
Citation: Xiao, G.; Liao, J.; Tan, Z.;

Zhang, X; Zhao, X. A Two-Stage

Framework for Directed Hypergraph

Link Prediction. Mathematics 2022, 10,

2372. https://doi.org/10.3390/

math10142372

Academic Editor: Aydin Azizi

Received: 2 June 2022

Accepted: 3 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Two-Stage Framework for Directed Hypergraph
Link Prediction
Guanchen Xiao 1 , Jinzhi Liao 1, Zhen Tan 1 , Xiaonan Zhang 2 and Xiang Zhao 1,*

1 Science and Technology on Information Systems Engineering Laboratory, National University of Defense
Technology, Changsha 410073, China; xiaoguanchen20@nudt.edu.cn (G.X.); liaojinzhi12@nudt.edu.cn (J.L.);
tanzhen08a@nudt.edu.cn (Z.T.)

2 Harbin Flight Academy, Harbin 150000, China; zhangxiaonan12@nudt.edu.cn
* Correspondence: xiangzhao@nudt.edu.cn

Abstract: Hypergraphs, as a special type of graph, can be leveraged to better model relationships
among multiple entities. In this article, we focus on the task of hyperlink prediction in directed
hypergraphs, which finds a wide spectrum of applications in knowledge graphs, chem-informatics,
bio-informatics, etc. Existing methods handling the task overlook the order constraints of the
hyperlink’s direction and fail to exploit features of all entities covered by a hyperlink. To make up for
the deficiency, we present a performant pipelined model, i.e., a two-stage framework for directed
hyperlink prediction method (TF-DHP), which equally considers the entity’s contribution to the form
of hyperlinks, and emphasizes not only the fixed order between two parts but also the randomness
inside each part. The TF-DHP incorporates two tailored modules: a Tucker decomposition-based
module for hyperlink prediction, and a BiLSTM-based module for direction inference. Extensive
experiments on benchmarks—WikiPeople, JF17K, and ReVerb15K—demonstrate the effectiveness
and universality of our TF-DHP model, leading to state-of-the-art performance.

Keywords: hyperlink prediction; hypergraph; Tucker decomposition

MSC: 68T07

1. Introduction

Link prediction benefits in amplifying the relations in graph-structured data [1], arous-
ing interest from both academia and industries. Existing research mainly focuses on simple
graphs where a link (also known as a relation) associates with two entities (also known
as an entity), while some real-world relations consist of more than two entities, such as
chemical reactions [2], co-authorship relations [3], and social networks [4], etc. As shown
in Figure 1, the “Located In” relation contains NYC, New York City, The Big Apple, USA,
and The United States, as follows:

NYC, New York City, The Big Apple Located In−→ USA, The United States.

Thus, a hyperlink is coined to model such relations, and the graph comprised of
hyperlinks is defined as a hypergraph [5].

As the relations among entities are sophisticated, the construct of a hypergraph is
time-consuming and hence expensive, making its incompleteness more severe than a
simple graph. To mitigate the problem, a hyperlink prediction task is introduced to facilitate
the research [6]. Similar to the goal of link prediction in simple graphs, the task tries to
complete the missing hyperlinks in a given hypergraph.

Example 1. Consider the bottom ellipse in green in Figure 1, given several entities, e.g., NYC,
New York City, The Big Apple, USA, The United States; the target of the hyperlink predic-
tion is to determine whether there is a hyperlink and what it is (i.e., “Located In”) once existing.

Mathematics 2022, 10, 2372. https://doi.org/10.3390/math10142372 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142372
https://doi.org/10.3390/math10142372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4395-6769
https://orcid.org/0000-0001-8643-4683
https://orcid.org/0000-0001-6339-0219
https://doi.org/10.3390/math10142372
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142372?type=check_update&version=2

Mathematics 2022, 10, 2372 2 of 18

Furthermore, the directivity of hyperlinks also matters in some practical applications. Thus, the
machine should also acquire the ability to predict the direction of the hyperlink to form the final

answer, i.e., NYC, New York City, The Big Apple Located In−→ USA, The United States.

Figure 1. Sketch of two types of hypergraphs. The diagram on the left represents an undirected
hypergraph while the diagram on the right stands for a directed hypergraph. One ellipse denotes
a hyperlink. entities in the same ellipse share the same hyperlink. Arrow denotes the direction of
the hyperlink.

To approach this task, current studies mainly fall into two categories: (1) Translation-
based models try to generalize the translation constraint in simple graphs to hypergraphs,
e.g., m-TransH [7], RAE [8], and NHP [9]. m-TransH directly extends TransH [10] for binary
relations to the n-ary case, and RAE further integrates m-TransH with multi-layer perceptron
(MLP) by considering the relatedness of entities. Since they use the sum after the projection
as the scoring function, when some entities in a hyperlink change, it may not be obvious
in the scoring function. (2) Neural-network-based models exploit structural information
of hypergraphs, e.g., NaLP [11], HGNN [12], and HyperGCN [13]. These methods design
some graph neural networks (GNNs) to absorb neighbouring features to improve entities’
representations. As GNNs usually incorporate a large number of parameters, the sufficient
learning process relies on the amount of training samples.

Albeit attracting attention, hyperlink prediction is still notoriously challenging, since
existing studies neglect the cores of the task. First, sometimes, the accurate record of facts
in a hypergraph necessitates the direction of hyperlinks. For a directed hyperlink, the
entities can be divided into two parts—head and tail—based on the hyperlink’s direction.
This mandates that the order of the two parts matters; in contrast, the specific order in
each part is insignificant. As shown in Figure 1, without the arrow pointing, we cannot
figure out how these entities construct the relation “Located In”. In addition, NYC, New
York City, and The Big Apple (also known as the head) should be in front of USA and The
United States (also known as tail), but the order inside the head or tail does not affect the
determination. Nevertheless, existing methods mainly focus on undirected hyperlinks. The
only method, namely, NHP, tries to average the entity embeddings generated by GCN [14] to
calculate a score for inferring the hyperlink direction, which is too rudimentary to embody
the direction’s features. Second, as a hyperlink contains more than two entities, each entity
contributes to the final existence prediction. In this light, a good representation model
needs to consider the representation of all the individual entities involved in a hyperlink
when making a determination. However, the current treatment of embedding tends to
apply a simple sum or average strategy. This might be insensitive to the number of entities
in a hyperlink since an entity with effusive containment could overwhelm other entities’
expressions. Last but not least, as it is sometimes complicated for even a human being to
annotate hyperlinks, there is a lack of training data, which can be currently insufficient to
train a large number of learnable parameters well.

Mathematics 2022, 10, 2372 3 of 18

In order to address these challenges, we propose a simple yet effective model, which
is a Two-stage Framework for Directed Hyperlink Prediction, namely, TF-DHP. The model
is expected to equally consider the entity’s contribution to the form of hyperlinks and
emphasize not only the fixed order between two parts but also the randomness inside
each part. It conceives a pipeline of two tailored modules: a Tucker decomposition-based
module for hyperlink prediction and a BiLSTM-based module for direction inference.

For predicting the existence of hyperlinks, we exploit Tucker decomposition to model
hyperlinks, which, to the best of our knowledge, has not been applied to hypergraphs except
simple graphs [15]. In particular, instead of applying three-order Tucker decomposition over
simple graphs, we employ high-order Tucker decomposition for hypergraphs. It produces
a core tensor, which represents the degree of interaction between entities. Then, we devise
a scoring function by the mode product of the tensor with each entity representation, which
evaluates the existence of hyperlinks. We theoretically show that the score is invariant
to the order of mode product with entities, though there is a direction of each hyperlink.
In addition, it is noted that the tensors from Tucker decomposition are usually of very
high order, which can bring about high computational complexity. To mitigate the issue,
we further introduce Tensor Ring (TR) [16] decomposition to decompose higher-order
tensors into mode products of several third-order tensors, which effectively reduces the
computational cost.

For inferring directions, we first recall that example in Figure 1. Once USA and The
United States are determined as the tail entities, the substances in the head entities are
implied, and if there is a change in one of the tail entities, the head entities are going to
be different. Thus, it is of importance for the model to pass the information between the
two parts both forward and backward. This motivates us to design a model that works
bidirectionally. In this connection, BiLSTM [17] is utilized to serve as the base model. In
addition, the position of entities within the head (or tail) part is insignificant, and hence,
it is necessary to train the model to attend only to the order of the two parts. For this
characteristic, we keep the order of two parts but randomly shuffle entities within each
part to enforce the model to be ignorant of entity positions within head (or tail) part, while
being attentive to the order between the two parts. In this way, the data scale is increased
as a by-product, alleviating the lack of data.

Contribution. In summary, we make the following contributions:

• For existence prediction, we propose, among the first, to generalize Tucker decomposi-
tion to a high dimension and introduce a tensor ring algorithm to reduce the model
complexity. We theoretically prove that the mode product for scoring a hyperlink is
invariant of the order of participating entities.

• For direction inference, we conceive a BiLSTM-based model that can take information
into consideration both forward and backward with respect to a hyperlink. A data
shuffling strategy is further incorporated to enforce the model to be ignorant of entity
positions within the head (or tail) part while being attentive to the order between the
two parts.

• The modules constitute a new model, namely, TF-DHP for predicting directed hy-
perlinks. Through the experiments on several real-world datasets, we confirm the
superiority of TF-DHP over state-of-the-art models.

Organization. The rest of the article is structured as follows. Section 2 introduces re-
lated work and Section 3 provides a detailed account of TF-DHP. Section 4 reports the
experimental setup and analyses the experimental results. Section 5 concludes the paper.

2. Related Work

In this section, we are going to review related work in link prediction on simple graphs,
undirected hypergraphs and directed hypergraphs.

Mathematics 2022, 10, 2372 4 of 18

2.1. Link Prediction on Simple Graph

Most of the link prediction methods on simple graphs can be divided into three
categories—linear mathematics models, non-linear convolutional models, and random
walk models.

There were many linear mathematics ways of link prediction created in recent years
such as RESCAL [18], DistMult [19], ComplEx [20], and SimplE [21]. RESCAL, which is
based on tensor factorization, performs collective learning via the latent components of
the model and provides an efficient algorithm to compute the factorization. DisMult is
a special case of RESCAL with a diagonal matrix per relation which reduces overfitting
while ComplEx extends DisMult to the complex domain. SimplE is based on Canonical
Polyadic (CP) decomposition, in which subject and object entity embeddings for the same
entity are independent. TuckER [15] is a straightforward but powerful model based on the
Tucker decomposition; it considers the core tensor as the parameter tensor, and the scoring
function is defined by taking the modular product between the entities embedding vectors,
the relation embedding vector, and the core tensor. Because the information loss in the
calculation process is greatly reduced by using high-order tensors to define parameters,
TuckER is proved to be the best-performing linear mathematics model to handle the link
prediction task on simple graph.

Typical works of non-linear convolutional models are ConvE [22] and HypER [23].
ConvE is a simple multi-layer convolutional architecture for link prediction and is defined
by a single convolution layer, a projection layer to the embedding dimension, and an inner
product layer. HypER’s hypernetwork generates relation-specific filters, and thus extracts
relation-specific features from the subject entity embedding. It necessitates no 2D reshaping
and allows entity and relation to interact more completely, rather than only around the
concatenation boundary.

LRW [24], MIRW [25], and MLRW [26] are random walk-based models for link predic-
tion on complex networks, LRW is conducted using pure random walking and selects the
destination entities based on a random manner. To help to improve the LRW, the concept
of asymmetric mutual influence of entities is presented, and using this concept, the walker
selects the next entity using its effect on the current entity and selects more efficient paths
for the next step. Therefore, entities with a more significant structural similarity will obtain
a higher score in the proposed algorithm MIRW. MLRW provides a framework to extend
the local random walk method to multiplex networks so that we can take advantage of
intra-layer and interlayer information presented in the network and increase the accuracy
of link prediction properly.

2.2. Link Prediction on Undirected Hypergraph

The general work on the undirected hyperlink prediction can be divided into two
species, i.e., translation-based models and neural network-based models.

The representative model of the translation-based approaches are m-TrnasH [7] and
RAE [8]. m-TransH generalizes TransH [10] to the case of n-order relations, and it projects en-
tities onto the relation-specific hyperplane and defines the scoring function as the weighted
sum of projection results. RAE considers the possibility of common occurrence between
entities in n-order relations, establishes the correlation model through MLP, and reflects it
in scoring function. Since these models are extended from binary models, restrictions on
the representation of relations are also carried to the representation of n-order relations.

NaLP [11], HyperGCN [13], and Hyper-SAGNN [27] are three neural network-based ap-
proaches. HGNN is a general hypergraph neural network framework based on hypergraph
convolution operation, which can incorporate multi-modal data and complicated data
correlations. HyperGCN proposes a new method of training a GCN on hypergraph using
tools from the spectral theory of hypergraphs and applying the method to the problems
of SSL(hypergraph-based semi-supervised learning) and combinatorial optimization on
real-world hypergraphs. Hyper-SAGNN develops a new self-attention based graph neu-

Mathematics 2022, 10, 2372 5 of 18

ral network applicable to homogeneous and heterogeneous hypergraphs with variable
hyperlink sizes.

2.3. Link Prediction on Directed Hypergraphs

The research of link prediction on directed hypergraphs is not very mature, and most
methods prefer predicting the direction of the hyperlink after finishing predicting the
entities contained in the hyperlink. The NHP [9] model sets up two scoring functions
to predict hyperlinks and their directions based on the GCN template, and they divide a
hyperlink into two sub-hyperlinks and use their embedding vectors to compute the scoring
function for direction. However, as the embedding vectors of hyperlinks are from the
average value of entity embedding vectors, information about entities and their positions
is lost, which makes the performance of the model barely satisfactory.

3. Method

This section formalizes the task of the directed hypergraph link prediction and presents
the proposed method, including the framework and module details. Definitions of notations
used in the text are shown in the Table 1.

Table 1. Descriptions of notations used in the following parts.

Symbol Definition

χ a kth-order tensor ∈ RI1×I2×...×Ik−1

ω a kth-order core tensor ∈ RJ1×J2×...×Jk−1

ωj1 j2···jk−1
(j1, j2, · · · , jk−1)-th element of ω

U(n) n-mode factor matrix ∈ RIn×Jn

un
jn jn-th column vector of U(n)

φ(·) scoring function of the existence of hyperlinks
r relation embedding of hyperlink

vm embedding of entities
×n tensor n-mode product

Zk(ik) ik-th lateral slice matrix of TR origin tensor
Trace(·) matrix trace operator
⊕ concatenating operation for hidden layers
◦ vector outer product

3.1. Task Description

A directed hypergraph is an ordered pair H = (V, E), where V = {v1, . . . , vl} denotes a
set of entities and l is the number of entities. E comprises a set of directed hyperlinks, formally:

E = {(h1, t1), (h2, t2), . . . , (hm, tm)} (1)

Each element in E can be divided into two components, where h (resp. t) serves as the
head (resp. tail), with the direction being from the head to the tail.

The directed hyperlink prediction aims to predict the missing hyperlinks, including
the existence and associated direction, based on the relevance of the given entities. Take
relation knowledge in Figure 1 as an instance. Entities in each relation build the V, and
their corresponding relation forms the directed hyperlinks E. Every sample in the dataset
will contain an uncertain number of substances. We have to determine whether they can
support a relation knowledge and which component each entity belongs to.

Mathematics 2022, 10, 2372 6 of 18

3.2. Framework

TF-DHP consists of a Tucker decomposition-based hypergraph link prediction model
and a BiLSTM-based direction prediction model to predict directed hyperlinks among
entities sets in a directed hypergraph. It is then optimized by a ranking objective in which
scores of existing hyperlinks are ranked higher than those of non-existing entity subsets and
scores of positive directions are higher than those of negative directions. The framework is
shown in Figure 2.

We generalize TuckER [15] to the high dimension and regard it as a scoring function.
We use the scoring function after obtaining the embedding vectors of every entity in an
entity set to evaluate whether the hyperlink exists or not. If the hyperlink does exist, we
divide the entities set into two groups based on the direction label of each entity and then
use the BiLSTM model [17] to evaluate the direction between the groups which can be
defined as the direction of the hyperlink. Meanwhile, we also randomly sort the entities in
each group to increase training data according to the characteristic that the order of entities
in each group does not influence the direction.

Figure 2. A sketch of TF-DHP directed hypergraph prediction model. The embedding of entity sets
to be predicted are fed into the Tucker-decomposition-based layer to calculate the score. The target of
model training is to make the score of existing hyperlinks larger than the score of entities set without
hyperlinks. Then, the embeddings of entities in the existing hyperlink are sent to the BiLSTM layer to
calculate the direction score. The target of model training is to make the score in the positive direction
larger than the score in the negative direction.

3.3. Tucker Decomposition-Based Hyperlink Prediction Module

To predict hyperlinks of the entity set, we propose a Tucker decomposition-based
scoring function and provide mathematical proof of its irrelevance with the order of inputs.

3.3.1. Tucker Decomposition-Based Scoring Function

Tucker decomposition is a tensor decomposition algorithm that decomposes higher-
order tensors into a core tensor and several factor matrices. The core tensor reflects the
degree of interaction between different factor matrices. The formal expression is as follows:

χ = ω×1 U(1)×2 U(2) · · · ×k−1 U(k−1) =
J1

∑
j1=1

J2

∑
j2=1
· · ·

Jn

∑
jk−1=1

ωj1 j2···jk−1
u(1)

j1
u(2)

j2
· · · u(k−1)

jk−1
(2)

where X ∈ RI1×I2×...×Ik−1 denotes the original tensor, ω ∈ RJ1×J2×...×Jk−1 denotes the
core tensor and J1 J2 · · · Jk−1 are much smaller than I1 I2 · · · Ik−1 , k denotes the order of
X , U(1), . . . , U(k−1) denotes the set of factor matrices, and the mathematical symbol ×k
denotes the tensor product along with the kth mode. The dimensions of the core tensor are
smaller than those of the original tensor in each order, so the core tensor can be regarded as
the dimensionality reduction in the original tensor.

Based on the Tucker decomposition of the representation tensor, we design the scor-
ing function to score each hyperlink. Specifically, if a hyperlink contains m entities, we

Mathematics 2022, 10, 2372 7 of 18

first select the corresponding entity and relation embeddings. Then, a parameter tensor
is designed as the core tensor containing learnable parameters shared by entities and
relations [15]. Our goal is to optimize these parameters to fully exploit the relevance among
entities and the associated relations based on their embeddings. The scoring function can
be expressed as below:

φ(r, v1, v2, . . . , vm) = ω×1 r×2 v1 ×3 . . .×m+1 vm, (3)

where m changes with the number of entities contained in the hyperlink, and the order of
the tensor Z is equal to one plus the number of entities. r denotes the relation embedding of
the hyperlink to be predicted, and v1, v2, . . . , vm are the embeddings of entities contained by
the hyperlink. Since the tensor product of a tensor with a vector will change the dimension
of its corresponding order to 1, we can repeat the process m + 1 times to acquire a real
number. This real number is further regarded as the score of this hyperlink.

As every entity in the hyperlink and the relation embedding are computed simultane-
ously, Equation (3) reduces information loss. Nevertheless, the computational complex-
ity becomes enormous with the increase in the number of entities because of the inner
computation of the high-order tensor product. To address the issue, we use the TR [16]
decomposition algorithm. It represents a high-order tensor by a sequence of third-order
tensors multiplied circularly, mathematically:

T(i1, i2, . . . , in) = Trace{Z1(i1)Z2(i2) · · · Zn(in)} = Trace{
d

∏
k=1

Zk(ik)} (4)

where T denotes the original tensor of size n1 × n2 × · · · × nd, Zk denotes a set of third-
order tensors whose dimensions are rk × nk × rk+1, ik denotes ik-th layer matrix in the
second-order of the tensor, and Tr denotes the trace of the product of matrices. The tensor
ring decomposition makes the third dimension of the last decomposed tensor the same as
the first dimension of the first decomposed tensor. The advantage is that when we make a
circular shifting of the decomposed tensor, the results will not be changed because of the
matrix trace operation. Tensor ring decomposition dramatically reduces the computational
load of the model when the tensor order is large by decomposing higher-order tensors into
products of third-order tensors.

The computational complexity grows sharply when the order of the core tensor grows,
so we use the TR decomposition on the core tensor to decompose the high-order tensor into
several three-order tensors multiplied circularly. Based on the definition of TR decomposi-
tion, every single parameter in the core tensor can be computed by the trace of the matrices
product. It can be expressed in the tensor form [16], given by:

Z =
r1,...,rn

∑
α1,...,αn=1

Z1(α1, α2) ◦ Z2(α2, α3) ◦ · · · ◦ Zd(αd, α1) (5)

where Zi(αk, αk+1) denotes the vector corresponding to the index in the tensor and the
symbol ◦ denotes the outer product of vectors, r1, . . . , rn correspond to the dimension of
the first and 3rd order of the tensor. We use the simplified form Z = Tr(Z1, Z2, . . . , Zn)
to represent the decomposition of the core tensor. Combining with Equation (3), we can
rewrite the scoring function as:

φ(r, v1, v2, . . . , vn) = Trace(Z1, Z2, . . . , Zn)×1 r×2 v1 ×3 · · · ×n+1 vn (6)

This scoring function not only considers all the entities and relation information
contained in a hyperlink but also controls the model complexity within an acceptable range.
As shown in Table 2, the scoring function above has fewer parameters than NaLP and is not
easy to overfit in the datasets which are not large enough, concretely shown in Figure 3.

Mathematics 2022, 10, 2372 8 of 18

Table 2. Scoring functions of several models for undirected hypergraph link prediction tasks, with
the significant terms of their model complexity. ne and nr are the number of entities and relations,
while de and dr are the dimensionalities of entity and relation embeddings respectively. n is the
number of entities in a hyperlink and dmax is the maximum size of TR latent tensors. maxmin is the
element-wise difference of maximum and the minimum values of the vectors.

Model Scoring Function Model Complexity

RAE ‖Σn
j=1aj(eij − wT

ir eij wir) + rir‖p O(nede + nrdr)

NaLP FCN2(min(FCN1(Conv([Wr, [ei1 ; ei2 ; ...; ein]])))) O(nede + nnrdr)

NHP-U-mean σ(1
|e|W ·∑v∈e h(e)v + b) O(nede)

NHP-U-maxmin σ(W ·maxmin{h(e)v }v∈e + b) O(∑e∈E
1
2 · |ne| · (|ne| − 1))

TF-DHP Trace(Z1, Z2, . . . , Zn)×1 r×2 v1 ×3 · · · ×n+1 vn O(nede + nrdr + nd3
max)

0 25 50 75 100 125 150 175 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

M
RR

TF-DHP
NaLP

Figure 3. MRR results on NaLP and TF-DHP with training epoch growing, evaluated on WikiPeople.

This model is based on the scoring function of Tucker decomposition, and because
the model needs to determine the order of the core tensor, the model cannot process the
hyperlinks with different number of nodes in one time. For datasets with such hyperlinks,
we need to classify them before predicting, which increases the workload to a certain extent.

As the order of the core tensors increases, the number of third-order tensors required
by TR decomposition increases accordingly, which will increase the amount of computation
to a certain extent. The machine used in this paper can deal with the prediction task of
hyperlinks with up to six nodes.

3.3.2. Proof of Sequence Independence

As illustrated above, the Tucker decomposition processes the inputs sequentially, while
the order of entities contained in one hyperlink does not influence the determination,which
requires the invariance property of our scoring function. We prove that the order of entities’
and relations’ embeddings in the tensor product makes no difference to the result. We first
rewrite the scoring function in the tensor-wise form:

φ(r, v1, v2, . . . , vn) =
r1,...,rn

∑
α1,...,αn=1

Z1(α1, α2) ◦ · · · ◦ Zd(αd, α1)×1 r×2 v1 ×3 · · · ×n+1 vn (7)

In the mentioned TR decomposition, the matrix trace operation and the same dimen-
sions of the input and output ensure the invariance of circular shifting. When it comes
to the hypergraph, the dimensions of entities and relations are set to a fixed value, which
makes the invariance not only in circular shifting but also in order changing between every
single entity. It means the change in the order of the product does not change the result. So,

Mathematics 2022, 10, 2372 9 of 18

we just need to prove that the order of the tensor product in the Tucker decomposition has
no effect on the result. The element-wise form of the tensor product is as follows:

χi1i2···in = (ω×1 U(1) ×2 U(2) · · · ×n U(n))i1i2···in

=
J1

∑
j1=1

J2

∑
j2=1
· · ·

Jn

∑
jn=1

ωj1 j2···jn u(1)
i1 j1

u(2)
i2 j2
· · · u(n)

in jn

(8)

On the right-hand side of the equation, if we regard the indices j1, . . . , jn as a set of integer-
independent variables and their variation range is from 1 to J1, . . . , Jn, (u(1)

i1 j1
, u(2)

i2 j2
, . . . , u(n)

in jn)

can be regarded as the functions of these independent variables, the meaning of the
function value is the value of the element at the corresponding position in the entity
embedding vector indexed by the independent variable. We use f1(j1), f2(j2), . . . , fn(jn)
(in Equation (9)) to represent the functions. The expression ωj1 j2···jn can be regarded as a
multivariate function whose form is g(j1, j2, . . . , jn), and the value of the function means
the parameter on the corresponding position of the core tensor.

Then, we find that if we make the independent variables take the value of all real
numbers from 1 to Jn instead of being integers, we can transform Equation (8) into a
multiple definite integral:∫∫∫

· · ·
∫

D
g(j1, j2, . . . , jn) f1(j1) f2(j2) · · · fn(jn)dj1dj2 · · · djn (9)

The integral domain D of this multiple integrals is an n-order tensor that has the same
size as the core tensor. Changing the order of independent variables in g(j1, j2, . . . , jn) does
not change the corresponding parameter; thus, the order of j1, . . . , jn has no influence of
the function g(j1, j2, . . . , jn) f1(j1) f2(j2) · · · fn(jn).

Since the functions f1(j1), . . . , fn(jn) are all unary function, the integral can be rewritten as:∫∫∫
· · ·

∫
D

g(j1, j2, . . . , jn)dj1dj2 · · · djn
∫ J1

1
f1(j1)dj1

∫ J2

1
f2(j2)dj2 · · ·

∫ Jn

1
fn(jn)djn (10)

For the multiple definite integrals
∫∫∫
· · ·

∫
D g(j1, j2, . . . , jn)dj1dj2 · · · djn, the limit of

integration for each order are finite constants, and the order of j1, . . . , jn makes no difference
to the function, so changing the order of integration does not change the value of the definite
integral. Therefore, the whole integral has the invariance property. Because Equation (8) is
a special case of Equation (9), the scoring function is proven to have the invariance property.

3.4. BiLSTM-Based Direction Prediction Module

In the directed hyperlink prediction problem, the embedding of each entity further
determines the existence of a hyperlink and its direction. However, different from the exis-
tence prediction, the direction of a hyperlink emphasizes the order of entities. For example,

in the related knowledge “WDC, Washington D.C
Capital O f−→ USA, The United States”, the

direction comes from WDC and Washington D.C (also known as head entities) to USA and
The United States (also known as tail entities). Once a substance is placed in the wrong
component, the reaction might not even exist. In addition, the interaction between two
components, e.g., conservation of materials, indicates that the model cannot individually
determine the components. Therefore, we apply BiLSTM in our module to encode all
entities sequentially to achieve the information passing both forward and backward.

As shown in the Figure 4 The BiLSTM consists of several LSTM hidden layers. These
hidden layers are divided into two groups that meet end-to-end in opposite directions. The
entities’ embeddings in the hyperlink are calculated in the hidden layer of the corresponding
position one by one. Meanwhile, the state of the previous hidden layer is calculated in the
next hidden layer together with the embedding of the entities fed into the corresponding
layer. After all hidden layers have been calculated, embedding containing all sequential

Mathematics 2022, 10, 2372 10 of 18

information is generated.The same process occurs in the backward hidden layer group,
which means we can obtain two embeddings of the hyperlink. We concatenate them into
one vector and then send it to a Softmax layer to obtain the direction score. The specific
expression of the process is as follows:

←−
ht =

←−−−
LSTM(

←−−
ht+1, wt) (11)

−→
ht =

−−−→
LSTM(

−−→
ht−1, wt) (12)

ht =
−→
ht ⊕

←−
ht (13)

p = So f tmax(ht) (14)

where ht denotes the concatenated embedding of the sequential representation,
−→
ht and

←−
ht

are calculated by two hidden layers in opposite directions, wt denotes the embedding for
the tth entity, and the symbol ⊕means the concatenating operation.

Figure 4. A sketch of the BiLSTM-based hyperlink direction prediction model, the entities in the
directed hyperlink are divided into head and tail parts according to the label and are input into
the BiLSTM layer in a specific order. The hyperlink representation is obtained by splicing the
representation vectors obtained from each direction of the BiLSTM layer. Finally, the direction score
is obtained through a Softmax layer.

As the inner order of entities in one component does not change the elements, it also has

no effect on the direction, e.g., “WDC , Washington D.C
Capital O f−→ USA, The United States” and

“Washington D.C , WDC
Capital O f−→ The United States , USA” are the same relation knowl-

edge. However, they might be regarded as two different instances when fed into BiLSTM
concentrating only on the specific sequence. In other words, if “WDC , Washington D.C
Capital O f−→ USA , The United States” is annotated as the positive instance, BiLSTM can-

not naturally and directly determine the correctness of “Washington D.C , WDC
Capital O f−→

The United States , USA” without other guidance. Therefore, we enlighten BiLSTM to fo-
cus on the order of two components and ignore the order of entities in the same component
through a data shuffling strategy. Specifically, we maintain the order of two components
and randomly shuffle the entities in the same component. The number of generated in-
stances relies on how many entities every component owns. For “WDC , Washington D.C
Capital O f−→ USA , The United States”, there will be 2× 2 = 4 different sequences. We then

Mathematics 2022, 10, 2372 11 of 18

give all generated instances a correct label to enforce BiLSTM to exploit features of the
direction. The strategy can enlarge the data scale without introducing external manual
efforts, which also contributes to tackling the low-data regime problem.

3.5. Training

TF-DHP is a pipeline model, which means that we predict the hyperlink’s existence
in the first stage and judge the direction of the hyperlink in the second stage. If we use
the data of undirected hypergraphs to train the first stage of the model separately, we can
obtain a model that can perform link prediction of undirected hypergraphs. If the whole
model is trained on the data of the directed hypergraph, the trained model can have the
ability to predict directed hyperlinks.

The TF-DHP is trained in two stages, which keeps the same pace with the framework.
The training goal of the first stage is to provide the existing hyperlink with a higher score
while decreasing the score of entities that cannot comprise a hyperlink.With the initial
embeddings of entities and their labels as input, we use the Tucker decomposition-based
scoring function to obtain two kinds of the score, and a binary cross-entropy loss function
is designed to maximize their gap.

After the first stage of the model is trained, we acquire the updated core tensor and
embeddings and use these embeddings to initialize the second stage of the model. Two
kinds of scores are calculated in the BiLSTM. One is the score of the correct direction, and
the other is the score of the wrong direction. The specific expression of the loss function is
as follows:

L = fmean(log(1 + e fmean(σ(φdn))−σ(φdp))) (15)

where fmean denotes an average function, σ denotes the sigmoid function, φdn denotes the
score of each negative hyperlink, and φdp denotes the score of each positive hyperlink.
Finally, the BiLSTM-based model updates the model parameters and embeddings of entities
and relations based on the loss gradients.

4. Experiment

This section reports the experiments.

4.1. Experimental Setup

We detail the adopted datasets, evaluation metrics, parameters, and baselines.

4.1.1. Datasets

We use two public relational datasets in our experiment for undirected hypergraph link
prediction and one open KB canonicalized dataset for directed hypergraph link prediction.
We brief these datasets below.

• WikiPeople [11]: WikiPeople is a public n-ary relational dataset concerning entities
of type human extracted from Wikidata. WikiPeople is an incomplete hypergraph
with many hyperlinks missing [11]. In WikiPeople, each set of entities has one kind of
relationship. We use this dataset to train the undirected hyperlink prediction model.

• JF17K [8]: JF17K is a public n-ary relational dataset that has high-quality facts. It is
filtered from Freebase while having multi-fold relational structures preserved. The
same as WikiPeople, each set of entities has one kind of relationship, and we use this
dataset to train the undirected hyperlink prediction model.

• ReVerb15K [9,28]: ReVerb45K is an open KB canonicalization dataset [28], and it is
constructed by intersecting information from ReVerb Open KB [29], Freebase entity
linking information from [30], and Clueweb09 corpus [31]. In triples of the original
dataset, there may be different subjects or objects having the same meaning. Based on
the Freebase entity linking information, we cluster the synonyms of the subjects or ob-
jects in one set, and use each cluster to represent the new subject or object. In this way,
a canonicalized directed hypergraph dataset is obtained. Since it contains about 15 K

Mathematics 2022, 10, 2372 12 of 18

entities, we call it ReVerb15K. The treated subject entities represent head hyperlinks,
and the treated object entities represent the corresponding tails; the direction is from
head to tail.

The specific size of datasets are shown in the Table 3.

Table 3. Statistics of the hypergraph datasets used in the experiments.

Datasets WikiPeople JF17K ReVerb15K

Direction undirected undirected directed

Number of Entities 12,270 11,541 14,798

Number of Relations 66 104 382

4.1.2. Metrics And Parameters

We test the effectiveness of the model in two parts. One is the Tucker-decomposition-
based model for predicting the undirected hyperlinks, the other is the whole framework
for predicting the directed hyperlinks. The total hyperlinks in datasets are divided into
three parts: 20% for training, 10% for validation, and 70% for testing. We evaluate the
link prediction performance via two standard metrics: MRR and Hits@k (k is top ranking).
MRR is the mean of the inverse of rankings over all testing facts, while Hits@k measures the
proportion of top k rankings. The aim of the training is to achieve high MRR and Hits@k.

The reported results are given for the best set of hyper-parameters evaluated on the
validation set for each model, after grid search on the following values: embedding size
∈ {15, 20, 25, 30, 35}, learning rate ∈ {1, 0.6, 0.06, 0.006}, and TR-ranks ∈ {5, 10, 20, 30, 40},
with TR-ranks the size of the tensor decomposed by TR decomposition.

4.1.3. Baselines

We compare TF-DHP with the following n-ary hyperlink prediction baselines:

• RAE [8]: RAE is a translational distance model which considers the possibility of
common occurrence between entities in n-order relations, establishes a correlation
model through MLP, and reflects it in the scoring function.

• NaLP [11]: NaLP is a neural network model that achieves the state-of-the-art n-ary
hypergraph link prediction performance.

• HGNN [12]: This is a general hypergraph neural network framework for data represen-
tation learning based on hypergraph convolution operation, which can incorporate
multi-modal data and complicated data correlations. We use maxmin+ as a scoring
layer and a direction scoring layer [9] for directed hyperlink prediction with HGNN.

• HyperGCN [13]: This is a new method of training a GCN on hypergraph using tools
from spectral theory of hypergraphs. Since it is not directly proposed for hyperlink
prediction, we use the same scoring layers as used on HGNN.

• NHP-U-mean and NHP-U-maxmin [9]: These two methods are both based on the GCN
layer. NHP-U-mean uses mean as the scoring layer while NHP-U-maxmin uses maxmin+

as the scoring layer to predict hyperlinks. These two methods are proposed for
undirected hyperlink prediction.

• NHP-D-mean and NHP-D-maxmin [9]: These two methods use a direction scoring layer
on NHP-U-mean and NHP-U-maxmin to predict directed hyperlinks.

4.2. Experiment on Undirected Hypergraphs

Tables 4 and 5 show the undirected hyperlink prediction results on two datasets. The
highest scores are set in bold. As shown in the tables, we can find out that our proposed
TF-DHP can achieve optimal results under various measurement standards, consistently.
For both datasets, graph neural networks NHP combining the mean or maxmin scoring
functions cannot have comparable performances in link prediction problems. For example,

Mathematics 2022, 10, 2372 13 of 18

on WikiPeople, compared with our proposed model, TF-DHP, the MRR of the first four
methods is only about a third, and Hits@10 is about a half. The large improvement of
TF-DHP can strongly confirm that scoring functions such as mean or maxmin largely ignore
the influence of the representation of each entity in the hyperlink on the predicted results,
which also reflects the advantage of Tucker-decomposition-based model taking every entity
embedding into the computation.

Table 4. Undirected hyperlink prediction results on WikiPeople dataset.

Model MRR Hits@10 Hits@3 Hits@1

HGNN 0.132 0.285 0.152 0.117
HyperGCN 0.137 0.289 0.158 0.115

NHP-U-mean 0.122 0.283 0.147 0.119
NHP-U-maxmin 0.143 0.302 0.144 0.139

RAE 0.153 0.273 0.152 0.146
NaLP 0.332 0.537 0.403 0.334

TF-DHP 0.362 0.574 0.440 0.368

Table 5. Undirected hyperlink prediction results on JF15K dataset.

Model MRR Hits@10 Hits@3 Hits@1

HGNN 0.649 0.722 0.640 0.526
HyperGCN 0.654 0.743 0.652 0.538

NHP-U-mean 0.632 0.710 0.639 0.509
NHP-U-maxmin 0.686 0.783 0.670 0.573

RAE 0.707 0.837 0.751 0.629
NaLP 0.714 0.805 0.737 0.673

TF-DHP 0.751 0.873 0.786 0.686

As for the translational distance model RAE, although RAE achieves slightly better
results than the four methods, its results are still unsatisfying. On WikiPeople, TF-DHP
improves MRR by 0.21 and Hits@1 by 0.15, which is a considerable improvement. The
main reason for the unsatisfying performance of RAE is the restriction on relations of the
translational distance model. Such restriction does not exist in the Tucker-decomposition-
based model. Tucker decomposition can accurately represent any ground truth over a set
of entities and relations by its full expressiveness [15].

The performance of NaLP is much better than the aforementioned methods due to
the enormous amount of model parameters. It uses a neural network to greatly reduce
the restriction on relations existing in the translational distance model. However, a large
number of parameters makes it easy to over-fit, especially when training datasets are
not big enough. According to the network structure and scoring function of NaLP, the
model complexity of NaLP is O(nede + nnrdr), with ne and de representing the number and
dimension of entities, respectively. n is the number of entities in one relation. nr and dr
stand for the number and the dimension of relations, respectively. However, the model
complexity of the first stage of TF-DHP is only O(nede + nrdr + nd3

max), where dmax is the
maximum dimension of the third-order tensors in TR decomposition. Since the number of
relations is much larger than the dimension of the decomposed tensor in hypergraphs, the
model complexity of NaLP is apparently larger than TF-DHP. As shown in Figure 3, with
the training epoch growing, NaLP requires more training epochs than TF-DHP to achieve
the optimal result. Moreover, because too many NaLP parameters lead to an over-fitting
issue, the results decrease when the epoch is larger than 100. However, due to relatively
few parameters, the results of TF-DHP are relatively stable after reaching the optimal result
during training.

Mathematics 2022, 10, 2372 14 of 18

4.3. Experiment on Directed Hypergraphs

Table 6 shows the results of several directed hyperlink prediction models. The highest
scores are set in bold. To the best of our knowledge, there are few models dealing with
the hyperlink prediction problem in directed hypergraphs. As shown in Table 6, TF-DHP
obtains considerable improvement compared with other methods. For example, for the
best baseline NHP-D-maxmin, TF-DHP improves MRR by 0.056 and Hits@10 by 0.026.

Table 6. Directed hyperlink prediction results of Reverb15K dataset.

Model MRR Hits@10 Hits@3 Hits@1

HGNN 0.276 0.422 0.336 0.226
HyperGCN 0.316 0.443 0.347 0.238

NHP-D-mean 0.288 0.435 0.352 0.219
NHP-D-maxmin 0.442 0.560 0.438 0.348

TF-DHP 0.498 0.586 0.474 0.353

We believe that there are two main reasons for the better prediction performance of
TF-DHP on directed hypergraphs. First, when testing the directed hypergraph prediction
model, we put the weighted average of scores computed in two stages of the model as the
final score, which means we regard an entity set as positive only if there exists a directed
hyperlink among the entities set with the direction also being correct. So, the accuracy
of the first stage of the model will inevitably affect the performance of the whole model.
Second, the NHP-D-maxmin and other methods in Table 6 use the average value of entities’
embedding vectors to represent the embedding of the hyperlink and consider the product
of embedding vectors of head and tail parts of the hyperlink as a scoring function. As
mentioned above, these methods ignore the influence of each entity embedding on the
direction of the hyperlink and the relationship between an entity and its adjacent entities.
The improvement of experimental results proves that considering the representation infor-
mation of each entity separately and the information of the adjacent entities (from forward
to backward) can improve the accuracy of directed hypergraph prediction.

4.4. Parameter Analysis

Embedding size is a significant factor in hyperlink prediction models, determining the
performance of the model to a large extent. Hence, we will analyze the results obtained by
the model in different embedding sizes to investigate its impact.

First, according to Figure 5a, TF-DHP outperforms other methods on each embed-
ding size. The MRR of TF-DHP increases sharply with the early stage of increasing the
embedding size and becomes smooth after the embedding size increases to 15. The MRR
of NaLP is almost identical to TF-DHP’s from the start; however, due to a large number of
parameters, it cannot reamain smooth like TF-DHP when the embedding size increases.
After the embedding size increases to a certain extent, NaLP’s MRR will decrease. For other
methods, the change in embedding size has less influence on the experimental results due
to their smaller number of parameters.

Figure 5b shows the impacts of embedding size on directed hyperlink prediction. The
same as undirected hyperlink prediction, TF-DHP always outperforms other methods. As
BiLSTM is added, the optimal embedding size of the model increases to 25, after which
the increase in MRR becomes smooth. As for other methods, the addition of the direction
scoring function also increases the optimal number of parameters and shares the similar
tendency as TF-DHP.

It proves the stability of TF-DHP on the choice of the dimension size. In addition
the reasonable amount of parameters of TF-DHP allows it to be more stable, as other
models’ performances may decrease with the increasing dimensions, suffering from the
over-fitting issue.

Mathematics 2022, 10, 2372 15 of 18

0 5 10 15 20 25 30 35
Dimensions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
RR

TF-DHP
NaLP
RAE
NHP-U-maxmin
NHP-U-mean

(a)

0 5 10 15 20 25 30 35
Dimensions

0.0

0.1

0.2

0.3

0.4

0.5

M
RR

TF-DHP
NHP-D-maxmin
NHP-D-mean
HyperGCN
HGNN

(b)

Figure 5. MRR over different embedding sizes of undirected hyperlink prediction models and
directed hyperlink prediction models, evaluated on WikiPeople and Reverb15k: (a) undirected
hyperlink prediction models; (b) directed hyperlink prediction models.

4.5. Approximate Training Time Comparison

On the two undirected datasets WikiPeople and JF15K, TF-DHP takes around 45 min
of training time, while NaLP and RAE take around 3 h and 1 h, respectively. On the directed
dataset Reverb15K, TF-DHP takes around 1 h of training time, while NHP-D-maxmin and
NHP-D-mean take around 15 min each due to their oversimplified scoring function. All
were run on a GeForce GTX 1080 super GPU machine.

4.6. Ablation Study

Since experiments on the directed hypergraph dataset have proved the effectiveness of
the BiLSTM model, we designed an ablation study to prove the influence of TR decomposi-
tion in Tucker decomposition. We designed a variant on WikiPeople of TF-DHP which does
not use TR decomposition on Tucker decomposition, and we call it n-Tucker. As shown in
Figure 6, without TR decomposition, the computational complexity of the model greatly
increases, which will result in an over-fitting issue. Similar but better than NaLP, n-Tucker
reaches the optimal value of MRR and then gradually decreases due to the over-fitting issue.
This kind of experiment not only proves the superiority of the Tucker decomposition-based
model but also proves the necessity of the TR decomposition.

Mathematics 2022, 10, 2372 16 of 18

0 25 50 75 100 125 150 175 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

MR
R

TF-DHP
NaLP
n-Tucker

Figure 6. MRR under different training epochs of undirected hyperlink prediction models. Evaluated
on WikiPeople.

5. Conclusions and Future Work

In this paper, we introduce TF-DHP, a novel model for hyperlink prediction for both
undirected and directed hypergraphs. We use a tensor-decomposition-based method
to handle the undirected part and add a BiLSTM model to predict the direction of the
hyperlink. Our model TF-DHP is a pipelined model, which is flexible to deal with not only
directed hypergraphs but also undirected hypergraphs. The experimental results verify the
advantages of TF-DHP in both settings across multiple datasets.

In the future, we plan to further look into heterogeneous hypergraphs where there are
multiple types of high-order relations, such as inclusion relations and produce relations,
and to see how directed hypergraphs can be used on reaction prediction in chemical or
biological domains.

Author Contributions: Conceptualization, G.X. and J.L.; methodology, G.X.; software, G.X. and J.L.;
validation, G.X., J.L. and X.Z. (Xiang Zhao); formal analysis, G.X.; investigation, G.X., J.L., Z.T. and
X.Z. (Xiaonan Zhang); data curation, G.X.; writing—original draft preparation, G.X.; writing—review
and editing, G.X., J.L. and X.Z. (Xiang Zhao); visualization, G.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially supported by NSFC under grants Nos. 61872446, 61902417, and
The Science and Technology Innovation Program of Hunan Province under grant No. 2020RC4046.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, M.; Chen, Y. Link Prediction Based on Graph Neural Networks. In Proceedings of the Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS 2018), Montréal, QC,
Canada, 3–8 December 2018; pp. 5171–5181.

2. Ning, X.; Shen, L.; Li, L. Predicting High-Order Directional Drug-Drug Interaction Relations. In Proceedings of the 2017 IEEE
International Conference on Healthcare Informatics, ICHI 2017, Park City, UT, USA, 23–26 August 2017; IEEE Computer Society:
Washington, DC, USA, 2017; pp. 556–561.

3. Jin, T.; Wu, Q.; Ou, X.; Yu, J. Community detection and co-author recommendation in co-author networks. Int. J. Mach. Learn.
Cybern. 2021, 12, 597–609. [CrossRef]

4. Zhang, Z.; Liu, C. Hypergraph model of social tagging networks. arXiv 2010, arXiv:1003.1931.
5. Bollobás, B.; Daykin, D.E.; Erdös, P. Sets of Independent edges of a hypergraph. Q. J. Math. 1976, 27, 25–32. [CrossRef]
6. Li, D.; Xu, Z.; Li, S.; Sun, X. Link prediction in social networks based on hypergraph. In Proceedings of the 22nd International

Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013.

http://doi.org/10.1007/s13042-020-01190-8
http://dx.doi.org/10.1093/qmath/27.1.25

Mathematics 2022, 10, 2372 17 of 18

7. Wen, J.; Li, J.; Mao, Y.; Chen, S.; Zhang, R. On the Representation and Embedding of Knowledge Bases beyond Binary Relations.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15
July 2016; Kambhampati, S., Ed.; IJCAI/AAAI Press: Palo Alto, CA, USA, 2016; pp. 1300–1307.

8. Zhang, R.; Li, J.; Mei, J.; Mao, Y. Scalable Instance Reconstruction in Knowledge Bases via Relatedness Affiliated Embedding. In
Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, 23–27 April 2018; Champin,
P., Gandon, F., Lalmas, M., Ipeirotis, P.G., Eds.; ACM: New York, NY, USA, 2018; pp. 1185–1194.

9. Yadati, N.; Nitin, V.; Nimishakavi, M.; Yadav, P.; Louis, A.; Talukdar, P.P. NHP: Neural Hypergraph Link Prediction. In
Proceedings of the CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual
Event, Ireland, 19–23 October 2020; ACM: New York, NY, USA, 2020; pp. 1705–1714.

10. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the
AAAI, Quebec City, QC, Canada, 27–31 July 2014.

11. Guan, S.; Jin, X.; Wang, Y.; Cheng, X. Link Prediction on N-ary Relational Data. In Proceedings of the The World Wide Web
Conference (WWW 2019), San Francisco, CA, USA, 13–17 May 2019; Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J.,
Baeza-Yates, R., Zia, L., Eds.; ACM: New York, NY, USA, 2019; pp. 583–593.

12. Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph Neural Networks. In Proceedings of the the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI 2019), The Thirty-First Innovative Applications of Artificial Intelligence Conference (IAAI 2019),
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI 2019), Honolulu, HI, USA, 27 January–1
February 2019; AAAI Press: Palo Alto, CA, USA, 2019; pp. 3558–3565.

13. Yadati, N.; Nimishakavi, M.; Yadav, P.; Nitin, V.; Louis, A.; Talukdar, P.P. HyperGCN: A New Method For Training Graph
Convolutional Networks on Hypergraphs. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp.
1509–1520.

14. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th
International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

15. Balazevic, I.; Allen, C.; Hospedales, T.M. TuckER: Tensor Factorization for Knowledge Graph Completion. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP 2019), Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 5184–5193.

16. Zhao, Q.; Zhou, G.; Xie, S.; Zhang, L.; Cichocki, A. Tensor Ring Decomposition. arXiv 2016, arXiv:1606.05535.
17. Tamburini, F. A BiLSTM-CRF PoS-tagger for Italian tweets using morphological information. In Proceedings of the Third Italian

Conference on Computational Linguistics (CLiC-it 2016) & Fifth Evaluation Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA 2016), Napoli, Italy, 5–7 December 2016; Volume 1749.

18. Nickel, M.; Tresp, V.; Kriegel, H. A Three-Way Model for Collective Learning on Multi-Relational Data. In Proceedings of the
28th International Conference on Machine Learning, ICML 2011, Bellevue, WA, USA, 28 June–2 July 2011; Getoor, L., Scheffer, T.,
Eds.; Omnipress: Madison, WI, USA, 2011; pp. 809–816.

19. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In
Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

20. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction. In Proceedings
of the 33nd International Conference on Machine Learning (ICML 2016), New York, NY, USA, 19–24 June 2016; Volume 48, pp.
2071–2080.

21. Kazemi, S.M.; Poole, D. SimplE Embedding for Link Prediction in Knowledge Graphs. In Proceedings of the Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS 2018),
Montréal, QC, Canada, 3–8 December 2018; pp. 4289–4300.

22. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA,
2–7 February 2018; McIlraith, S.A., Weinberger, K.Q., Eds.; AAAI Press: Palo Alto, CA, USA, 2018; pp. 1811–1818.

23. Balazevic, I.; Allen, C.; Hospedales, T.M. Hypernetwork Knowledge Graph Embeddings. In Proceedings of the Artificial
Neural Networks and Machine Learning—ICANN 2019—28th International Conference on Artificial Neural Networks, Munich,
Germany, 17–19 September 2019; Proceedings—Workshop and Special Sessions; Lecture Notes in Computer Science; Tetko, I.V.,
Kurková, V., Karpov, P., Theis, F.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11731, pp. 553–565.

24. Liu, W.; Lu, L. Link prediction based on local random walk. EPL 2010, 89, 58007. [CrossRef]
25. Berahmand, K.; Nasiri, E.; Forouzandeh, S.; Li, Y. A Preference Random Walk Algorithm for Link Prediction through Mutual

Influence Nodes in Complex Networks. arXiv 2021, arXiv:2105.09494.
26. Nasiri, E.S.; Berahmand, K.; Li, Y. A new link prediction in multiplex networks using topologically biased random walks. Chaos

Solitons Fractals 2021, 151, 111230. [CrossRef]
27. Zhang, R.; Zou, Y.; Ma, J. Hyper-SAGNN: A self-attention based graph neural network for hypergraphs. In Proceedings of the

8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

http://dx.doi.org/10.1209/0295-5075/89/58007
http://dx.doi.org/10.1016/j.chaos.2021.111230

Mathematics 2022, 10, 2372 18 of 18

28. Vashishth, S.; Jain, P.; Talukdar, P.P. CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information. In
Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, 23–27 April 2018; Champin,
P., Gandon, F., Lalmas, M., Ipeirotis, P.G., Eds.; ACM: New York, NY, USA, 2018; pp. 1317–1327.

29. Fader, A.; Soderland, S.; Etzioni, O. Identifying Relations for Open Information Extraction. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2011, Edinburgh, UK, 27–31 July 2011; A meeting of SIGDAT, a
Special Interest Group of the ACL; ACL: Stroudsburg, PA, USA, 2011; pp. 1535–1545.

30. Gabrilovich, E.; Ringgaard, M.; Subramanya, A. FACC1: Freebase Annotation of ClueWeb Corpora, Version 1 (Release date
2013-06-26, Format Version 1, Correction Level 0). 2013.

31. Callan, J.; Hoy, M.; Yoo, C.; Zhao, L. Clueweb09 Data Set 2009.

	Introduction
	Related Work
	Link Prediction on Simple Graph
	Link Prediction on Undirected Hypergraph
	Link Prediction on Directed Hypergraphs

	Method
	Task Description
	Framework
	Tucker Decomposition-Based Hyperlink Prediction Module
	Tucker Decomposition-Based Scoring Function
	Proof of Sequence Independence

	BiLSTM-Based Direction Prediction Module
	Training

	Experiment
	Experimental Setup
	Datasets
	Metrics And Parameters
	Baselines

	Experiment on Undirected Hypergraphs
	Experiment on Directed Hypergraphs
	Parameter Analysis
	Approximate Training Time Comparison
	Ablation Study

	Conclusions and Future Work
	References

