.  Finally, IDARA does not place a 
strong value on an individual unit and therefore can be highly 
unit sacrificial. 

 

Coordination Mechanisms 
Characteristic 

IDARA 
Microeconomic Cost 

Optimization [10] 
SAIS Algori-
thms [12,15] 

Massively Scalable Yes Yes Some 
Distributed Yes Yes Some 
Communications Light Medium Medium 
System-wide Approach Yes Yes Yes 
Adaptability 
(i.e., operates outside range) 

High Medium Little 

Learning Yes Some Yes 
Behavior AI based No No Yes 
Specificity Yes Some Yes 

A priori  information 
needed 

Can be utilized, 
but not needed 

Some – Cost func. 
need to be defined Yes 

General/Instant Response Yes Some Some 
Fault-Tolerant Yes Yes No 
Optimal Solution  No No No 
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IV IDARA APPLIED TO KILOROBOTIC EXPLORATION 
The primary goal of this method is the coordination of a 

large team of robots in the exploration of an environment in a 
manner that incorporates appropriate guidance (e.g., “explore 
the corners”) from a high-level controller (e.g., human or 
software agent).  A second goal of the method was to any han-
dle dynamic variations. 

By focusing on the general and triggered response mecha-
nisms for recruitment and coordinating actions and modeling 
interaction responses primarily on innate immunity the design 
of the exploration method was simplified.  This also serves to 
emphasize the reactive attributes of the IDARA architecture 
(as compared to the architectures deliberative mechanisms).   

The robots were modeled with only a classifying proximity 
sensor in order to detect if it is adjacent to a obstacle or robot 
and a radio beacon in order to send alert signals.  These bea-
cons signals, analogous to histamines in the immune system, 
were modeled with a decay function proportional to distance 
traveled and the elapsed time (i.e., simulation iterations) since 
discovery.  Using these beacon signals each robot generated a 
signal gradient map that was used to evaluate its motion along 
each axis (dimension) under consideration.  Finally, the simu-
lation accounts for Type I and Type II sensor noise up to 10%.  

Individual robots do not build the map.  The mapping was 
performed by leveraging the IDARA coordination method.  In 
particular, the “histamines” were received by and mapping 
was performed by a separate, coordinated set of fixed (and 
well localized) mapping stations. By sharing information via a 
network, these mapping stations are able to build a common 
map at a centralized server that is post-processed and deliv-
ered to the user.  The map is constructed by triangulation of 
communications from the robots (i.e., “histamines”) and with 
any additional information that maybe coded in the received 
signal (e.g., object type or the robot’s estimate of its position).  

The mapping process is shown in Figure 4.  Operator inputs 
are used to vary the nature of the antigen map, which is done 
by placing antigens in a pattern that reflects the parameters 
supplied.  For example, if no information is given then map 
would be uniformly distributed; by comparison, if the system 
is told to explore the center of an environment then majority of 
antigens are distributed in the center.  Once this has been cal-
culated, it is downloaded or set in the robots (e.g., via an ini-
tializing data-transfer broadcast) before they are deployed.   

Is area sufficiently
explored (i.e., enough mines

or percentage of
area found) ?

IDARA-based Robot Coordination

Add executions to
Iteration Logs

No

Did I recieve any
beacon signals

Triangul at e  pos it ions
co rr espond i ng t o  the
beacon sgnal received.

Yes
(as they usually will be)

FinishYes

Start

Build and download
"antigen space"

Place, localize, and connect,
mapping stations

Obtain any huristic infomation

C e n t r a l l y  c o n s t r u c t
occupancy and visitation
maps

Was it  a "antigen
found" type ?

Update
"online"
anitigen
matrix

Yes

NoNo

 
Figure 4:  Robot-level Mapping Process 

Unlike the antigens, the robots are distributed in a Gaussian 
pattern around some central point or locations.  This was done 
because it is envisioned that the deployment of these robots 
would be done by someone locally distributing /bootstrapping 
the robots (e.g., after downloading the “antigen map”).  As 
one would expect, and as confirmed experimentally, this pat-
tern is less efficient than a random distribution of the robot 
population.   Lastly, dynamic effects can be modeled by hav-
ing the robot vary the antigen locations on-line. 

To simplify the operation, the robot colonies consisted of 
identical robots whose only sensing was a proximity sensor 
(with a default misdetection rate of 10%).  While the IDARA 
architecture does provide means for adjusting coordination 
and response based on heterogeneous populations of robots, 
the general case was studied as non-specific robots (i.e., teams 
lacking specialization or prior memory/knowledge) is a less 
efficient case.  A few assumptions about the environment were 
made to further focus the exploration process.  The first is that 
random trials and sensor noise are Gaussian and thus tradi-
tional statistical analysis is valid.  Second, it was that the ro-
bots were allowed to operate and add costs as necessary (i.e., 
there is no limit to the cost function).  Finally, it was assumed 
networking issues were not complicating factors.  This simpli-
fied the initialization processes of the implementation; how-
ever, the algorithm does not depend on this assumption. 

V EXPERIMENTAL DESIGN AND RESULTS 
 To experimentally validate this architecture and its hy-

pothesized interactions a series of directed exploration ex-
periments were devised.  These experiments were imple-
mented, executed, and analyzed using MATLAB.  Given a 
relative area and some general operator constraint, the simula-
tor environment generates the field and distributes antigens 
within it.  The simulation uses a sensor module, which looks at 
the “solution field” to see if it is adjacent to an antigen.  

The goal in this case is to incorporate dynamically varying 
exploration based upon rough initial guidance from an opera-
tor (e.g., move west).  This was implemented by focusing on 
the general and triggered response mechanisms for recruitment 
and coordinating actions, the system’s complexity is propor-
tional the level of interactions within the humoral (acquired) 
immune system.  This, in turn, does restrict the systems ability 
to learn and adapt to changing, hostile environments.  Gener-
ally in exploration and mapping, the obstacles (and their) sig-
natures do not change over the robot’s investigation.  Model-
ing interaction responses primarily on the first-order, innate 
immunity system instead of the full immunological model not 
only to simplifies the design (and computation), but also 
serves to emphasize the reactive attributes of the IDARA ar-
chitecture (as compared to its pattern recognition mecha-
nisms). 

1. Simulator Details 
Through the model outlined above, a robot could be consid-

ered to mimic a macrophage and the cumulative response of 
the system to mimic first-order (i.e., innate) human immunity.  
Before running a variety of simulations to characterize the per-
formance and nature of the IDARA-based exploration, a vari-
ety of quick experiments were conducted to establish good de-
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fault values for the various control parameters that affect the 
simulation.  Unless specially varied or otherwise mentioned 
the default values for the control parameters are the values 
tabulated in Table 2. 

 
Variable Name Default Value/Formula Execution Order  

(Empirically derived) 
Environment Size 30 × 20 m (650×650 pixel) O(N2) 

Antigen Density 0.60 % O(N) 

Robot Count � � � �-1 11-e P fail e�

�
 O(N+P(fail)�N) 

Antigen Motion Pattern Random N/A 
P(fail) e-1 N/A 

Sensor Noise 10% N/A 

Table 2: Default Values for IDARA Simulation Parameters 
(Values used by simulator unless parameter being tested) 

 
The simulation tested five types of distribution by skewing 

the antigen generation method as described earlier.  Each ex-
periment was repeated to verify the results.  The following 
types were tested and their mean results shown: 
�� Center – A Gaussian at the center with: 50x y� �� �   

�� Perimeter – Antigens spread towards the edges 
�� Random – A random distribution in both x, y 
�� Side -  A Gaussian centered along the first column (y=0) 
�� Uniform – Antigen locations spaced uniformly, 

 
2. Simulator Results 
Several sets of experimental runs have been performed in 

order to validate this approach and characterize the perform-
ance of the IDARA architecture.  As detailed in the previous 
section, these experiments were conducted using the MAT-
LAB-based multi-robot simulator package (that was devel-
oped as part of the IDARA architecture). 

Figure 5 is a iteration-lapse sequence that shows the per-
formance and coverage strategy for the IDARA-based explo-
ration system.  Its preference for structure recovery or cover-
age is determined by arbitration rules and the placement and 
density of antigens throughout the space to be explored, both 
of which are operator-controlled parameters. 
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Figure 5:  Robot time progression over 1500 Iterations 
 

 A key advantage of the IDARA-based method is that user 
preference can be used to direct the search.  This “directed 
randomness” characteristic/feature targets the exploration 

process, but still ensures that there is enough variation that un-
expected areas or features are not missed.   

The visibility plots (see also Figure 6) show the number of 
times a space was visited by a robot in the colony during the 
exploration simulation (lighter colors signifying frequent 
visitation).  In addition to showing potential redundancies in 
the search strategy, it also indicates the general efficiency of 
the exploration as a centralized method would be able to 
minimize repetitious visitations. In particular, the visitation 
maps are from simulations with initially 1500 robots 2500 
antigens (i.e., local  goals).  These plots also show that the 
directed antigen distributions were efficiently able to guide, 
the method.  Thus, the robots have a mechanism for 
dynamically changing their mapping behavior without any 
change to the architecture.    
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Figure 6:  Comparative Visitation Maps 
For completely unknown environments a random or uni-

form exploration strategy provides the most efficient method  
for exploration.  However, when priors are available (and can 
be encoded in the distribution of the antigens) the “directed 
randomness” of the IDARA method satisfies users goals while 
maintaining global exploration at the cost of reduced effi-
ciency.  Table 3 shows that system was most efficient for dis-
perse distributions.   

Method 
Iterations 

(#) 
Cells  

Visited (#) 
Energy 
(steps) 

Efficiency 
(%) 

Center 2500 161854 2845543 5.69 

Perimeter 1184 126062 1452324 8.68 

Random 528 195629 623920 31.35 

Side 2561 184474 3122032 5.91 

Uniform 692 127888 836436 15.3 
Table 3: Summary of Energy Consumption for the Five Types Tested 

VI CONCLUSIONS 
We have developed a novel architecture for distributed 

multi-robot coordination and control of large populations of 
heterogeneous robots in exploration and mapping.  This paper 
discusses the human immune system, its interactions/general 
control, and the important analogues it presents for robots and 
automation with large heterogeneous populations.  In general, 
the results of the simulation were as hypothesized and show 
that the IDARA architecture was able to efficiently coordinate 
kilorobotic colonies. 
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The development of an exploration method was based on 
primarily modeling the interaction and character of innate as-
pects of the human immune system.  This resulted in an archi-
tecture that can respond quickly, has a mechanism for learn-
ing, and can coordinate a team of robots effectively.  In 
addition to the four cases presented, the simulation found 
IDARA-based exploration to be a useful mechanism for coor-
dinating the large populations under investigation. 

The IDARA architecture is principally characterized by the 
concepts of an increasingly specific response ladder and arbi-
tration with “directed randomness.”   Together these will lead 
to the development of robust, highly effective, flexible model 
that can respond effectively to unknown situations, are highly 
efficient, can adapt/learn as new challenges arise, and will be 
efficient enough so that they can be implemented on hardware 
platforms with limited computational (and memory) resources 
(e.g., micro-robots and cellular robotics). 

 
VII FUTURE WORK 

It is the goal of the IDARA team to more fully simulate and 
implement this method for multi-robot control and to use in-
sights gained from these simulations to refine this method of 
control.  It is envisioned that future simulations will more fully 
integrate more advanced aspects of the immune system (e.g., 
B-cell learning and T-cell direction).  In addition, variations to 
current techniques will also be investigated (e.g., non-gradient 
decent based optimization and use of a command history to 
better suggest subsequent actions).  
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