An Analysis of Approaches to XML Schema Inference

Irena Mlynkova

irena.mlynkova@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering
Prague, Czech Republic
Overview

1. Introduction
2. Existing approaches
3. Open issues
4. Conclusion
Introduction

• XML = a standard for data representation and manipulation
• XML documents + XML schema
 • Allowed data structure
 • W3C recommendations: DTD, XML Schema (XSD)
 • ISO standards: RELAX NG, Schematron, …
• Why schema?
 • Known structure, valid data, limited complexity of processing, …
 ⇒ Optimization of XML processing
 • Storing, querying, updating, compressing, …
Real-World XML Schemas

• Statistical analyses of real-word XML data:
 • 52% of randomly crawled / 7.4% of semi-automatically collected documents: no schema
 • 0.09% of randomly crawled / 38% of semi-automatically collected documents with schema: use XSD
 • 85% of randomly crawled XSDs: equivalent to DTDs

• Problem:
 • Users do not use schemas at all
 • Extreme opinion: I do not want to follow the rules of an XML schema in my XML data.
 • Schema = a kind of documentation
 • Documents are not valid, schemas are not correct

Mlynkova, Toman, Pokorny: Statistical Analysis of Real XML Data Collections.
Inference of XML Schemas

- **Solution:**
 - Automatic inference of XML schema S_D for a given set of documents D
 \Rightarrow **Multiple solutions**
 - Too general = accepts too many documents
 - Too restrictive = accepts only D

- **Advantages:**
 - $S_D = a$ good initial draft for user-specified schema
 - $S_D = a$ reasonable representative when no schema is available
 - User-defined XML schemas are too general (*, +, recursion, …) $\Rightarrow S_D$ can be more precise
An extended context-free grammar is quadruple $G = (N, T, P, S)$, where N and T are finite sets of nonterminals and terminals, P is a finite set of productions and S is a non terminal called a start symbol. Each production is of the form $A \rightarrow \alpha$, where $A \in N$ and α is a regular expression over alphabet $N \cup T$.

Given the alphabet Σ, a regular expression (RE) over Σ is inductively defined as follows:

- \emptyset (empty set) and ϵ (empty string) are REs
- $\forall a \in \Sigma : a$ is a RE
- If r and s are REs over Σ, then (rs) (concatenation), $(r|s)$ (alternation) and (r^*) (Kleene closure) are REs

- DTD adds: $(s|\epsilon) = (s?)$, $(s \ s^*) = (s+)$, concatenation = ','
- XML Schema adds: unordered sequence
Classification of Approaches

- **Type of the result (DTD vs. XSD)**
 - DTDs are most common
 - Some works infer XSDs, but with expressive power of DTD
 - Key aim: Inference of REs (content models)

- **The way we construct the result**
 - **Heuristic** = no theoretic basis
 - Generalization of a trivial schema
 - Rules: “If there are > 3 occurrences of E, it can occur arbitrary times” \(\Rightarrow E^* \) or \(E^+\)
 - **Inferring a grammar** = inference of a set of regular expressions
 - Gold's theorem: Regular languages are not identifiable in the limit only from positive examples (valid XML documents)
 \(\Rightarrow\) Inference of subclasses of regular languages
Classical Steps

1. Derivation of initial grammar (IG)
 • For each element E and its subelements E_1, E_2, ..., E_n we create
 production $E \rightarrow E_1 \ E_2 \ ... \ E_n$

2. Clustering of rules of IG
 • According to element names vs. broader context

3. Construction of prefix tree automaton (PTA) for each cluster

4. Generalization of PTAs
 • Merging state algorithms

5. Inference of simple data types and integrity constraints
 • Often ignored

6. Refactorization
 • Correction and simplification of the derived REs

7. Expressing the inferred REs in target XML schema language
 • Most common: Direct rewriting of REs to content models
Step 1: Initial Grammar

...<person id="123">
 <name>
 <first>Irena</first>
 <surname>Mlynkova</surname>
 </name>
 <email>irena.mlynkova@gmail.com</email>
 <email>irena.mlynkova@mff.cuni.cz</email>
</person>
<person id="456" holiday="yes">
 <name>
 <surname>Necasky</surname>
 <first>Martin</first>
 </name>
 <phone>123-456-789</phone>
 <email>martin.necasky@mff.cuni.cz</email>
</person>
...
Step 2: Clustering
Step 3: Construction of PTA

person \rightarrow name email email
person \rightarrow name phone email

person:

1 2 4 5

1 6 7

name email email phone email
Step 4. PTA Generalization

- person \rightarrow name email address
- person \rightarrow name address

- person \rightarrow name email address
- person \rightarrow name phone address

Diagram:

1. name
2. email
3. address
4.
5. address
6. phone

Diagram:

1. name
2. email
3. address
4.
5. phone
6. address

Diagram:

1. name
2. email
3. address
4.
5. phone
6. address
Heuristic Approaches

• Various generalization rules
 • Observations of real-world data, common prefixes, suffixes, …

• Generalization process
 • Generalize IG until a satisfactory solution is reached
 • Problem: wrong step
 • Generate a set of candidates and choose the optimal one
 • Problem: space overhead

• How to generalize
 • Until any rule can be applied
 • Until a better schema can be found
 • Problems:
 • Evaluation of quality of schemas (MDL principle)
 • Efficient search strategy (greedy search vs. ACO heuristics)

Conciseness = bits required to describe schema
Preciseness = bits required for description of input data using schema
Approaches Inferring a Grammar

• Common idea: regular languages are not identifiable in the limit from positive examples
 ⇒ inferring a subclass that can be
• Difference: The selected class of languages
 • k-contextual, (k,h)-contextual = having a limited context
 • f-distinguishable = having a distinguishing function
 • single-occurrence REs, chain REs, k-local single-occurrence = simple types of REs occurring in real-world XML schemas
• Approaches: Merging state algorithms
 • Merging criteria are given by the language class directly

• Note: Necessary requirement of W3C = 1-unambiguity
 • Deterministic content models
 • Example: (A,B) | (A,C) vs. A, (B | C)
 • Often ignored
Overview

1. Introduction
2. Existing approaches
3. Open issues
4. Conclusion
1. User Interaction

- Existing approaches: Automatic inference of an XML schema
- Problem: How to find the optimal generalization?
 - MDL principle: Good schema = tightly represents data, concise, compact
 - User’s preferences can be different ⇒ resulting schema may be unnatural
- Bex et al. (VLDB’06, VLDB’07): Let us infer only schema constructs that occur in real-world XML data
- Natural improvement: user interaction
 - Refining the clustering, preferred merging, preferred schema constructs, refining the REs, …
- Problem:
 - A user may not be skilled in specifying complex REs
 - A user is not able to make too many decisions
2. Other Input Information

- Input in existing works: a set of positive examples
- Problem: Gold's theorem
 \[\Rightarrow\] Question: Are there any other ways?

Input 1: An obsolete XML schema
- Typical situation: a user creates an XML schema \[\Rightarrow\] updates only the data \[\Rightarrow\] schema is obsolete
- Idea: The schema contains partially correct information
- Note: XML schema evolution = opposite problem

Input 2: XML queries
- Idea: partial information on the structure

Input 3 - … : Negative examples, user requirements, statistical analysis of XML documents, …

Mlynkova: On Inference of XML Schema with the Knowledge of an Obsolete One. In ADC’09 (to appear), volume 92, Wellington, New Zealand, 2009. ACS.

3. XML Schema Simple Data Types

- Advantage of XML Schema: wide support of simple data types
 - 44 built-in data types
 - User-defined data types derived from existing simple types
- Natural improvement: precise inference of simple data types
- Current approaches:
 - Omit simple data types at all
 - Two exceptions: selected built-in data types
- Do we need simple data types?
 - Inferring within an XML editor: yes
 - Inferring for optimization purposes: not always necessary
 - Schema-driven XML-to-relational mapping methods
- Ideas: exploitation of additional information
 - Queries, semantics of element names, obsolete schema, …
4. XML Schema Advanced Constructs

- **Advantage of XML Schema: object-oriented features**
 - User-defined data types, inheritance, substitutability of both data types and elements, …

- **Disadvantage:** Do not extend the expressive power
 - "syntactic sugar"

- **Advantages:**
 - More user-friendly and realistic schemas
 - Can carry more precise information for optimization
 - Inheritance, shared globally defined items, …

- **Problem:** constructs are equivalent \Rightarrow how to find the optimal expression?
 - User-interaction
 - Additional information

Vosta, Mlynkova, Pokorny. Even an Ant Can Create an XSD.

Mlynkova, Necasky: Towards Inference of More Realistic XSDs.
In SAC’09 (to appear), Honolulu, Hawaii, USA, 2009. ACM.
5. Integrity Constraints (ICs)

- DTD: ID, IDREF, IDREFS = keys and foreign keys
- XML Schema:
 - ID, IDREF, IDREFS
 - unique, key, keyref
 - More precise expression of keys and foreign keys + uniqueness
 - assert, report
 - Special constraints expressed using XPath
- More powerful ICs: Cannot be expressed in XML Schema but can be inferred
- Aim of ICs
 - Optimization of XML processing approaches
- Existing works:
 - Restricted cases of ICs in special situations (applications)
 - No general/universal approach

6. Other Schema Definition Languages

- **W3C: DTD, XML Schema**
 - Most popular ones
- **There are other languages**
- **RELAX NG**
 - Similar strategy as XML Schema and DTD
 - Describes the structure of XML documents using content models
 - Simpler syntax than XSDs, richer set of simple data types than DTD
- **Schematron**
 - Different strategy
 - Specifies a set of conditions (ICs) the documents must follow
 - Expressed using XPath
 ⇒ A brand new method
 - A first step towards inference of general ICs
7. XML Data Streams

- Data streams
 - Special type of XML data
 - Recently became popular

⇒ Special processing
 - Parsing, validation, querying, transforming, ...
 - Inference of XML schema?

- Features:
 - Cannot be kept in a memory
 - Cannot be read more than once
 - Processing cannot "wait" for the last portion

- The situation is complicated
- No inference method for XML data streams
Overview

1. Introduction
2. Existing approaches
3. Open issues
4. Conclusion
Conclusion

- Almost any approach can benefit from XML schemas = knowledge of data structure
- Currently
 - Data-exchange: inferred schema = candidate for further improving
 - Optimization: inferred schema = the only option
 - May be more precise
- Main observations:
 - Basic aspects (inference of REs) are solved
 - Advanced aspects are still waiting for solutions
- Aim of this study:
 - A good starting point for researchers searching a solution or a research topic
Thank you