Dynamical analysis of fuzzy cellular neural networks with time-varying delays

Qianhong Zhang\(^1\)*, Lihui Yang\(^2\), Daixi Liao\(^3\)
\(^1\) Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang, Guizhou 550004, P.R.China
\(^2\) Department of Mathematics, Hunan City University, Yiyang, Hunan 413000, P. R. China
\(^3\) Basic Science Department, Hunan Institute of Technology, Hengyang, Hunan 421002, P. R. China
Email: zqianhong68@163.com; ll.hh.yang@gmail.com; liaodaixizaici@sohu.com

Abstract—In this paper, employing continuation theorem of the coincidence degree, and inequality technique, some sufficient conditions are derived to ensure global exponential stability and the existence of periodic solution for fuzzy cellular neural networks with time-varying delays. These results have important leading significance in the design and applications of globally stable neural networks. Moreover an example is given to illustrate the effectiveness and feasibility of results obtained.

Index Terms—fuzzy cellular neural networks, periodic solution, global exponential stability, time-varying delays

I. INTRODUCTION

Cellular neural network is formed by many units named cells, and that cell contains linear and nonlinear circuit elements, which typically are linear capacitor, linear resistor, linear and nonlinear controlled source, and independent sources. Nowadays, cellular neural networks (CNNs) are widely used in signal and image processing, associative memories, pattern classification [1]–[6]. In the last decade, dynamic behaviors of CNNs have been intensively studied because of the successful hardware implementation and their widely application (see, for example, [4]–[26]).

In this paper, we would like to integrate fuzzy operations into cellular neural networks. Speaking of fuzzy operations, Yang and Yang [27] first introduced fuzzy cellular neural networks (FCNNs) combining those operations with cellular neural networks. So far researchers have founded that FCNNs are useful in image processing, and some results have been reported on stability and periodicity of FCNNs [27]–[35]. However, to the best of our knowledge, few author investigated the stability of fuzzy cellular neural networks with time-varying delays. In this paper, we investigate the existence, and the global exponential stability of periodic solution for the following fuzzy cellular neural networks:

\[
x_i'(t) = -c_i(t)x_i(t) + \sum_{j=1}^{n} a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^{n} \alpha_{ij}(t)f_j(x_j(t - \tau_{ij}(t))) + \sum_{j=1}^{n} \beta_{ij}(t)f_j(x_j(t - \tau_{ij}(t))) + I_i(t) + \sum_{j=1}^{n} T_{ij}(t)u_j(t) + \sum_{j=1}^{n} H_{ij}(t)u_j(t)
\]

where \(i = 1, 2, \ldots, n\), \(n\) corresponds to the number of neurons in neural networks. For \(x_i(t)\) is the activations of the \(i\)th neuron at time \(t\), \(c_i(t)\) denotes the rate with which the \(i\)th neuron will reset its potential to the resting state in isolation when disconnected from the network and external inputs; \(\wedge\) and \(\vee\) denote the fuzzy AND and fuzzy OR operations. \(a_{ij}(t)\) denotes the strengths of connectivity between cell \(i\) and cell \(j\) at time \(t\). \(\alpha_{ij}(t), \beta_{ij}(t), T_{ij}(t)\) and \(H_{ij}(t)\) are elements of fuzzy feedback MIN template and fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward MAX template between cell \(i\) and \(j\) at time \(t\). \(\tau_{ij}(t)\) corresponds to the time delay required in processing and transmitting a signal from the \(j\)th cell to the \(i\)th cell at time \(t\). \(u_j(t)\) and \(I_i(t)\) denote the external input, bias of the \(i\)th neurons at time \(t\), respectively. \(f_j(\cdot)\) is signal transmission functions.

Throughout the paper, we give the following assumptions

\begin{enumerate}
 \item[(A1)] \(|f_j(x)| \leq p_j|x| + q_j\) for all \(x \in R, j = 1, 2, \ldots, n\), where \(p_j, q_j\) are nonnegative constants.
 \item[(A2)] The signal transmission functions \(f_j(\cdot), (j = 1, 2, \ldots, n)\) are Lipschitz continuous on \(R\) with Lipschitz constants \(p_j\), namely, for any \(x, y \in R\),
\[
|f_j(x) - f_j(y)| \leq p_j|x - y|, \quad f_j(0) = 0.
\]
\end{enumerate}

Definition 1: If \(f(t) : R \to R\) is a continuous function, then the upper right derivative of \(f(t)\) is defined as
\[
D^+ f(t) = \lim_{h \to 0^+} \sup \frac{1}{h} (f(t + h) - f(t)).
\]
Let $\tau = \max_{1 \leq i, j \leq n} \sup_{t \geq 0} \{\tau_{ij}(t)\}$. For continuous functions φ_i defined on $[-\tau, 0]$, $i = 1, 2, \cdots, n$, we set $\Psi = (\varphi_1, \varphi_2, \cdots, \varphi_n)^T$. If $\pi(t) = (\pi_1(t), \pi_2(t), \cdots, \pi_n(t))^T$ is an ω-periodic solution of system (1), then we denote
\[
\|\Psi - \pi\| = \sum_{i=1}^n \left(\sup_{-\tau \leq t \leq 0} |\varphi_i(t) - \pi_i(t)| \right).
\]
Assume that system (1) is supplemented with initial value
\[x_i(0) = \varphi_i(t), \quad -\tau \leq t \leq 0.
\]
Definition 2: The periodic solution $\pi(t) = (\pi_1(t), \pi_2(t), \cdots, \pi_n(t))^T$ is said to be globally exponentially stable. If there exist constants $\lambda > 0$ and $M > 0$ such that for any solution $x(t) = (x_1(t), x_2(t), \cdots, x_n(t))^T$ of system (1)
\[|x_i(t) - \pi_i(t)| \leq M|\Psi - \pi|e^{-\lambda t}, \quad t \geq 0.
\]
Lemma 1: (see [26]) If $\rho(K) < 1$ for matrix $K = (k_{ij})_{n \times n} \geq 0$, then $(E - K)^{-1} \geq 0$, where E denotes the identity matrix of size n.

Lemma 2: (see [27]) Suppose x and y are two states of system (1), then we have
\[
\left| \bigcap_{j=1}^n \alpha_{ij}(t) f_j(x) - \bigcap_{j=1}^n \alpha_{ij}(t) f_j(y) \right| \leq \sum_{j=1}^n |\alpha_{ij}(t)||f_j(x) - f_j(y)|,
\]
and
\[
\left| \bigcap_{j=1}^n \beta_{ij}(t) f_j(x) - \bigcap_{j=1}^n \beta_{ij}(t) f_j(y) \right| \leq \sum_{j=1}^n |\beta_{ij}(t)||f_j(x) - f_j(y)|.
\]

The remainder of this paper is organized as follows. In Section 2, we will give the sufficient conditions to ensure the existence of periodic oscillatory solution for fuzzy cellular neural networks with time-varying delays, and show that all other solutions converge exponentially to it as $n \to \infty$. In Section 3 an example will be given to illustrate effectiveness of our results obtained. We will give a general conclusion in Section 4.

II. PERIODIC OSCILLATORY SOLUTIONS

In this section, we will consider the periodic oscillatory solutions of system (1) with $\tau_{ij}(t), c_i(t), a_{ij}(t), \alpha_{ij}(t), \beta_{ij}(t), T_{ij}(t), H_{ij}(t), u_j(t)$ and $I_i(t)$ satisfying the following assumptions:

(A3) $\tau_{ij} \in C(R, [0, \infty))$ are periodic solutions with period ω for $i, j = 1, 2, \cdots, n$.

(A4) $c_i \in C(R, (0, \infty)), a_{ij}, \alpha_{ij}, \beta_{ij}, T_{ij}, H_{ij}, u_j, I_i \in C(R, R)$ are periodic solutions with common period ω, and $f_k \in C(R, R), i, j = 1, 2, \cdots, n$.

We will use the coincidence degree theory to obtain the existence of an ω-periodic solution to system (1). For the sake of convenience, we briefly summarize the theory as below.

Let X and Z be normed spaces, $L : DomL \subset X \to Z$ be a linear mapping and $N : X \to Z$ be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if dim Ker $L = codim$ Im $L < \infty$ and Im L is closed in Z. If L is a Fredholm mapping of index zero, then there exist continuous projectors $P : X \to X$ and $Q : Z \to Z$ such that $ImP = KerL$ and Im $L = KerQ = Im(I - Q)$. It follows that $L|_{DomL \cap KerP} : (I - P)X \to ImL$ is invertible. We denote the inverse of this map by K_p. If Ω is a bounded open subset of X, the mapping N is called L-compact on Ω, if $QN(\Omega)$ is bounded and $K_p(I - Q)N : \Omega \to X$ is compact. Because ImQ is isomorphic to $KerL$, there exists an isomorphism $J : ImQ \to KerL$.

Let $\Omega \subset R^n$ be open and bounded, $f \in C^1(\bar{\Omega}, R^n) \cap C(\Omega, R^n)$ and $y \in R^n f(JK(t) \cup S_f)$, i.e., y is a regular value of f. Here, $S_f = \{x \in \Omega : Jf(x) = 0\}$, the critical set of f, and Jf is the Jacobian of f at x. Then the degree $\deg f, \Omega, y$ is defined by
\[
\deg \{f, \Omega, y\} = \sum_{x \in f^{-1}(y)} \text{sgn} Jf(x)
\]
with the agreement that the above sum is zero if $f^{-1}(y) = \emptyset$.

Lemma 3: Let L be a Fredholm mapping of index zero and let N be L-compact on Ω. Suppose that (a) for each $\lambda \in (0, 1)$, every solution x of $Lx = \lambda Nx$ is such that $x \notin \partial \Omega$.

(b) $QNx \neq 0$ for each $x \in \partial \Omega \cap KerL$ and
\[
\deg \{JQ(N \cap KerL, 0) \neq 0.
\]
Then the equation $Lx = Nx$ has at least one solution lying in $DomL \cap \Omega$.

To be convenience, in the rest of paper, for a continuous function $g : [0, \omega) \to R$, we denote
\[
g^+ = \max_{t \in [0, \omega]} g(t), \quad g_- = \min_{t \in [0, \omega]} g(t), \quad \bar{g} = \frac{1}{\omega} \int_0^\omega g(t) dt.
\]

Theorem 1: Under assumptions (A1), (A3) and (A4), $k_{ij} = \left(\frac{1}{2} + \omega \right)(|\pi_{ij}| + |\pi_{ji}|)|p_j|, K = (k_{ij})_{n \times n}$. Suppose that $\rho(K) < 1$, then system (1) has at least an ω-periodic solution.

Proof: Take $X = Z = \{x(t) = (x_1(t), x_2(t), \cdots, x_n(t))^T \in C(R, R^n) : x(t + \omega) = x(t), t \in R\}$ and denote $\|x\| = \max_{1 \leq i \leq n} \max_{t \in [0, \omega]} |x_i(t)|$. Equipped with the norm $\| \cdot \|$, both X and Z are Banach space.

For any $x(t) \in X$, it is easy to check that
\[
\Theta(x_i, t) := -c_i(t) x_i(t) + \sum_{j=1}^n a_{ij}(t) f_j(x_j(t))
\]
\[+ \sum_{j=1}^n (\alpha_{ij}(t) f_j(x_j(t) - \tau_{ij}(t) \quad \tau_{ij}(t) \in C(R, [0, \infty)) \text{ are periodic solutions with period } \omega \text{ for } i, j = 1, 2, \cdots, n.
\]

© 2012 ACADEMY PUBLISHER
\[+ \sum_{j=1}^{n} \beta_{ij}(t)f_j(x_j(t - \tau_{ij}(t))) + I_i(t) \]
\[+ \sum_{j=1}^{m} T_{ij}(t)u_j(t) + \sum_{j=1}^{n} H_{ij}(t)u_j(t) \in Z \]

Let \(L : \text{Dom} L = \{ x \in X : x \in C([0, R^n]) \} \ni x \mapsto \dot{x}(\cdot) \in Z \).

\[P : X \ni x \mapsto \frac{1}{\omega} \int_{0}^{\omega} x(t)dt \in X. \]

\[Q : Z \ni z \mapsto \frac{1}{\omega} \int_{0}^{\omega} z(t)dt \in Z, \]

\[N : X \ni x \mapsto \Theta(x, \cdot) \in Z. \]

For any \(V = (v_1, v_2, \ldots, v_n) \in \mathbb{R}^n \), we identify it as the constant function in \(X \) or \(Z \) with the value vector \(V = (v_1, v_2, \ldots, v_n) \). Then system (1.1) can be reduced to operator equation \(Lx = Nx \). It is easy to see that \(\text{Ker} L = \mathbb{R}^n \), \(\text{Im} L = \{ z \in Z : \frac{1}{\omega} \int_{0}^{\omega} z(t)dt = 0 \} \).

Which is closed in \(Z \), \(\dim \text{Ker} L = \dim \text{Im} L = n < \infty \), and \(P, Q \) are continuous projectors such that \(\text{Im} P = \text{Ker} L \), \(\text{Ker} Q = \text{Im} L = \text{Im} (I - Q) \). It follows that \(L \) is a Fredholm mapping of index zero. Furthermore, the generalized inverse to \(L \) \(K_p : \text{Im} L \mapsto \text{Ker} P \cap \text{Dom} L \) given by

\[(K_p(z))(t) = \int_{0}^{t} z(s)ds - \frac{1}{\omega} \int_{0}^{\omega} \int_{0}^{n} z_i(v)dvds. \]

Therefore, applying the Arzela-Ascoli theorem, one can easily show that \(N \) is \(L \)-compact on \(\Omega \) with any bounded open subset \(\Omega \subset X \). Since \(\text{Im} Q = \text{Ker} L \), we take the isomorphism \(J \) of \(\text{Im} Q \) onto \(\text{Ker} L \) to be the identity mapping.

Note that each \(x_i(t) \) is continuously differentiable for \(i = 1, 2, \ldots, n \). Set \(F = (F_1, F_2, \ldots, F_n)^T \), where

\[F_i = \left(\frac{1}{c_i} + \omega \right) \left\{ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \sum_{j=1}^{n} \left| T_{ij} \right| |u_j| + \sum_{j=1}^{n} \left| H_{ij} \right| |u_j| + \left| I_i \right| \right\} \]

In view of \(\rho(K) < 1 \) and Lemma 1, we have \((E - K)^{-1}F = h = (h_1, h_2, \ldots, h_n)^T \geq 0 \). where \(h_i \) is given by

\[h_i = \sum_{j=1}^{n} k_{ij}h_j + F_i, \quad i = 1, 2, \ldots, n. \]

Then, for \(t \in [t_i, t_{i+1} + \frac{1}{\omega}] \), we have

\[| x_i(t) | \leq | x_i(t_i) | + \int_{t_i}^{t} D^+ |x_i(t)|dt \leq | x_i(t) | + \int_{t_i}^{t_{i+1} + \frac{1}{\omega}} D^+ |x_i(t)|dt \leq \frac{1}{c_i} \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) p_j |x_j|^+ \]

\[+ \sum_{j=1}^{n} \left| T_{ij} \right| |u_j| + \sum_{j=1}^{n} \left| H_{ij} \right| |u_j| + \left| I_i \right| \]

Noting assumption (A1), we get

\[| x_i|_{\Omega} \leq \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) p_j |x_j|^+ \]

\[+ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \left| I_i \right| \]

\[+ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \left| I_i \right| \]

Note that each \(x_i(t) \) is continuously differentiable for \(i = 1, 2, \ldots, n \), it is certain that there exists \(t_i \in [0, \omega] \) such that \(x_i(t_i) = |x_i(t)| \). Set \(F = (F_1, F_2, \ldots, F_n)^T \), where

\[F_i = \left(\frac{1}{c_i} + \omega \right) \left\{ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j \right\} \]

\[+ \sum_{j=1}^{n} \left| T_{ij} \right| |u_j| + \sum_{j=1}^{n} \left| H_{ij} \right| |u_j| + \left| I_i \right| \]

\[c_i(t,x(t))dt \]

\[\int_{0}^{\omega} c_i(t,x(t))dt \]

\[+ \sum_{j=1}^{n} \left(\frac{1}{c_i} \right) \left\{ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) p_j |x_j|^+ \right\} \]

\[+ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \left| I_i \right| \]

\[+ \sum_{j=1}^{n} \left(|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}| \right) q_j + \left| I_i \right| \]
Clearly, $h_i, i = 1, 2, \cdots, n$, are independent of λ. Then for $\forall \lambda \in (0, 1)$, $x \in \partial \Omega$ such that $Lx \neq \lambda Nx$. When $u = (x_1, x_2, \cdots, x_n)^T \in \partial \Omega \cap \text{Ker} L = \partial \Omega \cap R^n$, u is a constant vector with $|x_i| = h_i, i = 1, 2, \cdots, n$. Note that $QN u = JQN u$, when $u \in \text{Ker} L$, it must be
\[(QN)u_i = -c_i x_i + \sum_{j=1}^{n} (\alpha_{ij} + \alpha_{ij} + \beta_{ij}) p_j |x_j| + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
We claim that
\[\|(QN u)_i\| > 0, \quad i = 1, 2, \cdots, n. \quad (13)\]
On the contrary, suppose that there are some i such that $\|(QN u)_i\| = 0$, namely
\[c_i x_i + \sum_{j=1}^{n} (\alpha_{ij} + \alpha_{ij} + \beta_{ij}) f(x_j) + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
Then we have
\[h_i = |x_i| = \left. \frac{1}{c_i} \right| \sum_{j=1}^{n} (\alpha_{ij} + \alpha_{ij} + \beta_{ij}) f(x_j) + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
\[\leq \left. \frac{1}{c_i} \right| \sum_{j=1}^{n} (|\alpha_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j |x_j| + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
\[= \sum_{j=1}^{n} k_{ij} h_j + F_j \quad (15)\]
Which is a contradiction. Therefore (13) holds and $QN u \neq 0$, for $u \in \partial \Omega \cap \text{Ker} L = \partial \Omega \cap R^n$. \quad (16)
Consider the homotopy $\Phi : (\Omega \cap \text{Ker} L) \times [0, 1] \to \Omega \cap \text{Ker} L$ defined by
\[\Phi(u, \mu) = \mu \text{diag}(\sigma_1, -\sigma_2, \cdots, -\sigma_n) u + (1 - \mu) QN u \quad (17)\]
Note that $\Phi(\cdot, 0) = JQN$. If $\Phi(u, \mu) = 0$, then we have
\[|x_i| = \frac{1 - \mu}{c_i} \sum_{j=1}^{n} (|\alpha_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) f(x_j) + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
\[\leq \frac{1}{c_i} \left(\sum_{j=1}^{n} (|\alpha_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j |x_j| + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \right) \]
\[< \left. \frac{1}{c_i} + \omega \right| \sum_{j=1}^{n} (|\alpha_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j |x_j| + \sum_{j=1}^{n} T_{ij} |x_j| + \sum_{j=1}^{n} H_{ij} |x_j| + T_i \]
\[= \sum_{j=1}^{n} k_{ij} h_j + F_j \quad (18)\]
Therefore $\Phi(u, \mu) \neq 0$ for any $(u, \mu) \in (\Omega \cap \text{Ker} L)$.

It follows from the property of invariance under homotopy that
\[
\begin{align*}
\text{deg} \{JQN, \Omega \cap \text{Ker} L, 0\} &= \text{deg} \{\Phi(\cdot, 0), \Omega \cap \text{Ker} L, 0\} \\
&= \text{deg} \{\Phi(\cdot, 1), \Omega \cap \text{Ker} L, 0\} \\
&= \text{deg} \{\text{diag}(-\sigma_1, -\sigma_2, \cdots, -\sigma_n)\} \\
&\neq 0
\end{align*}
\]
Thus, we have shown that Ω satisfies all the assumptions of Lemma 3. Hence, $Lu = Nu$ has at least one ω-periodic solution on $\text{Dom} L \cap \Omega$. \(\blacksquare\)
Theorem 2: Let $\tau = \max_{1 \leq i, j \leq n, t \in [\omega, \omega)} \{\tau_{ij}(t)\}$. Suppose that (A2), (A3) and (A4) hold, $\rho(K) < 1$, and that
\[
\bar{c}_i - \sum_{j=1}^{n} (|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j e^{\bar{c}_j \tau} > 0
\] (19)
then system (1) has exactly one ω-periodic solution $\bar{x}(t)$. Moreover it is globally exponentially stable.

Proof: Let $C = C([-\tau, 0], R^n)$ with the norm $\|\varphi\| = \sup_{s \in [-\tau, 0]} \|\varphi(s)\|$. From (A2), we can get $|f_j(u)| \leq p_j |u|$ and $|f_j(0)| = p_j |j|, j = 1, 2, \ldots, n$. Hence all hypotheses in Theorem 1 with $q_j = f_j(0) = 0$ hold. Thus system (1) has at least one ω-periodic solution, say $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T$. Let $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T$ be an arbitrary solution of system (1.1). Calculating the right derivative $D^+ |x_i(t) - \bar{x}(t)|$ of $|x_i(t) - \bar{x}(t)|$ along the solutions of system (1).

Thus, for $t > t_0$, we have
\[
D^+ (z_i(t)) e^{\bar{c}_i(t) s} \leq \sum_{j=1}^{n} (|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j e^{\bar{c}_j \tau} > 0
\] (22)

It follows that
\[
z_i(t) e^{\bar{c}_i(t) s} \leq \sum_{j=1}^{n} (|a_{ij}| + |\alpha_{ij}| + |\beta_{ij}|) p_j e^{\bar{c}_j \tau}
\] (23)

Therefore
\[
e^{\bar{c}_i(t) s} \int_{t_0}^{t} e^{\bar{c}_i(t) s} ds = e^{\bar{c}_i(t) s} \int_{t_0}^{t} e^{\bar{c}_i(t) s} ds \leq e^{\bar{c}_i(t) s} \int_{t_0}^{t} e^{\bar{c}_i(t) s} ds
\] (24)

By Gronwall’s inequality, we obtain, for $t \geq t_0$,
\[
\int_{t_0}^{t} e^{\bar{c}_i(t) s} ds \leq e^{\bar{c}_i(t) t} \int_{t_0}^{t} e^{\bar{c}_i(t) s} ds
\] (25)

where
\[
\gamma_{ij}(u) = |a_{ij}(u)| + |\alpha_{ij}(u)| + |\beta_{ij}(u)|.
\]

Let $t_0 = 0$, for $t \geq 0$, $[s]$ denotes the largest integer less than or equal to s. Noting that $\left(\frac{s}{\bar{c}_i}\right) \geq \frac{s}{\bar{c}_i} - 1$ and (19), we get
\[
\int_{t_0}^{t} e^{\bar{c}_i(t) s} ds \leq e^{\bar{c}_i(t) t} \int_{t_0}^{t} e^{\bar{c}_i(t) s} ds
\] (26)
where $M = \max_{1 \leq i \leq n} \{e^{c_i t^2}\}, \lambda = \min_{1 \leq i \leq n} \{\pi_i - \sum_{j=1}^{n} (|\pi_{ij}| + |\pi_{ji}|) |p_j e^{c_j t^2}| \}. \text{ From (27), it is clear that periodic solution} \pi_i(t) \text{ is globally exponentially stable.}

\[\text{Remark 1.} \] \text{To the best of our knowledge, few authors have considered the existence of periodic solution and global exponential stability for model (1) with coefficients and delays all periodically varying in time. We only find [35] in existing work, however, it is assumed in [35] that coefficients are constants and only delays $\tau_j(t)$ vary in time. Especially, the authors of [35] suppose that $f_i, i = 1, 2, \ldots, n$ are strictly nondecreasing. In this work, $f_i, i = 1, 2, \ldots, n$ are only assumed to satisfying (A1) and (A2). It is clear that $f_i, i = 1, 2, \ldots, n$ can not be strictly monotone. Obviously our model is more general. Therefore, our results are more convenient when design a fuzzy cellular neural networks.}

III. AN ILLUSTRATIVE EXAMPLE

In this section, we give an example to illustrate our results.

\[\text{Example 1.} \] \text{Consider the following fuzzy cellular neural networks with delays}

\[
\begin{align*}
x_1'(t) &= -c_1(t)x_1(t) + \sum_{j=1}^{2} a_{1j}(t)f_j(x_j(t)) + \sum_{j=1}^{2} \alpha_{1j}(t)f_j(x_j(t) - \tau_{1j}(t)) + I_1(t) \\
x_2'(t) &= -c_2(t)x_2(t) + \sum_{j=1}^{2} a_{2j}(t)f_j(x_j(t)) + \sum_{j=1}^{2} \alpha_{2j}(t)f_j(x_j(t) - \tau_{2j}(t)) + I_2(t)
\end{align*}
\]

\[(28) \]

where

\[
\begin{align*}
c_1(t) &= 4 + \sin t, \quad c_2(t) = 3 + \cos t, \quad f_1(x) = \sin \left(\frac{1}{3}x\right), \\
f_2(x) &= \sin \left(\frac{1}{4}x\right), \quad a_{11}(t) = a_{21}(t) = \frac{1}{40} + \sin t, \\
a_{12}(t) &= a_{22}(t) = \frac{1}{20} + \cos t, \quad \alpha_{11}(t) = \alpha_{21}(t) = \frac{1}{60} + \sin t, \\
\alpha_{12}(t) &= \alpha_{22}(t) = \frac{1}{30} + \cos t, \quad \beta_{11}(t) = \beta_{21}(t) = \frac{1}{30} + \sin t, \\
\beta_{12}(t) &= \beta_{22}(t) = \frac{1}{15} + \cos t, \quad T_{11}(t) = T_{21}(t) = \frac{1}{10} + \cos t, \\
T_{12}(t) &= T_{22}(t) = \frac{1}{20} + \sin t, \quad H_{11}(t) = H_{21}(t) = \frac{1}{20} + \cos t, \\
H_{12}(t) &= H_{22}(t) = \frac{1}{10} + \sin t, \quad I_1(t) = I_2(t) = 20 + \sin t,
\end{align*}
\]

\[u_1(t) = u_2(t) = 10 + \cos t, \quad \tau_{11}(t) = \tau_{21}(t) = 0.005(1 + \sin t), \quad \tau_{12}(t) = \tau_{22}(t) = 0.003(1 + \cos t). \]

Furthermore, we have

\[
\begin{align*}
\pi_1 &= 4, \quad \pi_2 = 3, \quad |\pi_{11}| + |\pi_{11}| + |\beta_{11}| = \frac{3}{40}, \\
|\pi_{12}| + |\pi_{12}| + |\beta_{12}| &= \frac{3}{20} |\pi_{21}| + |\pi_{21}| + |\beta_{21}| = \frac{3}{40}, \\
|\pi_{22}| + |\pi_{22}| + |\beta_{22}| &= \frac{3}{20} c_1^2 = 5, \quad c_2^2 = 4, \quad p_1 = \frac{1}{3}, \quad p_2 = \frac{1}{4}.
\end{align*}
\]

By some simple calculations, we obtain

\[K = \left[\begin{array}{cc} 5 \pi + 1 & 24 \pi + 1 \\ 10 \pi + 1 & 60 \pi + 1 \end{array} \right], \quad \rho(K) \approx 0.4936 < 1 \]

It is easy to verify that all the conditions of Theorem 2 are satisfied. Therefore, system (28) has an exponentially stable 2π-periodic solution.

IV. CONCLUSION

In this paper, we have studied the existence, and exponential stability of the periodic solution for fuzzy cellular neural networks with time-varying delays. Some sufficient conditions set up here are easily verified and these conditions are correlated with parameters and time delays of the system (1). The obtained criteria can be applied to design globally exponentially periodic oscillatory fuzzy cellular neural networks.

ACKNOWLEDGMENT

We would like to extend our thanks to the referees for their suggestions which certainly improved the exposition of this paper. This work is partially supported by the Doctoral Foundation of Guizhou University of Finance and Economics, and supported by the Scientific Research Foundation of Guizhou Science and Technology Development (Dynamics of Impulsive Fuzzy Cellular Neural Networks with Delays).

REFERENCES

Qianhong Zhang received the M.S. degree from Southwest Jiaotong University, Chengdu, China in 2004, and the Ph. D degree from Central South University, Changsha, China in 2009, all in mathematics or applied mathematics.

From April 2004 to December 2009, he was a Lecturer of Hunan Institute of Technology, Hengyang, Hunan, China. In January 2010, he joined Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang, China. He is currently an Associate Professor of Guizhou College of Finance and Economics. He also is the author or coauthor of more than 30 journal papers. His research interests include nonlinear systems, neural networks, fuzzy differential and fuzzy difference equation and stability theory.

Lihui Yang received the M. S. degree in department of applied mathematics from Southwest Jiaotong University, Chengdu, China in 2005.

From July 2005 to June 2008, he was with Huaiyin Institute of Technology, Hua’an, Jiangsu, China. In July 2008, he joined Department of Mathematics, Hunan City University, Yiyang, Hunan, China. He is currently a Lecturer of Hunan City University. He also is the author or coauthor of more than 20 journal papers. His research interests include neural networks and fuzzy systems.

Daixi Liao received the B. S. degree in 2003 and the M. S. in 2009 from Xiangtan University, Xiangtan, Hunan, China, all in mathematics.

He is currently a Lecturer of Hunan Institute of Technology, Hengyang, Hunan, China. His current research interests include neural networks and nonlinear systems.