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Abstract: Living cells are highly dynamic systems responding to a large variety of 
biochemical and mechanical stimuli over minutes, which are well controlled by e.g. optical 
tweezers. However, live cell investigation through fluorescence microscopy is usually limited 
not only by the spatial and temporal imaging resolution but also by fluorophore bleaching. 
Therefore, we designed a miniature light-sheet illumination system that is implemented in a 
conventional inverted microscope equipped with optical tweezers and interferometric tracking 
to capture 3D images of living macrophages at reduced bleaching. The horizontal light-sheet 
is generated with a 0.12 mm small cantilevered mirror placed at 45° to the detection axis. The 
objective launched illumination beam is reflected by the micro-mirror and illuminates the 
sample perpendicular to the detection axis. Lateral and axial scanning of both Gaussian and 
Bessel beams, together with an electrically tunable lens for fast focusing, enables rapid 3D 
image capture without moving the sample or the objective lens. Using scanned Bessel beams 
and line-confocal detection, an average axial resolution of 0.8 µm together with a 10-15 fold 
improved image contrast is achieved. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The detailed investigation of living cells represents one of the biggest challenges in optics, 
since cellular structures scale down to molecular dimensions with dynamics on millisecond 
timescales [1]. In addition, all live-cell studies based on fluorescence microscopy are limited 
by the lifetime of the fluorophores and their excited states. Fluorophores are destroyed after 
about 105 – 106 excitations, leading to exponential blackout (bleaching) and hence to the end 
of the imaging experiment. In addition, the fluorophores’ excited state lifetime of some 
nanoseconds limit the number of emitted photons per time and therefore restricts the signal-
to-noise ratio in the image at short integration times. A minimal integration time, on the other 
side, is necessary to achieve maximal temporal resolution in live cell imaging [2]. 

Light-sheet microscopy (LSM) [3, 4] is known to reduce photobleaching significantly [5], 
since only fluorophores in the focal plane are excited, but not those off-axis contributing to 
unnecessary background signals. In addition, LSM scans 3D objects plane-wise [3, 6] or line-
wise [7, 8] and is therefore significantly faster than point-scanning microscopy. 

Several schemes of light-sheet illumination are implemented apart from selective plane 
illumination microscopy (SPIM) to meet the specific requirements of different scientific 
communities. The published schemes include highly inclined laminated optical sheet (HILO) 
[9], inverted selective plane illumination microscopy (iSPIM) [10], reflected light-sheet 
microscopy (RLSM) [11], prism-coupled light-sheet Bayesian microscopy (LSBM) [12], 
single objective selective plane illumination microscopy (soSPIM) [13], swept confocally-
aligned planar excitation (SCAPE) microscopy [14] and oblique plane microscopy (OPM) 
[15]. Bruns et al. developed an add-on light-sheet module for inverted microscopes [16]. 

Light-sheet microscopy has also been combined with optical tweezers to mount the whole 
sample by optical forces [17] or to probe the mechanical properties of epithelial cell junctions 
in embryos [18]. However, most of these schemes are significantly different to conventional 
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3D images were recorded in 2 steps. First, the illumination beam was scanned in x-
direction during the integration time of the camera. The focus of the ETL was adjusted to 
image the illuminated plane onto the camera. Second, the illumination beam was shifted by 
Δz in horizontal z-direction to illuminate the next sample plane in a vertical distance Δy = Δz, 
through deflection of the 45° micro mirror (see inset of Fig. 2). Simultaneously, the focal 
power of the ETL was adjusted to image the next illumination plane. This process was 
repeated to obtain a 3D image stack. The axial scanning range (y-direction) was limited by 
the tuning range of the ETL, which limits the height of 3D images to 20 µm. To investigate 
different imaging modalities, we used line-confocal [25] and wide-field detection for both 
Gaussian and Bessel beams 

2. Materials and methods 

Mechanical parts required for precise placement of the mirror were custom designed using 
CAD software considering the space constraints of the PFM. As shown in Fig. 3(a), the fixed 
part was designed with 3 v-groves at 120° to each other to enable kinematic mounting. The 
removable part was assembled from 3 parts to provide various degrees of freedom to adjust 
the mirror during alignment and calibration. While the first part manufactured from 
Aluminum with 3 threaded holes aligned with v-groves of the fixed part, the second part was 
made of brass with v-groves running along the sides. This part glides over 4 screws from the 
sides, pushed by springs from the back against 2 screws at the front. Finally, the micro 
fabricated mirror was glued to the end of the third part using polymer based adhesive. This 
arrangement allows all 6 degrees of freedom to be adjusted, which is useful for precise light-
sheet alignment. The design is stable with a mirror placement precision of a few micrometers, 
when the removable part was taken off for sample or coverslip replacement. However, it 
should be noted that adjustments are not independent of each other, resulting in some extra 
calibration time. 

Mirrors were fabricated with in-house cleanroom processing using polished Silicon wafer 
(surface roughness < 50 nm rms). The dimensions of the mirror were constrained by the 
optical tweezers configuration, which should not be obstructed by light-sheet imaging. During 
initial experiments, two types of mirrors were designed with a width of 120 µm to enable 
maximum volume imaging. The type 1 mirror was fabricated with dicing of the Aluminum 
coated wafer as strips of mirror with width 120 µm as shown in Fig. 3(b). Due to their size, 
type 1 mirrors were difficult to bond to the mirror holder shown in Fig. 3(a). Therefore, a type 
2 mirror with broader mirror base (500 µm) was developed. However, the fabrication 
involved more steps including (i) oxide and nitride deposition, (ii) photolithography, (iii) 
reactive ion etching (RIE), (iv) resist stripping, (v) KOH etching, (vi) evaporation and (vii) 
dicing as shown in Fig. 3(b). 

The initial calibration of the setup was performed by imaging free floating fluorescence 
beads in water. The position of the micro mirror and the tilt of the scan mirror were adjusted 
to get the sharp image throughout the field of view. After calibration, living cells were placed 
in the sample chamber. Due to inherent beam spreading, a portion of the sample close to the 
coverslip was not illuminated. This made it necessary to lift the cells off the coverslip by 
some 50 µm. Therefore, cells were grown on a drop of matrigel on the coverslip that acted as 
support structure to lift the sample and enable illumination of entire cells. Images were 
captured with rolling shutter mode of the sCMOS camera (Hamamatsu Orca flash 4.0 V2) 
with a slit width of 4 pixels for line confocal detection [25, 26] and 400 pixels for non-
confocal detection. 3D image stacks (scanning in y-direction) were recorded with the tunable 
lens. With the 1.2 NA objective lens and the relay lenses L4 and L5, image stacks up to a 
depth of 20 µm were recorded. The operation of the microscope was controlled by custom 
software routines written in Python. The laser with wavelength of 491 nm was used for 
excitation as it was optimal for imaging macrophages labeled with LifeAct GFP. 
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image mammalian breast cancer cells in a cluster (Fig. 5(c)). The shape and the nuclei of the 
propidium iodide stained cells were visible although the sample was highly scattering. 

 

Fig. 5. (a) 3D section of primary macrophages grown on matrigel. (b) Top view images 
through primary macrophage, separated by 1.2 µm. (c) A section through cell spheroids 
containing mammalian cancer cells (cell line T47D). 

3.2 Scanned Bessel beams 

The achromatic lens was replaced by the axicon (see Fig. 2) to enable light-sheet illumination 
with scanned Bessel beams for further improvement in axial resolution. The line-confocal 
detection mode implemented in the sCMOS camera and in our self-written software 
suppresses the background fluorescence generated by the surrounding concentric ring system. 
The maximum projection of 190 nm beads diffusing through the beam (Fig. 6(a)) displays the 
surrounding concentric ring system [25, 27], which is characteristic to Bessel beams. The 
difference between line confocal and non-confocal detection is shown in Fig. 6(b, c) with xy 
cross-sections of fixed beads imaged with our miniature scanned Bessel beam light-sheet. The 
axial PSFs fitted with Gaussian function (Fig. 6(d)) clearly indicate the improvement in axial 
resolution with line confocal-detection. 

It can be seen that both the lateral and axial FWHM of the bead images (approximated 
PSF) hardly spread along the propagation direction of the Bessel beam (Fig. 7(a, b)). In 
addition, the mean non-confocal FWHM of 1.01 ± 0.08 µm µm was decreased by 23% to a 
0.78 ± 0.07 µm mean FWHM in line-confocal mode. This improvement is also validated in 
the MTFs averaged over 512 slices (Fig. 7(c, d)) and the corresponding line scans in axial and 
lateral directions. 

The lateral widths of the bead images (FWHM = 0.42µm) are always broader than of a 
PSF alone. Furthermore, a small broadening is caused by spherical aberrations induced by a 
slight refractive index mismatch of the gel embedding the beads, which were in a distance of 
50-100 µm to the coverslip. 
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Fig. 6. (a) Maximum projection of images of fluorescent beads (diameter = 190 nm) freely 
diffusing in water excited by a static Bessel beam. The image shows the thin, long and 
propagation-stable central maximum and the surrounding ring system of the Bessel beam. (b) 
and (c) xy-cross-section of the static beads imaged with line-confocal detection and non-
confocal detection. (d) Line scans of the beads in (b) and (c) show improvement in axial full-
width half-maximum (FWHM) with line confocal detection compared to non-confocal 
detection. 

 

Fig. 7. (a) and (b) Lateral and axial PSF widths (FWHM) along the propagation direction (z) 
for line-confocal and non-confocal detection. (c) The averaged modulation transfer functions 
(MTFs) show a frequency spectrum (logarithmic scale), which is broadened in ky-direction for 
line-confocal detection compared to non-confocal detection. (d) Horizontal line scans (in 
brown) and vertical (in blue) line scans through the MTF. 
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Fig. 8. J774 mouse macrophages grown on Matrigel were illuminated with Bessel beams and 
imaged in line confocal mode. (a) Side view and top views of deconvolved images at different 
heights. (b) 3D sections of deconvolved images. (c) Maximum projection of unprocessed 
images. (d) Maximum projection of deconvolved images. 

To demonstrate the live cell imaging capability of our miniature light-sheet system, live 
J774 mouse macrophages (labelled with LifeAct-GFP) grown on a Matrigel were imaged 
with Bessel beam illumination and line-confocal detection. The images shown in Fig. 8(a, b) 
were deconvolved with Microvolution (Microvolution, llc, USA) to demonstrate the near 
maximal possible quality. The xz-cross-sections at different heights show multiple cellular 
protrusions with very low background. In Fig. 8(c, d) the deconvolution effect is shown by 
the maximum projections of unprocessed and deconvolved images. Further comparison of an 
unprocessed image section from our setup with commercial microscopy techniques such as 
Epi-fluorescence or Confocal Spinning Disc (Fig. 9) shows the capability of our custom built 
Mini Bessel light-sheet setup. Our solution clearly outperforms epi-fluorescence, but cannot 
compete with confocal spinning disc, which is however not applicable in combination with 
PFM. 

 

Fig. 9. Comparison of unprocessed xy-cross-sections from 3D images of different J774 mouse 
macrophages recorded with our miniature Bessel beam light-sheet setup, with conventional 
Epi-fluorescence and with commercial Confocal Spinning disc microscopy. 
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A comparable miniature reflected light-sheet microscope (RLSM) [11], used an AFM 
cantilever and an opposing lens displaced relative to the objective lens. However, this 
prevents a combination with other optical techniques based on opposing objective lenses with 
a common optical axis. While Gebhardt et al. [11] introduced RLSM for single molecule 
tracking with reduced background, 3D imaging was not demonstrated, which is a key 
application in LSM. Furthermore, we do not need an opposing lens, since our micromirror is 
mounted kinematically on the stage. 

4. Summary and conclusion 

In this study we have presented a miniature light-sheet illumination system, which can be 
combined with an inverted high-NA light microscope and an optical tweezers setup, without 
the need for any microscope reconstruction. It consists of a cantilevered micro mirror, which 
is positioned by a standard kinematic mounting with baseplate fixed on the microscope frame. 

In our 3D LSM setup, we applied a reflecting area of 0.12 mm × 3 mm is sufficient to 
scan both Gaussian beams and Bessel beams through the focal plane of a NA = 1.2 water 
immersion lens using standard galvanometric scan mirrors. The same scan mirrors are used to 
displace the resulting light-sheet also in axial direction, thus keeping the setup relatively 
simple. The resulting scan volume was about ΔxΔyΔz ≈100 µm × 50 µm × 60 µm, the 
detection volume currently limited to Δy = 20µm due to the focal range of the electro optical 
tunable lens (ETL). Living cells can be placed inside or on top of gels of different 
mechanical/biochemical properties, which were mounted directly on a standard coverslip. 
Gels should not be too viscous to allow displacement of the cantilevered micro mirror. 

Our design motivation was to avoid any displacement of the cell on the coverslip during 
recordings to enable simultaneous experiments with optical tweezers. Here, a constant and 
stable trapping focus must hold a trapped particle (or bacteria) at a well-defined position 
relative to the cell periphery. In our application, the design geometry of the micro mirror was 
further constrained by a water dipping lens opposing the objective lens at a fixed distance, 
thus enabling fast 3D particle position tracking. However, another decisive advantage of not 
displacing the sample in axial direction, but of moving the scanned light-sheet up and down is 
imaging speed. Although not shown in this study, this allows 2D image acquisition at several 
hundred Hz [24] by refocusing the fluorescence light emitted inside the light-sheet onto the 
camera with an ETL. In this way 3D image stacks can be recorded sufficiently fast to 
investigate the complex dynamics of cells, in particular of cellular protrusions. 

We could show that scanned Gaussian and scanned Bessel beams in combination with 
line-confocal detection achieve a resolution of 0.42 µm laterally and 0.78 µm axially, while 
providing a more than 10-fold improved image contrast in comparison to conventional 
fluorescence microscopy. The images of living mouse macrophages, cells that have a rather 
dense cell cortex, are of high quality and provide excellent sectioning, as demonstrated in this 
study. Although experiments with optical tweezers have not been performed in this study, 
mounting living cells on top of the gel and approaching an optically trapped bead to the cell 
periphery is straightforward. We strongly believe that add-on systems to standard 
microscopes - similar to our presented system - will have great impact on future 3D life cell 
imaging applications, especially when speed and reduced fluorophore bleaching are of 
significant relevance. 
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