Stable Models in Generalized Possibilistic Logic

Didier Dubois
Université Paul Sabatier, CNRS
IRIT, Toulouse, France
dubois@irit.fr

Henri Prade
Université Paul Sabatier, CNRS
IRIT, Toulouse, France
prade@irit.fr

Steven Schockaert
Cardiff University, School of Computer Science & Informatics, Cardiff, UK
s.schockaert@cs.cardiff.ac.uk

Abstract

Possibilistic logic is a well-known logic for reasoning under uncertainty, which is based on the idea that the epistemic state of an agent can be modeled by assigning to each possible world a degree of possibility, taken from a totally ordered, but essentially qualitative scale. Recently, a generalization has been proposed that extends possibilistic logic to a meta-epistemic logic, endowing it with the capability of reasoning about epistemic states, rather than merely constraining them. In this paper, we further develop this generalized possibilistic logic (GPL). We introduce an axiomatization showing that GPL is a fragment of a graded version of the modal logic KD, and we prove soundness and completeness w.r.t. a semantics in terms of possibility distributions. Next, we reveal a close link between the well-known stable model semantics for logic programming and the notion of minimally specific models in GPL. More generally, we analyze the relationship between the equilibrium logic of Pearce and GPL, showing that GPL can essentially be seen as a generalization of equilibrium logic, although its notion of minimal specificity is slightly more demanding than the notion of minimality underlying equilibrium logic.

Introduction

In its basic form, possibilistic logic (Dubois, Lang, and Prade 1994) is a logic for reasoning about uncertain propositional knowledge, in which formulas take the form of pairs \((\alpha, \lambda)\) with \(\alpha\) a propositional formula and \(\lambda \in [0, 1]\) a degree of certainty. Its semantics are defined in terms of possibility distributions, which are mappings \(\pi\) from the set of all propositional interpretations (or worlds) \(\Omega\) to \([0, 1]\). For \(\omega \in \Omega\), \(\pi(\omega)\) reflects the degree to which world \(\omega\) is possible, i.e. to what extent it is compatible with available knowledge. Given a possibility distribution \(\pi\), the associated measures of possibility \(\Pi\) and necessity \(N\) reflect to what extent a proposition is possible and necessary, respectively:

\[
\Pi(\alpha) = \sup \{ \pi(\omega) \mid \omega \models \alpha \} \tag{1}
\]

\[
N(\alpha) = 1 - \Pi(\neg \alpha) = \inf \{ 1 - \pi(\omega) \mid \omega \models \neg \alpha \} \tag{2}
\]

A possibility distribution \(\pi\) is a model of \((\alpha, \lambda)\) if \(N(\alpha) \geq \lambda\) for \(N\) the associated necessity measure.

An important aspect of possibilistic logic is that models correspond to epistemic states, rather than to propositional interpretations, which forms a natural basis for epistemic reasoning. However, possibilistic logic only takes sets of formulas of the form \((\alpha, \lambda)\) into account, which we could interpret as conjunctions of assertions of the form \(N(\alpha) \geq \lambda\). In some applications, on the other hand, we may want to link such assertions using different propositional connectives. In logic programming, for instance, a (negation-free) rule such as \(\alpha \rightarrow \beta\) intuitively means that whenever \(\alpha\) is known to be true, we should accept \(\beta\) to be true as well. This could be expressed using necessity measures and material implication as \(N(\alpha) \geq 1 \Rightarrow N(\beta) \geq 1\). This implication, however, cannot be expressed in possibilistic logic, an observation which stands in stark contrast to the expressivity of modal logics for epistemic reasoning. In (Banerjee and Dubois 2009), a so-called Meta-Epistemic Logic (MEL) was introduced as a first step to bridge this gap, in the form of a simple modal logic with a semantics in terms of Boolean possibility distributions (i.e. possibility distributions \(\pi\) such that \(\pi(\omega) \in \{0, 1\}\) for every \(\omega \in \Omega\)). Essentially, MEL is a fragment of the modal logic KD, in which neither the nesting of modalities nor the occurrence of non-modal propositional formulas is allowed. Recently, generalized possibilistic logic (GPL) was introduced as a graded version of MEL (Dubois, Prade, and Schockaert 2011; Dubois and Prade 2011), developing an original proposal of (Dubois and Prade 2007).

The aim of this paper is twofold. On the one hand, we further develop GPL by introducing an axiomatization for it and proving soundness and completeness. On the other hand, we show how the notion of stable models from the semantics of logic programming (Gelfond and Lifschitz 1988) can naturally be captured using GPL. As equilibrium logic constitutes one of the most general approaches to the stable model semantics (Lifschitz 2008), we use it as our starting point, and show how equilibrium logic can be simulated in GPL to a large extent. We furthermore advocate that GPL has important advantages over equilibrium logic as a general framework for capturing the stable model semantics in an intuitive and general way. First, as equilibrium logic essentially uses the syntax of classical logic, but with a different underlying semantics, the intuitive meaning of equilibrium logic formulas is not always easy to grasp. When
expressing these formulas in GPL, however, the underlying meaning becomes explicit, as GPL only uses classical connectives, together with modalities that have an intuitive meaning. Second, as will become clear below, equilibrium logic corresponds to a limited fragment of GPL, in which modalities only occur in front of literals. This means that assertions such as “it is known that either a or b holds” cannot be expressed in equilibrium logic, which is only able to express that “either a is known or b is known”. As is discussed in (Bauters et al. 2011), a similar limitation also hampers answer set programming (ASP). Due to its increased syntactic freedom, GPL has the potential to further generalize the stable model semantics, while also being more intuitive to express pieces of knowledge.

The idea to use a modal logic to capture the stable model semantics of logic programming has been proposed early on. In particular, (Lifschitz and Schwarz 1993) proposes a way to interpret answer set programs as theories in autoepistemic logic (Moore 1985). While this work shares several of the advantages of our approach, the translation from answer set programming to autoepistemic logic does not readily generalize to arbitrary propositional theories. Although the semantics of the modality occurring in autoepistemic logic is closely related to the semantics of MEL in terms of sub-modalities of the modality occurring in autoepistemic logic is

The paper is structured as follows. In the following section we recall the basics of equilibrium logic. Then, we provide the syntax and semantics of GPL, introduce an axiomatization for this logic, and prove its soundness and completeness. In the subsequent section, we show how much of equilibrium logic can be encapsulated in GPL. In particular, we propose a translation from equilibrium logic to GPL theories, such that the equilibrium models of the equilibrium logic theory correspond to a particular class of models of the GPL theory. Then, we show how this transformation can be simplified in the case of disjunctive answer set programs, before presenting complexity results and concluding remarks.

Equilibrium Logic

Equilibrium logic was introduced by Pearce with the aim of extending the notion of answer set to general propositional theories (Pearce 1997; 2006). The formulation of this logic is based on an extension of the logic of here-and-there with strong negation. The logic of here-and-there, also known as Smetanich logic, is known to be the strongest intermediate logic that is properly included in classical logic (Chagrov and Zakharaschev 1997; Pearce 1997). This logic can semantically be characterized as a three-valued logic. Alternatively, however, it can also be characterized in terms of Kripke frames, using a two-valued valuation in two worlds, called (here) and (there).

The semantics of equilibrium logic is also based on these two worlds, by considering a three-valued valuation in both worlds (Pearce 1997). In particular, a valuation V is defined as a mapping from $\{h, t\} \times At$ to $\{-1, 0, 1\}$, where At is the set of all atoms in the language, such that

$$V(h, a) \neq 0 \Rightarrow V(h, a) = V(t, a) \quad (3)$$

The intuition is that $V(s, a) = 1$ means that a is known to be true in world s, $V(s, a) = -1$ means that a is known to be false in world s, and $V(s, a) = 0$ means that the truth value of a is unknown in world s. Furthermore, the there-world is assumed to be a refinement of the here-world, i.e., atoms whose truth value is unknown ‘here’ may have a known truth value ‘there’, but whenever the truth value of a is already known ‘here’ it has to be the same ‘there’. Since t is a refinement of h, there are five possibilities for the valuation of an atom a. Hence, the logic defined in this way is actually a five-valued logic, which is called $N5$ in (Pearce 2006). When there may be cause for confusion, we will refer to $N5$ valuations to denote $\{h, t\} \times At \rightarrow \{-1, 0, 1\}$ mappings V that satisfy (3). Let Lit be the set of all literals, i.e., $l \in Lit = At \cup \{\sim a | a \in At\}$, where \sim stands for a strong negation (reflecting a negation with classical, involutive behavior). For a valuation V, let V_h and V_t be the sets of literals that are true in worlds h and t:

$$V_h = \{l \in Lit | V(h, l) = 1\} \quad V_t = \{l \in Lit | V(t, l) = 1\}$$

Clearly, the property $V_h \subseteq V_t$ holds, due to (1). So an $N5$ model can be interpreted as a nested pair (V_h, V_t) of literals.

By defining \leq as the binary relation $\{(h, h), (t, t), (h, t)\}$, valuations are extended to arbitrary formulas as follows:

$$V(s, \neg a) = -V(s, a)$$

$$V(s, a \otimes b) = \min(V(s, a), V(s, b))$$

$$V(s, a \oplus b) = \max(V(s, a), V(s, b))$$

$$V(s, a \triangleright b) = \begin{cases} 1 & \text{if } \forall s' \geq s . (V(s', a) = 1) \Rightarrow (V(s', b) = 1) \\ \text{-1} & \text{if } V(s, a) = 1 \text{ and } V(s, b) = -1 \\ 0 & \text{otherwise} \end{cases}$$

$$V(s, \neg a) = \begin{cases} 1 & \text{if } \forall s' \geq s . V(s', a) < 1 \\ -1 & \text{if } V(s, a) = 1 \\ 0 & \text{otherwise} \end{cases}$$

where we write \otimes, \oplus and \triangleright for conjunction, disjunction and implication, to avoid confusion with the corresponding operators in classical logic. Moreover, as opposed to the involutive strong negation \neg, negation as failure is denoted by \neg.

This logic is called $N2$ in (Pearce 1997).
These connectives are perhaps more easily understood by recursively extending the sets of literals V_h and V_t to sets V and V_2 of more general formulas as follows:

- $\alpha \otimes \beta \in V_t$ if and only if $\alpha \in V_s$ and $\beta \in V_s$, $s = h, t$;
- $\alpha \oplus \beta \in V_t$ if and only if $\alpha \in V_s$ or $\beta \in V_s$, $s = h, t$;
- $\alpha \triangleright \beta \in V_h$ if and only if $\alpha \in V_h$ implies $\beta \in V_h$;
- and $\alpha \triangleright \beta \in V_t$ if and only if $\alpha \in V_t$ implies $\beta \in V_t$;
- $\not\not \alpha \in V_h$ if and only if $\alpha \not\not \in V_t$ (and thus $\alpha \not\not \in V_h$);
- $\not\not \alpha \in V_t$ if and only if $\alpha \not\not \in V_h$;
- $\not\not \alpha \in V_t$ if $\alpha \not\not \in V_h$.

An $(N5)$ valuation V is called an $(N5)$ model of a set of formulas Θ, written $V \models \Theta$, if for each $\alpha \in \Theta$, it holds that $V(h, \alpha) = V(t, \alpha) = 1$ (i.e., $\alpha \in V_h$).

Equilibrium logic is obtained from $N5$ logic by restricting attention to particular $N5$ models, called equilibrium models. A model is called h-minimal if its h-world is as little committing as possible, given its particular w-world.

Definition 1. (Pearce 2006) Let the ordering \preceq be defined for two $N5$ valuations V and V' as $V \preceq V'$ iff $V_s = V'_s$ and $V_h \subseteq V'_h$. An $N5$ model V of a set of formulas Θ is then called h-minimal if it is minimal w.r.t. \preceq among all models of Θ, i.e., for every other model V' of Θ it holds that either $V_t \neq V'_t$ or $V_h \not\not \subseteq V'_h$.

Note that minimality refers to the set of $N5$ literals that are verified by a valuation, and not to the set of atoms. The notion of h-minimality makes the connection with ASP more explicit: what is true ‘there’ can intuitively be understood as a guess of what can be derived from available knowledge, whereas what is true ‘here’ can actually be derived. Recall that in ASP we are interested in the case where the guess about what can be derived coincides with what can actually be derived. Accordingly, equilibrium models are h-minimal models whose valuation in h and t coincides.

Definition 2. (Pearce 1997) A h-minimal model V of a set of formulas Θ is called an equilibrium model if $V_h = V_t$.

A set of $N5$ formulas Θ corresponds to a (disjunctive) answer set program if it consists of formulas of the form

$$l_1 \otimes \ldots \otimes l_s \otimes \not\not p_1 \otimes \ldots \otimes \not\not p_m \triangleright q_1 \otimes \ldots \otimes q_n \quad (4)$$

and facts of the form

$$l_1 \otimes \ldots \otimes l_n \quad (5)$$

If there are no occurrences of $\not\not$ in Θ (i.e., $m = 0$ in all rules of the form (4)), the answer set of Θ is the unique minimal set of literals A such that \(\{ l_1, \ldots, l_n \} \cap A \neq \emptyset \) for every fact of the form (5) and $\{ q_1, \ldots, q_n \} \cap A \neq \emptyset$ whenever $\{ l_1, \ldots, l_n \} \subseteq A$ for every rule of the form (4). In the general case, the notion of answer set is defined in terms of the Gelfond-Lifschitz reduct. Let A be a set of literals, then the Gelfond-Lifschitz reduct Θ^A w.r.t. A is obtained from Θ by removing all rules of the form (4) for which $p_i \in A$ for some $i \in \{ 1, \ldots, r \}$, and replacing all other rules by $l_1 \otimes \ldots \otimes l_s \otimes q_1 \otimes \ldots \otimes q_n$. Then A is called an answer set of Θ iff A is the answer set of the reduct Θ^A. The following result shows that equilibrium logic properly extends answer set programming.

Proposition 1. (Pearce 1997) Let Θ be an equilibrium logic theory which corresponds to an answer set program. Furthermore, let S be a consistent set of literals (i.e., α and $\not\not \alpha$ cannot be both in S, for any atom in At). Then S is an answer set of Θ if Θ has an equilibrium model V such that $S = V_t$.

Example 1. Let us consider the following equilibrium logic theory Θ:

$$\Theta = \{ a, (a \otimes \not\not b \triangleright c) \oplus (a \triangleright d) \}$$

It is easy to verify that an $N5$ valuation V is an $N5$ model of Θ if $V(h, a) = 1$ and either $V(h, c) = 1, V(t, b) = 1$, or $V(h, d) = 1$. This means that there are three h-minimal models V_1, V_2, V_3 of Θ:

<table>
<thead>
<tr>
<th></th>
<th>here</th>
<th>there</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>1 0 1 0</td>
<td>a b c d</td>
</tr>
<tr>
<td>V_2</td>
<td>1 0 0 1</td>
<td>a b c d</td>
</tr>
<tr>
<td>V_3</td>
<td>1 0 0 1</td>
<td>a b c d</td>
</tr>
</tbody>
</table>

Of these three h-minimal models, only V_1 and V_3 are equilibrium models, as $V_2(h, b) \neq V_2(t, b)$. Note that the model corresponding to $(1, 0, 1, 1)$ ‘here’ and $(1, 0, 1, 1)$ ‘there’ is not h-minimal, as there is another model which coincides ‘there’ but corresponds to $(1, 0, 1, 0)$ ‘here’.

Generalized possibilistic logic

Generalized possibilistic logic (Dubois and Prade 2011) extends possibilistic logic in the sense that assertions of the form (α, λ) can be combined using any propositional connective, rather than only conjunction. The aim of this section is to familiarize the reader with the semantics of GPL, and to introduce an axiomatization for this logic. In this section α, β, etc. denote propositions in standard propositional logic, formed with standard connectives, $\land, \triangleright, \not\not$, and we use abbreviations $\alpha \triangleright \beta \equiv \not\not (\alpha \land \not\not \beta)$ and $\alpha \not\not \beta \equiv \not\not (\alpha \triangleright \beta)$. To emphasize that the semantics of GPL are based on possibility theory, in this paper we use a slightly different notation than the standard modal logic syntax of MEL (Banerjee and Dubois 2009). Moreover, our notation also differs from (Dubois and Prade 2011), which uses a notation close to standard possibilistic logic. We improve readability w.r.t. the latter paper while emphasizing the link with modal logic.

Let $A = \{ 0, 1/k, 2/k, \ldots, 1 \}$ with $k \in \mathbb{N} \setminus \{ 0 \}$ be the set of certainty degrees under consideration, $A^+ = A \setminus \{ 0 \}$. Well-formed formulas in generalized possibilistic logic (GPL) are defined as follows:

- If α is a propositional formula over the set of atoms At and $\lambda \in A^+$, then $\mathbf{N}_\lambda(\alpha)$ is a well-formed formula.
- If γ and δ are well-formed formulas, then $\not\not \gamma$ and $\gamma \land \delta$ are also well-formed formulas.

2In (Pearce 1997) the notion of h-minimality is defined in a slightly different way. The difference is irrelevant, however, w.r.t. the definition of equilibrium models.
Intuitively, \(N_1(\alpha) \) means that it is completely certain that \(\alpha \) is true, whereas \(N_4(\alpha) \) with \(\lambda < 1 \) means that there is evidence that suggests that \(\alpha \) is true, and none that suggests that it is false (i.e. it is considered more plausible that \(\alpha \) is true than that \(\alpha \) is false). Note that we need \(k \geq 2 \), ensuring that there are at least three certainty levels, to distinguish between complete and partial certainty. Formally, an agent asserting \(N_\lambda(\alpha) \) has an epistemic state \(\pi \) such that \(N(\alpha) \geq \lambda > 0 \). Hence \(\neg N_\lambda(\alpha) \) stands for \(N(\alpha) < \lambda \), which means \(\Pi(\neg \alpha) \geq 1 - \lambda + \frac{1}{k} \in \Lambda^+ \) (using (2)). Let us introduce some useful abbreviations: \(\nu(\lambda) = 1 - \lambda + \frac{1}{k}, \forall \lambda \in \Lambda^+ \), \(\Pi_1(\lambda) \equiv \neg N_\nu(\lambda)(\neg \alpha) \). Then \(\Pi_1(\alpha) \) means that \(\alpha \) is fully compatible with our available beliefs (i.e. nothing prevents \(\alpha \) from being true), while \(\Pi_\lambda(\alpha) \) with \(\lambda < 1 \) means that \(\alpha \) cannot be fully excluded (\(\Pi(\alpha) \geq \lambda \)).

The semantics of GPL are defined in terms of normalized possibility distributions (i.e., s.t. \(\exists \omega \pi(\omega) = 1 \)) over propositional interpretations, where possibility degrees are limited to \(\Lambda \). A model of a GPL formula is such a possibility distribution which satisfies:

- \(\pi \) is a model of \(N_\lambda(\alpha) \) iff \(N(\alpha) \geq \lambda \);
- \(\pi \) is a model of \(\gamma_1 \land \gamma_2 \) iff \(\pi \) is a model of \(\gamma_1 \) and a model of \(\gamma_2 \);
- \(\pi \) is a model of \(\neg \gamma_1 \) iff \(\pi \) is not a model of \(\gamma_1 \);

where \(N \) is the necessity measure induced by \(\pi \). As usual, \(\pi \) is a model of a set of GPL formulas \(K \), written \(\pi \models K \) if it is a model of each of the formulas in the set. It is called a minimally specific model, if there is no model \(\pi' \neq \pi \) such that \(\pi'(\alpha) \geq \pi(\alpha) \) for each possible world \(\omega \).

We write \(K \models \phi \), for \(K \) a set of GPL formulas and \(\phi \) a GPL formula, iff every model of \(K \) is also a model of \(\phi \). We call a possibilistic model \(\pi \) Boolean if \(\pi(\omega) \in \{0, 1\} \) for every possible world \(\omega \).

We consider the following axiomatization, which closely parallels the one of MEL (Banerjee and Dubois 2009).

The axioms of classical logic
\[N_\lambda(\alpha) \rightarrow N_\lambda(\beta), \] (6)
if \(\alpha \rightarrow \beta \) is a (classical) tautology
\[N_\lambda(\alpha \land \beta) \rightarrow N_\lambda(\alpha) \land N_\lambda(\beta) \] (7)

\[N_\lambda(\alpha) \land N_\lambda(\beta) \rightarrow N_\lambda(\alpha \land \beta) \] (8)

\[N_1(\top) \] (9)

\[N_\lambda(\alpha) \rightarrow \Pi_1(\alpha) \] (10)

\[N_\lambda(\alpha) \rightarrow N_{\lambda_2}(\alpha), \text{ if } \lambda_1 \geq \lambda_2 \] (12)

and the modus ponens rule. Note in particular that from (6), (9) and (7), we can derive a weighted version of axiom K:

\[N_\lambda(\alpha \rightarrow \beta) \rightarrow (N_\lambda(\alpha) \rightarrow N_\lambda(\beta)) \] (13)

In fact (7) can be replaced by this version of K, as when \(\lambda \) is fixed we get a fragment of the modal logic KD.

Lemma 1. The following inference rules can be proved:

- \(\{N_{\lambda_1}(\alpha), N_{\lambda_2}(\alpha \rightarrow \beta)\} \vdash N_{\min(\lambda_1, \lambda_2)}(\beta) \)
- \(\{\Pi_{\lambda_1}(\alpha), N_{\lambda_2}(\alpha \rightarrow \beta)\} \vdash \Pi_{\lambda_1}(\beta) \text{ if } \lambda_2 > 1 - \lambda_1 \)

The first one is obtained using (12) on both premises (weakening them to level \(\min(\lambda_1, \lambda_2) \)), then getting \(N_{\min(\lambda_1, \lambda_2)}(\alpha) \rightarrow N_{\min(\lambda_1, \lambda_2)}(\beta) \) using modus ponens on \(K \) and \(N_{\min(\lambda_1, \lambda_2)}(\alpha \rightarrow \beta) \), and then modus ponens again.

The second one is obtained by proving \(N_{\nu(\lambda_1)}(\neg \alpha) \) from \(N_{\lambda_2}(\alpha \rightarrow \beta) \) and \(N_{\nu(\lambda_1)}(\neg \beta) \) in the same way (just rewriting \(\alpha \rightarrow \beta \) as \(\neg \beta \rightarrow \neg \alpha \)). However, we need to assume \(\nu(\lambda_1) \leq \lambda_2 \) in order to weaken \(N_{\lambda_2}(\alpha \rightarrow \beta) \) into \(N_{\nu(\lambda_1)}(\alpha \rightarrow \beta) \). And \(\nu(\lambda_1) \leq \lambda_2 \) is equivalent to \(1 - \lambda_1 + k \leq \lambda_2 \), i.e., \(\lambda_2 > 1 - \lambda_1 \).

Proposition 2 (Soundness). Let \(K \) be a GPL theory, i.e., a set of GPL formulas. Assume that the GPL formula \(\phi \) can be derived from \(K \) using modus ponens and the axioms (6)–(12). It holds that \(K \models \phi \).

Proposition 3 (Completeness). Let \(K \) be a GPL theory and \(\phi \) a GPL formula. If \(K \models \phi \) then it holds that \(\phi \) can be derived from \(K \) using modus ponens and the axioms (6)–(12).

Relationship with equilibrium logic

In (Dubois, Prade, and Schockaert 2011), it has been shown how answer set programming rules can be expressed in GPL in a semantics-preserving way. The main idea underlying this translation is to interpret a rule such as \(a \rightarrow b \) (where we use the same atoms \(a, b \) in propositional logic and answer set programming) as stating that when \(a \) is certain (to some degree), then also \(b \) is certain (to some degree). As such, we may relate the rule \(a \rightarrow b \) to the set of GPL formulas \(\{N_\lambda(a) \rightarrow N_\lambda(b) | \lambda \in \Lambda^+ \} \). Furthermore, following a proposal in (Bauters et al. 2010) to interpret negation as failure in a possibilistic logic setting, it is considered that \(\neg a \) corresponds to \(\Pi_1(\neg a) \). A rule such as \(\neg a \rightarrow b \) is then taken to correspond to the GPL formula \(\Pi_1(\neg a) \rightarrow N_1(b) \), translating the intuition that as soon as it is consistent to assume that \(\neg a \) holds, we may derive \(b \) with (full) certainty.

However, it is clear that the full generality of GPL is not needed to capture the semantics of logic programming or equilibrium logic. In particular, as degrees of certainty do not occur in equilibrium logic, we may be inclined to let \(\Lambda^+ = \{1\} \). In this case, however, we have that \(\neg N_{\lambda}(b) \equiv \Pi_{1}(\neg b) \) and thus that \(\Pi_{1}(\neg a) \rightarrow N_{1}(b) \) is equivalent to \(\Pi_{1}(a) \rightarrow \Pi_{1}(\neg b) \) and, by contraposition, also to \(\Pi_{1}(b) \rightarrow N_{1}(a) \). This would mean, under the above view, that the rules \(\neg b \rightarrow a \) and \(a \rightarrow \neg b \) would be equivalent, which does not agree with the stable model semantics. In the translation from disjunctive ASP to autoepistemic logic, proposed in (Lifschitz and Schwarz 1993), this issue is tackled by translating \(\neg b \rightarrow a \) to the formula \(\neg K(b) \rightarrow (K(\alpha) \land a) \), where \(K \) is a modal operator which plays a role similar to \(N_1 \). In GPL, however, expressions such as \(N_1(a) \land a \) are not allowed, as it is hard to provide an intuitive (epistemic) semantics for them. As will become clear, however, adding one intermediary certainty level, i.e., choosing \(\Lambda^+ = \{1/2, 1\} \), is sufficient to enable us to capture the semantics of rules, and more generally equilibrium logic formulas, within GPL. In this case, we can discriminate between propositions in which we are fully certain
(strong necessity), and propositions which we merely consider to be more plausible than not (weak necessity). To emphasize the qualitative nature of the certainty scale, we will write $N_w(\cdot)$, $N_s(\cdot)$, $\Pi_w(\cdot)$ and $\Pi_s(\cdot)$ instead of $N_{1/2}(\cdot)$, $N_1(\cdot)$, $\Pi_{1/2}(\cdot)$, $\Pi_1(\cdot)$ respectively. Now we only have the equivalence $\neg N_s(b) \equiv \Pi_w(\neg b)$.

The fact that we need an intermediate certainty level is also closely related to the observation that we can then model 5 different epistemic statuses for each atom, which correspond to the 5 truth values that can be assigned to atoms in $N5$ logic. The intuition is that what is already true here is treated as necessarily true, whereas what is only true there is treated as more plausible than not, but not fully certain. Under this view, and using again the same atoms in $N5$ and in propositional logic, we assume that a valuation V for which

- $V(h, a) = V(t, a) = 1 (a \in V_h)$ corresponds to a possibility distribution which satisfies $N_s(a)$,
- $V(h, a) = V(t, a) = -1 (\neg a \in V_h)$ corresponds to a possibility distribution which satisfies $N_s(\neg a)$,
- $V(h, a) = 0$ and $V(t, a) = 1 (a \in V_t \setminus V_h)$ corresponds to a possibility distribution which satisfies $N_w(a) \land \neg N_s(a)$, or equivalently $N_w(a) \land \Pi_w(\neg a)$,
- $V(h, a) = 0$ and $V(t, a) = -1 (\neg a \in V_t \setminus V_h)$ corresponds to a possibility distribution which satisfies $N_w(\neg a) \land \neg N_s(\neg a)$, or equivalently $N_w(\neg a) \land \Pi_w(a)$,
- $V(h, a) = V(t, a) = 0 (a, \neg a \not\in V_t)$ corresponds to a possibility distribution which satisfies $\neg N_w(a) \land \neg N_w(\neg a)$, or equivalently $\neg N_w(a) \land \Pi_w(a)$.

Note that the $N5$ strong negation \neg exactly translates into the standard propositional negation \neg here. By identifying the assignment of truth values of $N5$ logic to atoms with corresponding GPL formulas, we emphasize the epistemic nature of asserting formulas in $N5$.

To develop this idea, it is useful to represent an $N5$ valuation V as a mapping σ from formulas to $\{-2, -1, 0, 1, 2\}$ such that $\sigma(\alpha) = V(h, \alpha) + V(t, \alpha)$ (Pearce 2006). Note that because the set of literals V_0 is constrained to be a subset of V_t, such a mapping σ unambiguously defines a valuation V. We can then consider formulas of the form $\alpha \geq i$ or $\alpha \leq j$ where α is an $N5$ formula, $i \in \{-2, -1, 0, 1, 2\}$ and $j \in \{-2, -1, 0, 1\}$. Such a formula is satisfied by a valuation V iff the corresponding mapping σ is such that $\sigma(\alpha) \geq i$ or $\sigma(\alpha) \leq j$ respectively. Under the above view, we can associate a GPL formula $\Phi(\alpha \geq i)$ or $\Phi(\alpha \leq j)$ with each assertion of the form $\alpha \geq i$ or $\alpha \leq j$. In particular, we easily prove, based on the above encoding of the five truth-values as modalities in GPL:

\[
\begin{align*}
\Phi(a \geq 2) &= N_w(a) & \Phi(a \geq 1) &= N_w(a) \\
\Phi(a \geq 0) &= \Pi_w(a) & \Phi(a \geq 1) &= \Pi_w(a) \\
\Phi(a \leq 2) &= N_s(\neg a) & \Phi(a \leq 1) &= N_w(\neg a) \\
\Phi(a \leq 0) &= \Pi_s(\neg a) & \Phi(a \leq 1) &= \Pi_w(\neg a)
\end{align*}
\]

More generally, we can use this idea to express that an arbitrary $N5$ formula has a given truth value. For example, it is not hard to see that $a \otimes b \geq i$ iff $a \geq i$ and $b \geq i$. Therefore, the assertion $a \otimes b \geq i$ can be expressed in GPL as $\Phi(a \geq i) \land \Phi(b \geq i)$. In general, for $i \in \{-1, 0, 1, 2\}$ and α and β two $N5$ formulas, we can prove the following translation rules are correct:

\[
\begin{align*}
\Phi(\alpha \otimes \beta \geq i) &= \Phi(\alpha \geq i) \land \Phi(\beta \geq i) \\
\Phi(\alpha \oplus \beta \geq i) &= \Phi(\alpha \geq i) \lor \Phi(\beta \geq i) \\
\Phi(\neg \alpha \geq i) &= \Phi(\alpha \leq -i) \\
\Phi(\neg \alpha \geq i) &= \begin{cases} \Phi(\alpha \leq 0) & \text{if } i \geq 0 \\ \Phi(\alpha \leq 1) & \text{if } i = -1 \end{cases} \\
\Phi(\alpha \triangleright \beta \geq 2) &= (\Phi(\alpha \geq 2) \lor \Phi(\beta \geq 2)) \\
&\quad \land (\Phi(\alpha \geq 1) \lor \Phi(\beta \geq 1)) \\
\Phi(\alpha \triangleright \beta \geq 1) &= \Phi(\alpha \geq 1) \lor \Phi(\beta \geq 1) \\
\Phi(\alpha \triangleright \beta \geq 0) &= \Phi(\alpha \geq 1) \lor \Phi(\beta \geq 0) \\
\Phi(\alpha \triangleright \beta \geq -1) &= \Phi(\alpha \geq 2) \lor \Phi(\beta \geq -1)
\end{align*}
\]

and for $i \in \{-2, -1, 0, 1\}$, it holds

\[
\Phi(\alpha \leq i) = \neg \Phi(\alpha \geq i + 1)
\]

Example 2. Consider the $N5$-formula not $(a \triangleright b)$, whose intuition is rather difficult to grasp, when formulated in this way. Asserting that this formula is true can be expressed in GPL as follows:

\[
\begin{align*}
\Phi(\neg(a \triangleright b) \geq 2) &= \Phi(a \triangleright b \leq 0) \\
&= \neg \Phi(a \triangleright b \geq 1) \\
&= \neg \Phi(a \geq 1) \lor \Phi(b \geq 1)) \\
&= \neg N_w(\alpha) \lor \neg N_w(b)
\end{align*}
\]

It is easy to see that the latter formula is equivalent to $N_w(a) \land \Pi_s(\neg b)$, whose intuition is clear: a is considered to be somewhat but not fully certain (i.e. a is true in all most plausible classical interpretations compatible with the GPL formula), whereas $\neg b$ is fully possible (i.e. epistemic states in which b is known to be true are excluded). Alternatively we can say that a is true there while b is not true there.

Every $N5$ formula α in an equilibrium logic base asserts that α is fully true and should be translated by the GPL formula $\Phi(\alpha \geq 2)$. Interestingly, due to its recursive definition starting from $N5$ literals, this translation is such that the GPL modalities only occur in front of literals. This observation essentially explains why $N5$ logic can be truth functional: as the equivalent of GPL formulas such as $N_s(\alpha \lor \beta)$ cannot be expressed in $N5$, the truth value of $N5$ formulas only depends on what is supposed to hold for individual atoms. In contrast, to decide whether $N_s(\alpha \lor \beta)$ holds in a given epistemic state π, it does not suffice to consider what we know about α and what we know about β in isolation. Hence the GPL translation of $N5$ will be in a specific fragment of GPL.

We now more closely investigate the precise link between a set of $N5$ formulas $\Theta = \{\alpha_1, \ldots, \alpha_n\}$ and the GPL theory $T = \{\Phi(\alpha_1 \geq 2), \ldots, \Phi(\alpha_n \geq 2)\}$. First, for each $N5$ model V we can define a 3-valued possibility distribution
Then it is easy to check that \(\pi \) such that \((\text{Lit is the set of literals})\)

\[
\pi_V(\omega) =
\begin{cases}
0 & \text{if } \exists l \in \text{Lit.} (\omega \models l) \land V(h, l) = -1 \\
1/2 & \text{if } \exists l \in \text{Lit.} (\omega \models l) \land V(h, l) = 0 \land V(t, l) = -1 \\
1 & \text{otherwise}
\end{cases}
\]

In terms of the valuation \(\sigma_V\), it says

\[
\pi_V(\omega) =
\begin{cases}
0 & \text{if } \exists l \in \text{Lit.} (\omega \models l) \land \sigma_V(l) = -2 \\
1/2 & \text{if } \exists l \in \text{Lit.} (\omega \models l) \land \sigma_V(l) = -1 \\
1 & \text{otherwise}
\end{cases}
\]

Then it is easy to check that \(\pi_{(h,t)} = \pi_V\). Indeed

1. \(\pi_{(h,t)}(\omega) = 0\) if and only if \(\omega \notin E_h\), that is \(\exists l \in B_h, \omega \not\models l\), i.e. \(\omega \not\models \neg l\); so, letting \(l' = \neg l, \omega \models l'\) and \(\sigma(l') = -2\).

2. \(\pi_{(h,t)}(\omega) = 1/2\) if and only if \(\omega \in E_h, \omega \notin E_t\), that is \(\forall l \in B_h, \omega \models l \land \exists l \in B_t \setminus B_h, \omega \not\models l\), so \(\exists l, \omega \not\models \neg l, l \not\in B_h, l \in B_t\), hence \(\sigma(l) = -1\).

Proposition 4. Let \(\alpha\) be a formula in \(\text{N5-logic}\). For each \(\text{N5 model } V\) of \(\alpha\), the possibility distribution \(\pi_V\) is a model of \(\Phi(\alpha \geq 2)\).

Note that the obtained possibility distribution \(\pi_V\) has a special shape: its core and support are partial models.

Proposition 5. Let \(\alpha\) be a formula in \(\text{N5-logic}\). For each model \(\pi\) of \(\Phi(\alpha \geq 2)\), the \(\text{N5 valuation } V_{\pi}\) defined by

\[
V_{\pi}(h, a) =
\begin{cases}
1 & \text{if } \pi \models \text{N}_s(a) \\
-1 & \text{if } \pi \models \text{N}_s(\neg a) \\
0 & \text{otherwise}
\end{cases}
\]

\[
V_{\pi}(t, a) =
\begin{cases}
1 & \text{if } \pi \models \text{N}_w(a) \\
-1 & \text{if } \pi \models \text{N}_w(\neg a) \\
0 & \text{otherwise}
\end{cases}
\]

is a model of \(\alpha\).

In the above proposition \(\pi\) is any possibility distribution, but it is not necessarily equal to \(\pi_{V_{\pi}}\), the possibility distribution built from \(V_{\pi}\) following (13). In fact, we can prove that \(\pi_{V_{\pi}} \geq \pi\) that is

Proposition 6. Given an \(\text{N5 model } V\) the least specific possibility distribution \(\pi\) such that \(\forall a \in A\),

\[
\begin{align*}
\pi \models \text{N}_s(a) & \text{ if } \sigma_V(a) = 2, \\
\pi \models \text{N}_s(\neg a) & \text{ if } \sigma_V(a) = -2.
\end{align*}
\]

In general, minimally specific models of \(\Phi(\alpha \geq 2)\) are not unique. As it turns out, every such minimally specific model which is moreover Boolean corresponds to an equilibrium model of \(\alpha\).

Proposition 7. Let \(\alpha\) be a formula in \(\text{N5-logic}\) and let \(\pi\) be a minimally specific model of \(\Phi(\alpha \geq 2)\). It holds that the \(\text{N5 valuation } V\) defined in Proposition 5 is an h-minimal model of \(\alpha\). If moreover \(\pi\) satisfies the constraint that \(\pi(\omega) \neq 1/2\) for every interpretation \(\omega\), it holds that \(V\) is an equilibrium model.

Despite this correspondence between \(\text{N5 models and possibilistic models}\), and despite the correspondence between answer sets and minimally specific possibilistic models, the converse of this last property does not always hold, as is illustrated by the following counterexample.

Example 3. Let \(\alpha = (\text{not } a) \oplus a\). The \(\text{N5 models are those valuations } V\) that assign to \(a\) the values \((V(h, a), V(t, a))\) given by \((1, 1), (0, 0), (-1, -1)\) and \((0, -1)\). The valuations corresponding to \((1, 1), (0, 0)\) and \((-1, -1)\) are h-minimal. Hence \(\alpha\) has two equilibrium models \(V_1\) and \(V_2\) defined by \(V_1(h, a) = V_1(t, a) = 1\) and \(V_2(h, a) = V_2(t, a) = 0\).

On the other hand, \(\Phi(\alpha \geq 2) = \Pi_s(\neg a) \lor \text{N}_s(\neg a)\). There are only two interpretations \(\omega = a, \neg a\). The equilibrium models \(V_1\) and \(V_2\) correspond to the possibility distributions \(\pi_1\) and \(\pi_2\), defined by \(\pi_1(a) = 1\) and \(\pi_1(\neg a) = 0\) and \(\pi_2(a) = \pi_2(\neg a) = 1\). However, only \(\pi_2\) is minimally specific.

One reason for this difference is that equilibrium logic is not systematically concerned with minimal specificity. Equilibrium models corresponds to the idea of a good guess. Minimizing \(V_h\) in \((V_h, V_t)\) corresponds to a form of minimal specificity (maximally enlarging the support of \(\pi_V\)), but there is no request to minimize the set \(T\) of literals that are true ‘there’ as well among the total models. However, as we will show next, this counterexample does not affect theories that correspond to disjunctive answer set programs.

Relationship with answer set programming

Example 3 illustrates that some equilibrium models are not minimally specific possibility distributions, but the formula \(\alpha\) on which the example is built does not have a clear intuition. We may wonder whether there might be counterexamples beyond such pathological cases. The following proposition suggests that the answer is negative: in any equilibrium logic theory which corresponds to a disjunctive answer set program, the equilibrium models are always minimally specific possibility distributions.

Proposition 8. Let \(\Theta = \{\alpha_1, ..., \alpha_n\}\) be an \(\text{N5 logic theory}\) that corresponds to a disjunctive ASP program \(P\). If \(V\) is an equilibrium model of \(\Theta\), then the possibility distribution \(\pi\) obtained from \(V\) using the procedure from Proposition 4 is a minimally specific model of \(T = \{\Phi(\alpha_1 \geq 2), ..., \Phi(\alpha_n \geq 2)\}\) and satisfies \(\pi(\omega) \in \{0, 1\}\) for every possible world \(\omega\).
Corollary 1. Let Θ and T be as in Proposition 8. It holds that V has an equilibrium model iff T has a minimally specific model which is Boolean.

Note that our translation of ASP is different from the translation in autoepistemic logic (Lifschitz and Schwarz 1993), as we do not need objective formulas. Moreover, it turns out that in the case of disjunctive answer set programs, the translation to GPL can be somewhat simplified. Indeed, a rule of the form (4) corresponds to
\[\Phi(l_1 \oplus \ldots \oplus l_n \geq 2) \equiv \Phi(l_1 \geq 2) \lor \ldots \lor \Phi(l_n \geq 2) \]
whereas a rule of the form (5) corresponds to
\[\Phi(l_1 \otimes \ldots \otimes \neg p_m \rightarrow q_1 \oplus \ldots \oplus q_n \geq 2) \]
\[\equiv (\Phi(l_1 \otimes \ldots \otimes \neg p_m \geq 2) \rightarrow \Phi(q_1 \oplus \ldots \oplus q_n \geq 1)) \]
\[\land (N_s(l_1) \land \ldots \land N_s(-p_m) \rightarrow N_s(q_1) \lor \ldots \lor N_s(q_n)) \]
\[\land (N_w(l_1) \land \ldots \land N_w(-p_m) \rightarrow N_w(q_1) \lor \ldots \lor N_w(q_n)) \]

In other words, a rule corresponds to the conjunction of two implications. However, as facts are modelled in terms of strong necessity, the second implication is irrelevant, i.e. from fully certain facts, we can derive fully certain conclusions.

Proposition 9. Let Θ and T be as in Proposition 8, and let T' be the GPL theory that is obtained by converting every rule of the form (4) in Θ to a GPL formula N_s(l_1) \land \ldots \land N_s(-p_m) \rightarrow N_s(q_1) \lor \ldots \lor N_s(q_n) and every fact of the form (5) to a GPL formula N_s(l_1) \lor \ldots \lor N_s(l_n). It holds that a Boolean possibility distribution π is a minimally specific model of T iff it is a minimally specific model of T'.

This latter proposition reveals the connection between the approach from (Dubois, Prade, and Schockaert 2011) and our general translation of equilibrium logic theories. Moreover, the characterization of stable models as Boolean minimally specific possibility distributions is considerably simpler than the characterization proposed in (Dubois, Prade, and Schockaert 2011), where stable models were identified with maximally consistent sets of assumptions.

Computational complexity
Recall that Σ^P_2 is the class of all problems that can be solved in polynomial time on a non-deterministic machine using an NP-oracle, while Π^P_2 is the class of problems whose complement is in Σ^P_2. In disjunctive ASP, the problem of checking whether a program has at least one answer set containing a given literal l is Σ^P_2-complete, while the problem of checking whether all answer sets contain l is Π^P_2-complete (Eiter and Gottlob 1993). In GPL, the corresponding problems are as follows, for T and φ respectively a set of GPL formulas and a GPL formula:

SAT Check whether T has a minimally specific model π which is Boolean and for which N(φ) = 1.

ENT Check whether for every least specific model π of T which is Boolean, it holds that N(φ) = 1.

where in both cases N is the necessity measure induced by π. Because we know from Propositions 7 and 8 that these latter decision problems are Σ^P_2-hard and Π^P_2-hard respectively. We can moreover show the following result:

Proposition 10. The complexity of SAT is in Σ^P_2 and the complexity of ENT is in Π^P_2.

In other words, we find that SAT is Σ^P_2-complete and ENT is Π^P_2-complete.

Concluding remarks
In this paper we have axiomatized the generalized possibilistic logic (GPL) and investigated its relation to equilibrium logic. In particular, we have shown how a set of N5 formulas Θ can be translated to a set of GPL formulas T such that the N5 models of Θ correspond to the possibilistic models of T. We have furthermore shown that the minimal specificity models of T which are Boolean correspond to equilibrium models of Θ. However, some equilibrium models of Θ may not correspond to minimally specific models of T, i.e. the notion of h-minimality from equilibrium logic is weaker than the notion of minimal specificity from possibility theory. In spite of the fact that GPL offers more syntactic freedom, we have shown that the computational complexity remains the same as in equilibrium logic.

Since its introduction, equilibrium logic has mainly been popular because of three different reasons. First, it extends disjunctive ASP in the sense of Proposition 1. Second, an important characterization of strong equivalence4 has been obtained (Lifschitz, Pearce, and Valverde 2001): P and Q are strongly equivalent iff their sets of N5 models coincide. Third, due to the syntactic freedom, equilibrium logic can be used to give a declarative semantics to ASP extensions, such as aggregates. From the results presented in this paper, it follows that GPL shares the same advantages, while offering even more syntactic freedom. Indeed, while conceptually speaking, in equilibrium logic the modalities only occur in front of literals, in GPL they can occur in front of arbitrary propositional formulas. Moreover, as shown in Proposition 8, when restricted to the syntax of disjunctive ASP, the Boolean minimally specific models of a GPL theory correspond to the equilibrium models, and thus to the answer sets. Finally, strong equivalence can still be characterized in GPL as N5 models were shown to correspond to minimally specific possibilistic models in Propositions 4 and 5.

In those cases where equilibrium models do not correspond to minimally specific possibilistic models, it is not at all clear that equilibrium logic is closer to intuition. Indeed, one of the main disadvantages of equilibrium logic is that the intuitive meaning of many formulas is highly unclear, e.g. how should negation-as-failure in front of a rule

4Recall that two answer set programs P and Q are strongly equivalent, if for every program R it holds that P ∪ R and Q ∪ R have the same answer sets.
behave? By using a syntax in which modalities are written explicitly, GPL has the potential of being more intuitive to use, albeit with a slightly less compact syntax.

Proofs

Proof of Proposition 3

Using the proposed axioms, we can ensure that K only contains occurrences of \land and \lor at the meta-level. By distributivity of the connectives \land and \lor, and because a set of formulas is equivalent to the conjunction of these formulas, we can moreover assume that K is of the form $\theta_1 \lor \ldots \lor \theta_n$ where θ_i is a GPL formula in which \land is the only connective occurring at the meta-level. It is clear that $K \models \phi$ is then equivalent with asserting that $\theta_i \models \phi$ for each i. From the axioms of propositional logic, we thus find that it is sufficient to show that ϕ can be derived from each θ_i. For the same reasons, we can assume that ϕ is of the form $\phi_1 \land \ldots \land \phi_m$, where each ϕ_j is a GPL formula in which \lor is the only connective occurring at the meta-level. What we then need to show is that $\theta_i \models \phi_j$ for every i and j.

We will treat θ_i as a set of formulas of the form $N_{\lambda_i}(\alpha)$ and $\Pi_{\lambda_i}(\alpha)$, with α a propositional formula. In the following, we let $\theta_i^N = \{N_{\lambda_i}(\alpha) \mid N_{\lambda_i}(\alpha) \in \theta_i\}$. From classical possibility logic, we know that θ_i^N has a unique minimally specific model π^*. It is not hard to see that either π^* is also the unique minimally specific model of θ_i or θ_i has no models. Indeed, for this epistemic model, and θ_i^N is not an epistemic model of θ_i and we let $\Pi_{\lambda_i}(\alpha)$ in the following.

Proof of Proposition 4

We show that for every N^3-logic formula α, it holds that

$$(V(h, \alpha) = 1) \Rightarrow (\pi_V \models \Phi(\alpha \geq 2))$$

$$(V(t, \alpha) = 1) \Rightarrow (\pi_V \models \Phi(\alpha \geq 1))$$

$$(V(h, \alpha) = -1) \Rightarrow (\pi_V \models \Phi(\alpha \leq -2))$$

If, on the other hand, $\pi_i \not\models N_{\lambda_i}(\gamma_i \lor \gamma_j \land \gamma_k)$, we have $N^*(\gamma_i \lor \gamma_j \land \gamma_k) = 0$ and thus $\Pi^*(\gamma_i \lor \gamma_j \land \gamma_k) = 1$. Since any refinement of a model of θ_i^N is still a model of θ_i^N, we can then always construct a model π' of θ_i^N in which $\Pi'(\gamma_i) < \lambda_i$ for every l. Indeed, let π' be the interpretation defined by $\pi'(\omega) = \pi^*(\omega)$ if $\omega \models \gamma_i \land \ldots \land \gamma_k$ and $\pi'(\omega) = \min(\lambda_k, \frac{1}{\pi^*(\omega)})$ if $\omega \models \gamma_i \land \gamma_j \land \gamma_k$. Note that because $\Pi'(\gamma_i \land \gamma_j \land \gamma_k) = 1$, we are guaranteed that π' is still normalized. Hence, when $\theta_i \not\models N_{\lambda_i}(\gamma_i \lor \gamma_j \land \gamma_k)$, we can construct a model π' of θ_i^N which is not a model of $\Pi_{\lambda}(\gamma_i \lor \gamma_j \land \gamma_k)$.

Assume that $\pi_i \not\models \theta_i$. As $\pi_i \not\models \theta_i$, implies $\pi_i \not\models \theta_i^N$, $\pi_i \not\models \theta_i$ means that there must be a formula $\Pi_i(\beta)$ in $\theta_i \setminus \theta_i^N$ violated by π_i, i.e. $\Pi_i(\beta) < \mu$, which implies that there exists an l such that $\mu = \lambda_i$. As only the possibility degree of γ_i-worlds may have changed from a value above μ to a value below μ, any β-world for which $\pi_i(\omega) \geq \mu$ is also a γ_i-world. So, $\Pi_i(\beta) \land \gamma_i < \lambda_i$. This means that $\theta_i^N \models N_{\nu(\alpha)}(\beta \rightarrow \gamma_i)$. By induction, we find that $\Pi_{\lambda_i}(\gamma_i \land \gamma_j \land \gamma_k)$ is derivable. We must show that $\Pi_{\lambda_i}(\beta \rightarrow \gamma_i)$ and $\Pi_{\lambda_i}(\beta \lor \gamma_i)$ can be derived. Actually this is an instance of the second GPL inference rule proved in Lemma 1, since the condition $\nu(\lambda_i) > 1 - \lambda_i$ is clearly satisfied.

Assume $\pi_i \not\models N_{\nu(\alpha)}(\beta_k)$. By construction, $\pi_i \not\models N_{\nu(\alpha)}(\beta_k)$ is the least specific model of $\theta_i \cup \{\Pi_{\lambda_i}(\gamma_i) \ldots \Pi_{\lambda_i}(\gamma_k)\}$, which is equivalent to the standard possibilistic logic theory $\theta_i^N \cup \{N_{\nu(\alpha)}(\gamma_i) \ldots N_{\nu(\alpha)}(\gamma_k)\}$. Since the completeness of the inference rule of standard possibilistic logic w.r.t. what is true for the least specific model, and the fact that we can simulate this inference rule using the proposed axioms, we find that $\Pi_{\lambda_i}(\beta_k)$ can be derived from $\theta_i^N \cup \{\Pi_{\lambda_i}(\gamma_i) \ldots \Pi_{\lambda_i}(\gamma_k)\}$, which means that $\Pi_{\lambda_i}(\gamma_i) \ldots \Pi_{\lambda_i}(\gamma_k) \rightarrow N_{\nu(\alpha)}(\delta_k)$ can be derived from θ_i^N, which implies ϕ_i can.

2. Assume that θ_i has no models. This means that there is some formula of the form $\Pi_{\lambda_i}(\gamma_i)$ in θ_i which is violated by π_i^*, and therefore by all models of θ_i^N. This means that $\theta_i^N \models \Pi_{\lambda_i}(\gamma_i)$, in other words $\theta_i^N \models N_{\nu(\lambda_i)}(\gamma_i)$. By syntactic inference in standard possibilistic logic, we can therefore infer $N_{\nu(\lambda_i)}(\gamma_i)$, and thus derive a logical inconsistency at the meta-level. Using the axioms from classical logic, this means that we can derive anything from θ_i, and in particular ϕ_j.

Proof of Proposition 4

We show that for every N^3-logic formula α, it holds that

$$(V(h, \alpha) = 1) \Rightarrow (\pi_V \models \Phi(\alpha \geq 2))$$

$$(V(t, \alpha) = 1) \Rightarrow (\pi_V \models \Phi(\alpha \geq 1))$$

$$(V(h, \alpha) = -1) \Rightarrow (\pi_V \models \Phi(\alpha \leq -2))$$

526
We show that for any formula Φ, the proof of Proposition 5 implies that $V(h, \alpha) = 1$. The proof proceeds by structural induction:

- If $\alpha = a$ is an $N5$ literal, the above results are obvious by construction, since $\Phi(\alpha \geq 2) = N_s(a)$, $\Phi(\alpha = 2)$ is the same as $\Phi(\alpha \leq -2)$ and is $N_s(-a)$, etc., while $V(h, \alpha) = 1$ is the same as $E_h = a$, $V(h, -a) = -1$ is the same as $E_h = -a$, etc.
- The cases where α is of the form $\alpha_1 \land \alpha_2$ or $\sim \alpha_1$ are straightforward.
- Assume that α is of the form $\neg \alpha$. If $V(h, \neg \alpha_1) = 1$, we have $V(t, \alpha_1) \in \{1,0\}$ by definition, which means by induction that $\pi_V' \models \Phi(\alpha_1 \leq -1) \lor (\Phi(\alpha_1 \geq 0) \land \Phi(\alpha_1 \leq 0))$, which is equivalent to $\pi_V \models \Phi(\alpha_1 \leq 0)$, or equivalently $\pi_V \models \Phi(\alpha_1 = 0)$. Note that the case where $V(t, \alpha_1) = 0$ is impossible. The remaining cases are analogous.
- Assume that α is of the form $\alpha_1 \land \alpha_2 \land \alpha_3$. If $V(h, \alpha_1 \land \alpha_2) = 1$, we have that $V(h, \alpha_1) = 1$ or $V(h, \alpha_2) = 1$, and that $V(t, \alpha_1) = 1$ or $V(t, \alpha_2) = 1$. By induction, we have from $V(h, \alpha_1) = 1$ that $\pi_V \models \Phi(\alpha_1 \leq 0) = \Phi(\alpha_1 \leq 0) \land \Phi(\alpha_1 = 0) = \Phi(\alpha_1 = 0)$. From $V(h, \alpha_2) = 1$ we find by induction that $\pi_V(\alpha_2 \geq 1) = \Phi(\alpha_2 \geq 2)$. Hence, in any case we have $\pi_V \models \Phi(\alpha_1 \leq 0) \land \Phi(\alpha_2 \geq 1)$. This means that $\pi_V \models \Phi(\alpha_1 \land \alpha_2 \land \alpha_3) = 0$. The other cases are analogous.

Proof of Proposition 5

We show that for any formula α, it holds that

$$V(h, \alpha) = \begin{cases} 1 & \text{if } \pi \models \Phi(\alpha \geq 2) \\ -1 & \text{if } \pi \models \Phi(\alpha \leq -2) \\ 0 & \text{otherwise} \end{cases}$$

$$V(t, \alpha) = \begin{cases} 1 & \text{if } \pi \models \Phi(\alpha \geq 1) \\ -1 & \text{if } \pi \models \Phi(\alpha \leq -1) \\ 0 & \text{otherwise} \end{cases}$$

from which the proposition readily follows. We proceed by structural induction:

- The case where α is an atom follows immediately from the definition of V.
- The cases where α is of the form $\alpha_1 \land \alpha_2$ or $\sim \alpha_1$ are straightforward.
- If α is of the form $\neg \alpha_1$ and $\pi \models \Phi(\neg \alpha_1 \geq 2)$, we have $\pi \models \Phi(\alpha_1 \leq 0)$. This means that $\pi \not\models \Phi(\alpha_1 \geq 1)$, and thus by induction that $V(t, \alpha_1) \neq 1$, which means that $V(h, \neg \alpha_1) = 1$. The other cases are similar.

Proof of Proposition 7

We already know from Proposition 5 that V is a model of α. Now suppose that V were not h-minimal, i.e., there exists a model V' such that $V_i = V'_i$ and $V'_h \subseteq V_h$. Let π' be the possibility distribution corresponding to V', according to the construction from Proposition 4. Note that by Proposition 4 we have that π' is a model of $\Phi(\alpha \geq 2)$. We now consider two cases:

- Assume that $\alpha = \pi'$. Let a be an atom such that $V'(h, a) = 0$ and $V(h, a) = 1$, and assume for instance that $V(h, a) = 1$ (the case where $V(h, a) = -1$ is entirely analogous). Note that this entails that $V(t, a) = V'(t, a) = 1$. Moreover, because V has been obtained from π using the procedure of Proposition 5, $V(h, a) = 1$ means that $\pi = N_s(a)$. On the other hand, since π' was obtained from V' using the procedure of Proposition 4 and $V'(h, a) = 0$, we have $\pi' = I_i(a) \land I_i(a)$. Hence we have shown that V is h-minimal. Now assume that $\pi(\omega) \neq 1/2$ for every interpretation ω. Clearly, we then have that $\pi \models N_s(a)$ for every literal iff $\pi \models N_s(l)$ (as $\pi(\omega) > 0$ is the same as $\pi(\omega) = 1$ under the given assumption). By construction of V, we then immediately find that $V_h = V_i$.

Proof of Proposition 8

We first show that π is a minimally specific model.

- Assume that no negation as failure occurs in P, and suppose that π were not a minimally specific model of Θ. Let $\pi \neq \pi$ be a model of Θ such that $\pi(\omega) \geq \pi(\omega)$ for all interpretations ω. Then there exists an interpretation ω_0 such that $\pi(\omega_0) = 1/2$ and $\pi(\omega_0) = 1$, or $\pi(\omega_0) = 0$ and $\pi(\omega_0) = 1/2$. The former case would mean that we have a literal l such that $\omega_0 = l$, $V(h, l) = 0$, and $V(t, l) = 1$, which is not possible since $V(h, l) = V(t, l)$ in every equilibrium model. Thus, we would have $\pi(\omega_0) = 0$ and $\pi(\omega_0) = 1/2$. Then there is a literal l such that $\omega_0 = l$ and $V(h, l) = 1$. Let V' be the $N5$ model obtained from π using the procedure from Proposition 5. Then we know that V' is also an $N5$ model of Θ from Proposition 5. Since $\pi(\omega_0) = 0$, we have that $V(h, a) = 1$ and $V(t, a) = -1$. Hence V' differs from V in that there are some atoms a for which $V(h, a) \neq 0$, while $V'(h, a) = 0$, and possibly also $V'(t, a) = 0$.
Now let V'' be defined as $V''(h, a) = V'(h, a)$ and $V''(t, a) = V(t, a)$ for every atom a. It is easy to see that, because there are no occurrences of negation as failure or nested rules, from $V(t, a) = 1$ and $V'(h, a) = 1$, it follows that $V''(h, a) = 1$. This contradicts the assumption that V were h-minimal.

- In general, let $A = \{ l \mid V(t, l) = 1 \}$ be the answer set of P corresponding with V. Then we know that A is also an answer set of P^A. If we write $\Theta^A = \{ \alpha_1, \ldots, \alpha_n \}$ for the $N\delta$ logic theory corresponding with P^A, we have that V is an equilibrium model of Θ^A; and by the previous point, that π is a minimally specific model of $T^A = \{ \Phi(\alpha_1), \ldots, \Phi(\alpha_n) \}$. Now we consider a sequence Θ_i of $N\delta$ logic theories to go from $\Theta_0 = \Theta^A$ to $\Theta_m = \Theta$ and we show that after each step, π remains a minimally specific model of the corresponding GPL theory. We write T_i for the GPL theory that corresponds to Θ_i. Each step in the sequence corresponds to one occurrence of $\not\models l_i$ in the original program. There are two cases to consider:

- If $l_i \notin A$, then we need to add a conjunct of the form $\not\models l_i$ to the antecedent of some rules in Θ_{i-1}. By construction, if $l_i \notin A$ then $V(t, l_i) = V(h, l_i) \neq 1$ and $\pi = \Pi_s(\neg l_i)$. Then clearly π is still a model. The only models of T_i that are not models of T_{i-1} are models π' satisfying $\pi' \not\models \Pi_s(\neg l_i)$. However, such models π' cannot be more minimal than π, as $\Pi(\neg l_i) = 1 = \Pi'(\neg l_i)$.

- If $l_i \in A$, Θ_i will contain rules that do not correspond to any rule in Θ_{i-1}. However, the antecedent of these rules contains an occurrence of $\not\models l_i$, hence all of these rules will be satisfied by V and thus by π. Moreover, as adding formulas cannot increase the set of possibilistic models, π is still a minimally specific model of T_i.

By repeatedly applying these steps we arrive at $T_m = T$, showing that π is a minimally specific model of T.

Finally, we need to show that $\pi(\omega) \neq 1/2$ for any interpretation ω. Note that $\pi(\omega) = 1/2$ would mean that there is a literal l such that $\omega \models l$ and $V(h, l) = 0$ and $V(t, l) = -1$. However, this is not possible since V is an equilibrium model, and thus $V(t, l) = V(h, l)$ for any literal.

Proof of Proposition 9

Since π is Boolean, we have that $\pi \models N_w(l_i)$ iff $N(l_i) \geq 1/2$ iff $N(l_i) = 1$. In other words, as soon as $\pi \models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$ we also have that $\pi \models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m)$. As a result, we easily find that $\pi \models T'$ if $\pi \models T$ if $\pi \models T'$.

Moreover, it is easy to see that when π is a minimally specific model of T', we also have that π is minimally specific model of T. We now also show the converse.

Suppose that π were a minimally specific model of T, while there were a model $\pi' \neq \pi$ of T' such that $\pi'(\omega) \leq \pi'(\omega)$ for every world ω. Then clearly, π' cannot be a model of T, hence there must be a rule of the form (4) in Θ such that

\[\pi' \models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m) \rightarrow N_s(q_1) \lor \ldots \lor N_s(q_n) \]

\[\pi' \not\models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m) \rightarrow N_w(q_1) \lor \ldots \lor N_w(q_n) \]

Since $N_s(q_1) \lor \ldots \lor N_s(q_n) \models N_w(q_1) \lor \ldots \lor N_w(q_n)$, this is only possible if $\pi' \models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$ while $\pi' \not\models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m)$. Now let π'' be the possibility distribution defined by $\pi''(\omega) = 1$ if $\pi'(\omega) \geq 1/2$ and $\pi''(\omega) = \pi'(\omega) = 0$ otherwise. To complete the proof, it suffices to show that $\pi'' \models T$, as this contradicts our assumption that π were a minimally specific model of T.

Clearly, it holds that $\pi' \models N_s(l_i)$ iff $\pi' \models N_s(l_i)$. Hence any formula in T which corresponds to a fact will still be satisfied by π''. Regarding rules, it is useful to note that when $\pi' \models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$ while $\pi' \not\models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m)$ we will have that $\pi'' \not\models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$. Hence any rules that are satisfied by π but not by π'' will be satisfied by π''. If $\pi' \not\models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$ we also have $\pi'' \not\models N_w(l_i) \land \ldots \land \Pi_s(\neg p_m)$ as π'' is less specific than π, hence any rule which is trivially satisfied by π'' will be also satisfied by π''. Finally, if $\pi' \models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m)$, we also have $\pi'' \models N_s(l_i) \land \ldots \land \Pi_s(\neg p_m)$ as π'' is a model of T' by construction. Then we know that $\pi'' \models N_s(q_1) \lor \ldots \lor N_s(q_n)$ as π'' is a model of T'.

Proof of Proposition 10

Let us consider the following algorithm in Σ^P_2:

1. For each disjunction occurring in T at the meta-level, guess which disjunct should be satisfied. As a conjunction of formulas at the meta-level can be considered as a set of formulas, and negations at the meta-level can be avoided by “bringing them inside the modalities”, what we are left with is a set T_0 of formulas of the form $N_s(\alpha)$, $N_w(\alpha)$, $\Pi_s(\alpha)$ and $\Pi_w(\alpha)$. Let $K_s = \{ \alpha \mid N_s(\alpha) \in T_0 \}$, $K_w = \{ \alpha \mid N_w(\alpha) \in T_0 \}$, $C_s = \{ \alpha \mid \Pi_s(\alpha) \in T_0 \}$ and $C_w = \{ \alpha \mid \Pi_w(\alpha) \in T_0 \}$. Note that K_s, K_w, C_s and C_w are sets of propositional formulas.

2. For each $\alpha \in C_s$, check that $K_w \cup K_s \models \neg \alpha$. Furthermore, for each $\alpha \in C_w$, check that $K_s \models \neg \alpha$. If either of these checks fails, the algorithm returns fail. Moreover, if $K_w \cup K_s$ is inconsistent, always return fail.

3. Check that $K_s \models K_w$.

4. Return accept if $K_s \models \phi$ and fail otherwise.

Clearly, this algorithm is in Σ^P_2. To see why it correctly verifies whether there exists a minimally specific model π which is Boolean and for which $N(\phi) = 1$, it is useful to note that there is a one-to-one mapping between consistent disjunction-free theories of the form T_0 and the minimally specific models of T. It is not hard to show that the four steps correspond to checking that T_0 corresponds to a unique minimally specific model π of T. Moreover, checking whether π is Boolean is nothing else than verifying $K_s \models K_w$, which corresponds to the third step. The final step then verifies whether $N(\phi) = 1$ for N the necessity measure induced by π.

The complexity of decision problem ENT is shown entirely analogously.

References

the European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 805–816.

