Rigid Body Collisions of Planar Kinematic Chains with Multiple Contact Points

Yildirim Hurmuzlu and Dan B. Marghitu
Mechanical Engineering Department
Southern Methodist University
Dallas, TX 75275

March 31, 2014

Abstract

This article deals with the rigid body collisions of planar, kinematic chains with an external surface while in contact with other surfaces. Two solution procedures that cast the impact equations in differential and algebraic forms are developed to solve the general problem. The differential formulation can be used to obtain three sets of solutions based on the kinematic, kinetic, and the energetic definitions of the coefficient of restitution. Whereas the algebraic formulation can be used to obtain solutions based on the approaches presented in Whittaker (1904) and Brach (1990). A specific example of a planar, three-link chain with two contact points is studied to compare the outcomes predicted by each approach. A particular emphasis is placed on the energy loss that results from the application of each solution scheme. The circumstances where various methods lead to identical or distinct outcomes are investigated. Most importantly, the study elaborates on the rebounds at the non-colliding ends, a phenomenon that is observed only in multi-contact collisions. The interaction of the chain with the contact surfaces at the non-colliding contact points is examined and the differences in the prediction of rebounds that arise from using various methods are investigated.
1 Introduction

The origin of the present approaches to solve rigid body collision problems dates back to Newton. In 1686, Newton generalized the partial results of his predecessors when he presented the third law of motion and its relation to partly elastic collisions. Subsequently, Routh (1905) presented a graphical method based on Poisson’s Hypothesis to treat collision problems. Also, in the turn of the twentieth century Whittaker (1904), expanded Newton’s method to account for frictional impulse. Whittaker’s and Routh’s approaches fundamentally differ in the treatment of motion in the normal and tangential directions at the point of collision. In the former method, the coefficient of restitution \(e \), is a \textit{kinematic} quantity that is used to derive a relation between the normal components of the approach and departure velocities at the contact point. The latter method, however, divides the collision period into the compression and restitution phases. Poisson’s hypothesis defines \(e \) as a \textit{kinetic} quantity that relates the normal impulses at the contact point which occur during each phase. The approaches also evolved differently in the treatment of the motion in the tangential direction at the point of contact. Whittaker’s, method allows slippage when the ratio of the normal and tangential impulses are greater that the coefficient of friction \(\mu \). On the other hand, Routh solves for the slip velocity during collision and introduces the possibility of changes in slip direction during contact. In general, it has been thought that the two approaches can be reconciled. The engineering community accepted Whittaker’s method because it yields algebraic equations compared to the graphical makeup of Routh’s method, which largely remained unnoticed. A typical example can be found in the undergraduate dynamics book of Beer and Johnston (1988), where the derivation of impact equations for colliding rigid bodies is carried out by using Poisson’s hypothesis (without specifically referring to it) and leading to Newton’s kinematic definition of \(e \). Then, the derivation follows along the lines of Whittaker’s method to resolve the motion in the tangential direction when friction is present.

Through a simple example problem that considers a two link pendulum striking a flat surface, Kane and Levinson (1985), pointed out that the classical solution of rigid body impact problems using Newtonian mechanics produces energetically inconsistent results. As evidenced by the recent publications, Kane and Levinson’s remarks sparked a remarkable interest in a problem that have been thought to be solved long time ago. Keller (1986),
attributed this paradoxical behavior to slip reversals during collision subject to frictional effects. The Newtonian approach ignores the changes in the direction of slip, leading to the overestimation of the rebound velocity as a result of impact (Stronge, 1990). Keller, introduced a revised formulation of rigid body collision equations based on Poisson’s hypothesis such that impact never increases energy. Yet, Stronge (1990), has exposed energy inconsistencies in solutions using Poisson’s hypothesis when e is assumed not to depend on the coefficient of friction. He divided the energy that is dissipated during collision into two portions; dissipation due to frictional impulse and dissipation due to normal impulse. Then, he demonstrated that Poisson’s hypothesis does not lead to vanishing dissipation due to normal impulse when the coefficient of restitution is unity (perfectly elastic impact). He proposed an \textit{energetic} definition for e. This definition equates the square of the coefficient of restitution to the ratio of elastic strain energy released at the contact point during restitution to the energy absorbed by deformation during compression. Brach (1989), has proposed a solution scheme based on revising Whittaker’s method in order to rid energy increases from resulting solutions. The approach treats the tangential impulse as a constant fraction μ, of the normal impulse. Then energy loss is examined to determine the appropriate value of μ that can be used in the actual solution. He has expanded his approach in Brach (1991), to treat contacts that take place over finite areas and introduced a moment coefficient e_m to solve the collision problem. He also considered the possibility of a tangential coefficient of restitution when hard objects strike relatively compliant surfaces.

The aforementioned studies consider problems where the rigid bodies are not in contact with external surfaces prior to impact. Yet, more general circumstances can be conceived such as a multi-body system that is in unconstrained contact with several surfaces when collision with an external object occurs. In such circumstances the issue of rebound is not only confined to the point where collision occurs but it should also be considered at the other contact points. Such general cases have theoretical importance because they provide rigorous testing platforms to demonstrate the utility and soundness of the basic methods. The recent interest in the area, after all, was sparked by a kinematic chain problem. Furthermore, a special class of such collision problems arise in the study of walking machines. During gait, one limb contacts the walking surface while others are on the ground and are free to detach. A particular case where one end of a planar kinematic chain strikes a horizontal surface while the other end is stationary on the
surface is considered in Hurmuzlu and Chang (1991). The solution method presented in Hurmuzlu and Chang builds on the basic approach presented in Brach (1989). The method successfully predicts rebounds at both ends and yields physically consistent transitions among the various cases associated with lateral and horizontal motions at the contact points.

To the best of our knowledge, a systematic approach to the solution of multi-contact collisions of kinematic chains does not exist. The first objective of the present article is to develop a procedure that can be followed to solve the general planar problem. We consider a planar, multi-body system with frictionless revolute joints, where one end strikes a surface while \(k+1 \) ends are in contact with other external surfaces. Yet, in the light of recent developments in the area, there are several available methods to treat the rigid body collision problems. The approach that is taken here is first to develop solution schemes to solve the general problem by using five different methods. Then a specific example is used to study the agreements and disagreements among the outcomes predicted by various schemes. Accordingly, two procedures are developed to solve the problem using the kinematic, kinetic, and the energetic definitions of the coefficient of restitution. The first procedure casts the impact equations in differential form, and solves the problem by using either one of the three definitions of the coefficient of restitution. The second procedure casts the equations in algebraic form and is based on the kinematic definition of the coefficient of restitution. The solution can be obtained either by directly using Whittaker’s method or using the approach presented in Brach (1991) to account for energy increases. Then, a planar, three link chain with two contact points is considered to study the outcomes that are predicted by the application of various solution schemes.

2 Description of the problem

A general representation of the kinematic chains that are considered here is shown in Fig. (1). Immediately before impact the \(n \) link kinematic chain is in contact with \(k+1 \) surfaces, \(S_i \) at the points, \(A_i \). Here, the term contact is used to denote that the relative distances between the ends \(A_i \) of the chain and surfaces \(S_i \) are zero at the onset of the collision. The impact is initiated when end \(A_c \) of the chain strikes surface \(S_c \). Without loss of generality, the coordinate axes are aligned with surface \(S_0 \) whereas surfaces \(S_i \) are taken at angles \(\theta_i \) with the horizontal. The normal and tangential directions at \(A_i \) are
defined as shown. The coefficients of friction between the chain and surfaces are given as μ_i, whereas the coefficient of restitution at A_c is e. The collision at A_c may lead to several outcomes depending on the initial conditions, the coefficients of friction among the surfaces and the chain, and the coefficient of restitution at A_c. The contacting ends may stay on the respective surfaces or rebound as a result of the collision. Rebound at the end A_c is directly related to the coefficient of restitution at this point. Whereas, the rebounds at other contact points depend on the events that occur during collision.

Throughout the collision period, the motion of an end point of the chain at any given contact point can be described by one of the following three cases:

Case 1 The end is slipping along the surface with interaction in the normal direction (nonzero normal impulse between the chain and the surface).

Case 2 The end does not slip along surface but interacts with it in the normal direction (nonzero normal impulse between the chain and the surface).

Case 3 The end does not interact with the surface.
In general, during collision a particular end may undergo successive motions that can be described by a certain combination of these three cases. The treatment of motion in the tangential direction relies heavily on the approach that is taken in solving the collision problem. The equations to solve the rigid body impact problems can be formulated in two forms: the algebraic formulation and the differential formulation. The solutions proposed by Whittaker (1904) and Brach (1989) fall in the former category. The algebraic formulation casts the equations in terms of velocities and impulses at the onset and at the end of collision period. The approach does not provide any information about the events that occur during collision. On the other hand, Keller (1986) and Stronge (1990) formulate the impact equations in differential form. With these approaches one can specifically determine the events that occur during collision with the price tag of more complex analysis. In the next section, we develop the equations that can be used in solving the multi-contact collision problems of kinematic chains by expanding the basic approaches that are proposed in the aforementioned articles. We present solution procedures that yield the post impact velocities and the final outcomes in terms of slippage and rebound at the contacting ends.

3 Development of the Impact Equations

3.1 Differential formulation

3.1.1 Normal and tangential velocities of the contacting ends

The equations of motion for the chain shown in Fig. (1) can be written in the following general form

\[
\mathbf{M}(\mathbf{x})\ddot{\mathbf{x}} + \mathbf{C}(\mathbf{x}, \dot{\mathbf{x}}) + \mathbf{G}(\mathbf{x}) = \begin{bmatrix} \mathbf{T} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{D}_1(\mathbf{x}) \\ \mathbf{D}_2(\theta) \end{bmatrix} \mathbf{F} \tag{1}
\]

where \(\mathbf{x} = (\phi_1, \ldots, \phi_n, u_0^t, u_0^n)^T \) is the \((n+2)\times1\) dimensional vector of generalized coordinates, \(\phi_i \) are absolute rotations measured from the vertical as shown in Fig. (1), \(\dot{\mathbf{x}} = (\dot{\phi}_1, \ldots, \dot{\phi}_n, \dot{u}_0^t, \dot{u}_0^n)^T \) is the \((n+2)\times1\) dimensional vector of generalized velocities, \(\ddot{\mathbf{x}} = (\ddot{\phi}_1, \ldots, \ddot{\phi}_n, \ddot{u}_0^t, \ddot{u}_0^n)^T \) is the \((n+2)\times1\) dimensional vector of generalized accelerations, \(\mathbf{M}(\ddot{\mathbf{x}}) \) is the \((n+2)\times(n+2)\) mass matrix, \(\mathbf{C}(\mathbf{x}, \dot{\mathbf{x}}) \) is a \((n+2)\times1\) vector, \(\mathbf{G}(\mathbf{x}) \) is the \((n+2)\times1\) vector of gravity terms,
is the vector of joint moments, $\theta = (\theta_1, \ldots, \theta_k, \theta_c)^T$ is the vector of surface inclination angles, $D_1(x)$ is an $n \times (2k+4)$ matrix, $D_2(\theta)$ is an $2 \times (2k+4)$ matrix, and $F = (F_t^0, F_0^n, \ldots, F_t^k, F_k^n, F_t^c, F_c^n)^T$ is the $1 \times (2k+4)$ vector of contact forces. Here, the superscripts t and n denote the normal and tangential components respectively.

Solving for the acceleration vector in Eq. (1) yields

$$\ddot{x} = M(x)^{-1} \left\{ -C(x, \dot{x}) - G(x) + \begin{bmatrix} T \\ 0 \\ 0 \\ D_1(x) \\ D_2(\theta) \end{bmatrix} F \right\}$$

(2)

On the other hand, kinematic relations and Eq. (2) can be used to obtain the following relation for the normal and tangential components of the linear accelerations of the contacting ends of the chain

$$a_t = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ H_1(x) \end{bmatrix} \ddot{x} + \begin{bmatrix} 0 \\ H_2(x, \dot{x}) \end{bmatrix}$$

(3)

where $a_t = (a_t^0, a_t^n, \ldots, a_t^k, a_t^n, a_t^c, a_t^n)^T$ is the $(2k+4) \times 1$ acceleration vector. Combining Eqs.(2) and (3) yields

$$\begin{aligned}
a_t &= \begin{bmatrix} 0 \\ H_2(x, \dot{x}) \end{bmatrix} + \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ H_1(x) \end{bmatrix} \\
&= M(x)^{-1} \left\{ -C(x, \dot{x}) - G(x) + \begin{bmatrix} T \\ 0 \\ 0 \\ D_1(x) \\ D_2(\theta) \end{bmatrix} F \right\}
\end{aligned}$$

(4)

Proceeding along the lines of Keller’s method we eliminate the non-impulsive terms from Eq (4) (the first term and the first three terms between the braces in Eq. (4)). Furthermore, assuming that the generalized coordinates do not change during impact, we let the generalized position vector be the constant vector $\bar{x} = (\bar{\phi}_1, \ldots, \bar{\phi}_n, 0, 0)^T$. This yields

$$\frac{d\dot{x}_t}{dt} = H_1(\bar{x})M(\bar{x})^{-1} \begin{bmatrix} D_1(\bar{x}) \\ D_2(\theta) \end{bmatrix} F = \Gamma(\bar{x}, \theta)F$$

(5)

where, \dot{x}_t is the velocity vector of the contact points of the chain and $\Gamma(\bar{x}, \theta)$ is a constant $(2k+4) \times (2k+4)$ matrix that depends on pre-impact positions and inclination angles of the contact surfaces.

The impulses at the contact points are given by the following relations:
\[\tau = \begin{bmatrix} \tau_0^t \\ \tau_0^n \\ \vdots \\ \tau_k^t \\ \tau_k^n \\ \tau_c^t \\ \tau_c^n \end{bmatrix} = \begin{bmatrix} \int_0^t F_0^t dt \\ \int_0^t F_0^n dt \\ \vdots \\ \int_0^t F_k^t dt \\ \int_0^t F_k^n dt \\ \int_0^t F_c^t dt \\ \int_0^t F_c^n dt \end{bmatrix} \] \tag{6}

Using the last rows of the vectors in Eq. (6) we let

\[\frac{d}{dt} = F_c^n \frac{d}{d\eta} \] \tag{7}

where \(\eta \equiv \tau_c^n \).

Additional equations can be obtained by considering the relative motions of the contacting ends with respect to the respective surfaces. Accordingly, the equations that correspond to the three possible cases of the motion of the end points of the chain at contact points are given by

Case 1: Since contact is maintained and slipping occurs, the normal and tangential components of the contact forces can be represented as

\[F_j^t = -\mu_j \text{Sign}(v_j^t) F_j^n \quad \text{and} \quad a_j^n = v_j^n = 0 \]

with \(j = 0, 1, \ldots, k \)

\[F_c^t = -\mu_c \text{Sign}(v_c^t) F_c^n \quad \text{when} \quad A_j = A_c \] \tag{8}

Case 2: Conversely, when the end is not slipping we have

\[a_j^t = v_j^t = 0 \quad \text{and} \quad a_j^n = v_j^n = 0 \quad \text{subject to} \quad \left| \frac{F_j^t}{F_j^n} \right| \leq \mu_j \]

with \(j = 0, 1, \ldots, k \)

\[a_c^t = v_c^t = 0 \quad \text{subject to} \quad \left| \frac{F_c^t}{F_c^n} \right| \leq \mu_c \quad \text{when} \quad A_j = A_c \] \tag{9}

Case 3: On the other hand, when there is no interaction at \(A_j \) the contact forces become

\[F_j^n = F_j^t = 0 \quad \text{with} \quad j = 0, 1, \ldots, k \] \tag{10}

also, during collision \(F_c^n \neq 0 \) since impact is initiated at \(A_c \).
Once the relative motions at the contacting ends are defined, one can obtain $2k+1$ relations that will be of the form of the equations given by Eqs. (7) through (10). Then, these additional relations can be used along with the $2k+2$ relations of Eq. (5) to solve for the contact forces and accelerations in terms of F_c^n, this yields

$$\begin{bmatrix}
F \\
d\mathbf{v}_t/dt
\end{bmatrix} = \begin{bmatrix}
d\mathbf{\tau}/dt \\
d\mathbf{v}_t/dt
\end{bmatrix} = F_c^n \begin{bmatrix}
\Psi_1(\bar{x}, \theta) \\
\Psi_2(\bar{x}, \theta)
\end{bmatrix}$$

(11)

Dividing Eq. (11) by F_c^n and using Eq. (7) yields

$$\begin{bmatrix}
d\mathbf{\tau}/d\eta \\
d\mathbf{v}_t/d\eta
\end{bmatrix} = \begin{bmatrix}
\Psi_1(\bar{x}, \theta) \\
\Psi_2(\bar{x}, \theta)
\end{bmatrix}$$

(12)

Noting that the $(k+2)\times 1$ vectors Ψ_1 and Ψ_2 do not depend on η, we integrate Eq. (12) to get

$$\mathbf{\tau}(\eta) = \Psi_1(\bar{x}, \theta)(\eta - \eta_0) + \mathbf{\tau}(\eta_0)$$

(13)

$$\mathbf{v}_t(\eta) = \Psi_2(\bar{x}, \theta)(\eta - \eta_0) + \mathbf{v}_t(\eta_0)$$

(14)

3.1.2 Slippage and stoppage in the tangential direction

So far, we have derived the equations that can be used when the relative motions at the contacting ends are known. Yet, during collision changes may occur to cause the relative motion of a contacting end to transfer from one case to another. For example, initially the end may be slipping in a particular direction, it may stop and/or slip in the opposite direction. In this section we present a set of equations that can be used to detect changes in the relative tangential motion when there is interaction between the chain and a contact surface (cases 1 and 2).

Case 1: For this case the end A_j is slipping initially (i.e. $v^t_j(\eta_0) \neq 0$). Thus, the end may stop slipping during collision. To detect this event we set the left hand side of the $(2j-1)^{st}$ row of Eq. (14) equal to zero and solve for η to obtain

$$\eta^*_j = -v^t_j(\eta_0)/\Psi_2^{2j-1} + \eta_0$$

(15)

where η^*_j is the normal impulse at A_c when end j stops slipping and the superscript on Ψ_2 denotes the row number.
Case 2: For this case the end A_j is not slipping initially (i.e. $v_j^n(\eta_0) = 0$), but, it may slip again. Slippage at a particular end occurs when the friction condition in Eq. (9) is violated.

3.1.3 Separation and attachment in the normal direction

The second factor that should be considered here is the motion of the contacting ends in the normal directions. An end that may initially be interacting with the surface may detach during collision and may reattach again. Accordingly we derive the following relations for the respective cases:

Cases 1 and 2: The end A_j stops interacting with the surface when the normal acceleration a_j^n becomes positive as a result of a case change at any of the contacting ends. In the absence of such changes A_j will not detach from the surface S_j until the end of collision period.

Case 3: For this case the initial normal velocity of the contacting end is directed away from the surface (i.e. $v_j^n(\eta_0) \neq 0$). When this velocity vanishes, interaction reoccurs at A_j. To detect this event we set the left hand side of the $(2j)^{th}$ row of Eq. (14) equal to zero and solve for η to obtain

$$
\eta_j^{**} = -v_j^n(\eta_0)/\Psi_2^{2j} + \eta_0
$$

where η_j^{**} is the normal impulse at A_c when end j starts interacting with surface S_j and the superscript on Ψ_2 denotes the row number.

3.1.4 End of the compression and restitution phases:

The compression phase ends when the normal velocity at A_c vanishes. Accordingly, η^{\dagger}, the value of the normal impulse at A_c that marks the end of the compression phase can be calculated from

$$
\eta^{\dagger} = -v_k^n(\eta_{tr})/\Psi_2^{k+2} + \eta_{tr}
$$

where the superscript on Ψ_2 denotes the row number and η_{tr} is the normal impulse at A_c corresponding to the last case change at the contacting ends that occurs during compression.

The value of η at the end of the restitution phase (i.e. end of the collision) η_f, however, depends on the particular definition that is used for the coefficient of restitution. As a matter of fact, the only computational difference
between using the three definitions of the coefficient of restitution arises in this calculation. Computation of η_f for each definition can be described as follows:

1. **Kinematic Definition:** According to this definition η_f is given by

 $$\eta_f^{(1)} = \frac{[-e v_k^n(0) - v_k^{n+2}(\eta_{tr})]/\Psi_2^{k+2} + \eta_{tr}}{\Psi_2^{k+2}}$$

 Here, η_{tr} is the normal impulse at A_c corresponding to the last case change at the contacting ends that occurs during collision.

2. **Kinetic Definition:** Using the kinetic definition η_f is obtained from

 $$\eta_f^{(2)} = (e + 1)\eta^\dagger$$

3. **Energetic Definition:** This definition requires the computation of the work done by the normal component of the contact force at A_c during compression and restitution respectively. Work done by the normal force at the impact point is given by,

 $$\Delta W_n = -\int F_c^n v_c^n dt = -\int v_c^n(\eta) d\eta$$

 Then using Eqs. (14), (20), and the energetic definition we obtain $\eta_f^{(3)}$ as

 $$\eta_f^{(3)} = \eta_{tr} + \frac{\{(v_k^{n+2}(\eta_{tr}))^2 - 2\Psi_2^{k+2}[e^2 \Delta W_n(\eta^\dagger) + \Delta W_n(\eta_{tr})]\}^{\frac{1}{2}}}{\Psi_2^{k+2}} - v_k^{n+2}(\eta_{tr})$$

 where η_{tr} marks the last case transfer during restitution.

3.1.5 Changes in the generalized velocities

Finally, we should establish the relation among the changes that occur in the generalized velocity vector $\dot{\mathbf{x}}$ and in the impulse vector $\mathbf{\tau}$. Using the conservation of linear and angular impulse and momentum for the entire chain, one can write the following general relation:

$$\dot{\mathbf{x}}(\eta_2) - \dot{\mathbf{x}}(\eta_1) = M^{-1}(\mathbf{x}) \begin{bmatrix} D_1(\mathbf{x}) \\ D_2(\theta) \end{bmatrix} [\mathbf{\tau}(\eta_2) - \mathbf{\tau}(\eta_1)]$$

11
3.1.6 Solution Procedure

In this section we outline a solution procedure to compute the velocity vector at the end of the collision period, $\dot{x}(\eta_f)$ given the velocity vector $\dot{x}(0)$ at the onset of the collision. We note that the normal impulse at A_c is equal to zero at the onset of collision and equal to η when the collision ends.

The procedure described here treats the motion during collision in two phases. The phases of compression and restitution at A_c. Furthermore, each phase may consist of several stages that arise as a result of case transfers at one of the contact points with the surfaces (for example, end A_j stops slipping). At any instant during collision the motion at every contact point can be identified with one the three cases that are described above. This identification is necessary to construct the proper set of equations to solve the problem. On the other hand, a solution should be obtained to check the conditions that are required to classify the motions of the contact points. Therefore, the problem should be solved repeatedly until one identifies the correct solution that satisfies all the necessary conditions for the validity of the results. This process can be described as follows:

Step 1: Set $\eta_{tr} = 0$, $\tau(0) = 0$, $v_t(0) = \dot{x}(0)$, and $\Delta W_n(0) = 0$.

Step 2: Create a list L_c which includes the contact points where the chain interacts with the respective contact surfaces. Add A_c to the list L_c (there is always interaction at A_c).

Step 3: Set $F_t^i = F_n^i = 0 \forall A_i \notin L_c$. Create a new empty list L_s that includes the contact points $A_i \in L_c$ having zero tangential velocities $(v_t^i(\eta_{tr}) = 0)$ at η_{tr} but slip for $\eta > \eta_{tr}$.

Step 4: Set $F_t^i = -\mu_i \text{Sign}(v_t^i(\eta_{tr})) F_n^i \forall A_i \in L_c$ but $\notin L_s$.

Step 5: Set $F_t^i = \mu_i \text{Sign}(\mu_i^a) F_n^i \forall A_i \in L_s$.

Step 6: Set $a_t^i = 0$ for the remaining points in L_c.

Step 7: Set $a_n^i = 0 \forall A_i \in L_c$.

Step 8: Using the relations defined in steps 3, 4, 5, 6, and 7 solve Eq. (5) for a_t and F in terms of F_c^n.

12
Step 9: Check the following condition for the last member of the list L:

$$\text{Sign}[a^t_i] \neq \text{Sign}[\mu^a_i]$$

Proceed to the next step if the test does not fail, otherwise repeat step 8 by reversing the sign of the expression used for F^t_i at the contact point corresponding to the last member of L.

Step 10: Compute the force ratios $\mu^a_i = F^t_i / F^m_i$ (note that, the ratios F^t_i / F^m_i do not depend on F^m_i) at the contact points that are included in step 6. If all $\mu^a_i < \mu_i$ proceed to the next step. Otherwise, add the point A_j to the list L where $\mu^a_j = \max[|\mu^a_{i_1}|, \ldots, |\mu^a_{i_l}|]$, such that $|\mu^a_{i_1}| > \mu_{i_1}, \ldots, |\mu^a_{i_l}| > \mu_{i_l}$. Then, go to step 5.

Step 11: Check if all $a^m_i \geq 0$ for $A_i \notin L_c$ and $v^m_i(\eta_{tr}) = 0$, if true proceed to the next step. Otherwise, add A_j to the list L_c, where $a^m_j = \max[|a^m_{i_1}|, \ldots, |a^m_{i_m}|]$, such that $a^m_{i_1}, \ldots, a^m_{i_m} < 0$. Then, go to step 3. Note that, it is possible to check for positiveness of the normal components of the accelerations and find the maximum of their absolute values because these accelerations are in the form of F^m_c (always positive) multiplied by a positive or a negative number.

Step 12: Calculate the vector Ψ_2 and use Eq. (14) to solve for the velocity vector $v_t(\eta)$. Use Eq. (15) to solve for η^*_j at all contacting ends including A_c and Eq. (16) to solve for η^{**}_j for $j = 0, \ldots, k$ only. Compute η^\dagger, the normal impulse at A_c where the normal velocity at this point vanishes (end of the restitution phase) by using the following equation:

$$\eta^\dagger = -v^m_{k+2}(\eta_{tr})/\Psi_2^{k+2} + \eta_{tr}$$

(23)

where the superscript on Ψ_2 denotes the row number.

Step 13: Compute $\eta_{new} = \min[\eta^\dagger, \eta^*_0, \ldots, \eta^*_k, \eta^{**}_0, \ldots, \eta^{**}_k]$ subject to $\eta_{new} > \eta_{tr}$. Compute $\tau(\eta_{new})$, $v_t(\eta_{new})$, and $\Delta W^n(\eta_{new})$ using

$$\tau(\eta_{new}) = \Psi_1(\bar{x}, \theta)(\eta_{new} - \eta_{tr}) + \tau(\eta_{tr})$$

(24)

$$v_t(\eta_{new}) = \Psi_2(\bar{x}, \theta)(\eta_{new} - \eta_{tr}) + v_t(\eta_{tr})$$

(25)

$$\Delta W^n(\eta_{new}) = \Psi_2^{k+2}(\bar{x}, \theta)(\eta_{new} - \eta_{tr})^2/2 + v^m_{k+2}(\eta_{tr})(\eta_{new} - \eta_{tr}) + \Delta W^n(\eta_{tr})$$

(26)
and let $\eta_{tr} = \eta_{new}$. If $\eta_{new} \neq \eta^\dagger$ go to step 2, otherwise proceed to the next step.

Step 14: Set $\Delta W^n(\eta^\dagger) = \Delta W^n(\eta_{new})$, $\Delta W^n(\eta_{new}) = 0$, and go to step 2. Henceforth, in step 12 skip the calculation of η^\dagger and when using:

1. the kinematic definition calculate $\eta_f^{(1)}$ from Eq. (18).
2. the kinetic definition calculate $\eta_f^{(2)}$ from Eq. (19).
3. the energetic definition calculate $\eta_f^{(3)}$ from Eq. (21).

Then, carry out the computations of step 13 with $\eta_f^{(i)}$ instead of η^\dagger, then skip this step and proceed to step 15.

Step 15: Compute $\dot{x}(\eta_f)$, the velocity vector at the end of the collision period using

$$
\dot{x}(\eta_f) = \dot{x}(0) + M^{-1}(\bar{x}) \begin{bmatrix}
D_1(\bar{x}) \\
D_2(\bar{\theta})
\end{bmatrix} \tau(\eta_f)
$$

Furthermore, the relative motions of the contacting ends can be resolved as follows:

Contact points that rebound from the respective surfaces: All A_i such that $A_i \notin L_c$ and A_c if $e \neq 0$.

Contact points that neither rebound nor slip: All A_i such that $A_i \in L_c$ but $A_i \notin L_a$

Contact points that do not rebound but slip: All A_i that are not included in one of the categories above.

The outlined procedure divides the collision period into several stages that are marked by either initiation of impact, end of compression phase, or case changes at the contacting ends. At the onset of each stage, we presume that there is no interaction at the contacting ends except at A_c. Therefore, in step 2 the list of contacting ends L_c includes only this point. Then, in step 11 we check whether interaction occurs at the points where a particular end has no velocity in the normal direction. Interacting points are added one at a time based on the magnitudes of the normal accelerations. Each time a
contact point added to L_c, the slippage is checked again for all interacting points in step 10. The final value of the normal impulse at A_c is computed in step 2 according to the approach that is taken. Then, in step 15, the final solution of the impact problem is determined.

Finally, we note that no specific methods were provided here for the computation of the matrices $M(x)$, $D_1(x)$, $D_2(x)$, $H_1(x)$ and $H_2(x)$. Numerous methods of formulation of the kinematic relations and derivation of the equations of motion of kinematic chains have been published in the literature. For an excellent survey of the existing approaches we refer the reader to Huston (1991) and the references therein.

3.2 Algebraic formulation

The algebraic formulation is suitable when the kinematic definition of the coefficient of restitution is used. In this section we formulate two solution schemes to solve the present problem by using the approaches proposed in Whittaker (1904) and Brach (1989).

In the present formulation the solution of the impact problem is obtained by using the conservation of linear and angular impulse and momentum equations given by Eq. (22) to obtain

$$
\dot{x}(\eta_f) - \dot{x}(0) = \dot{x}^+ - \dot{x}^- = M^{-1}(\bar{x}) \left[\begin{array}{c} D_1(\bar{x}) \\ D_2(\theta) \end{array} \right] \hat{\tau} \quad (28)
$$

where \dot{x}^+ and \dot{x}^- are the $2n \times 1$ velocity vectors immediately before and after impact respectively and $\hat{\tau}$ is the $(2k+2) \times 1$ impulse vector for the entire collision. Equation (28) should be supplemented by an additional $2k+2$ equations to solve for the vectors \dot{x}^+ and $\hat{\tau}$. These additional equations are obtained by considering slippage and rebounds at the respective contact surfaces.

3.2.1 Slippage in the tangential direction

According to Whittaker’s method, a contacting end slips when,

$$
\left| \dot{r}_j^t / \dot{r}_j^n \right| > \mu_j \quad \text{for} \quad j = 0, 1, \ldots, k \quad \text{and} \quad \left| \dot{r}_j^t / \dot{r}_c^n \right| > \mu_c \quad \text{when} \quad A_j = A_c \quad (29)
$$
Brach (1990), modifies the slippage condition such that the impulse ratio at the impact point is given by,

\[
\left| \hat{\tau}_c^t / \hat{\tau}_c^n \right| = \min[|\mu_0|, |\mu_c|, |\mu_t|] \tag{30}
\]

where \(\mu_0\) is the impulse ratio when \(A_c\) does not slip and \(\mu_t\) is the impulse ratio that produces zero overall energy loss as a result of collision. The two slippage conditions are equivalent when the energy loss \(\Delta KE = KE(0) - KE(\eta_f)\) is positive or zero but distinct otherwise. With this modification the revised method does not lead to energy increases in the resulting solutions.

3.2.2 Detachment in the normal direction

The post-impact, normal velocity at the colliding end depends directly on the coefficient of restitution and can be obtained from

\[
v^n_c(+) = -ev^n_c(-) \tag{31}
\]

For the other contacting ends, equations for the normal velocities can be obtained from

\[
v^n_j(+) > 0 \text{ and } \hat{\tau}_j^n = 0 \text{ for } j = 0, 1, \ldots, k \tag{32}
\]

when the end rebounds, or

\[
v^n_j(+) = 0 \text{ and } \hat{\tau}_j^n > 0 \text{ for } j = 0, 1, \ldots, k \tag{33}
\]

when the end interacts with the surface and does not detach as a result of the collision. Treatment of the rebound at the contacting ends in this fashion leads to two possibilities; the end rebounds without interaction or it interacts with the surface and does not rebound. The scheme eliminates the possibility of rebounds from the surface when the interaction occurs. This limitation is not present in the solutions obtained using the differential formulation. There, the solution scheme takes into account the events during collision, and normal accelerations are used to resolve the motion along the normal direction (see step 11 of the solution method outlined above). The algebraic formulation, however, does not permit the consideration of cases where rebound occurs with interaction with the surface. In such cases, an additional equation cannot be obtained from the relative motion in the normal direction, leading to fewer equations than unknowns. As it will be demonstrated in section 4 below, under a special set of circumstances the solutions obtained by using the two formulations disagree in terms of prediction of rebounds at the contacting ends.
3.2.3 Solution Procedure

The solution method that is presented here, is based on repeatedly solving the problem until the proper solution is identified. The procedure can be described by the following steps:

Step 1: Obtain $4^k \times 3$ sets of $2k + 1$ equations by considering all possible combinations of the following cases at the each of the contacting ends and the colliding end:

- a) A_i detaches without interaction: $\hat{\tau}_i^t = \hat{\tau}_i^n = 0$ for $i = 0, \ldots, k$.
- b) A_i does not detach and does not slip: $v_i^n(+)^{\prime} = v_i^t(+)^{\prime} = 0$ for $i = 0, \ldots, k$ and $v_c^t(+)^{\prime} = 0$ for A_c.
- c) A_i does not detach but slips in the positive direction of the tangential coordinate: $\hat{\tau}_i^t / \hat{\tau}_i^n = \mu_i$ for $i = 0, \ldots, k$ and $\hat{\tau}_c^t / \hat{\tau}_c^n = \mu_c$ for A_c.
- d) A_i does not detach but slips in the negative direction of the tangential coordinate: $\hat{\tau}_i^t / \hat{\tau}_i^n = -\mu_i$ for $i = 0, \ldots, k$ and $\hat{\tau}_c^t / \hat{\tau}_c^n = -\mu_c$ for A_c.

Step 2: Use Eqs. (28) and (31) along with the equations obtained in the previous step to obtain $4^k \times 3$ sets of solutions.

Step 3: Eliminate the solution sets that fail to satisfy the following conditions at every contacting point:

- a) $v_i^n(+) > 0$ for $i = 0, \ldots, k$ if the solution is obtained assuming that A_i detaches without interaction.
- b) $\hat{\tau}_i^n > 0$ and $|\hat{\tau}_i^t / \hat{\tau}_i^n| \leq \mu_i$ for $i = 0, \ldots, k$; and $|\hat{\tau}_c^t / \hat{\tau}_c^n| \leq \mu_c$ if the solution is obtained assuming that A_i does not detach and does not slip.
- c) $\hat{\tau}_i^n > 0$ and $\text{sign}[\hat{\tau}_i^t] \neq \text{sign}[v_i^n(+) \text{ for } i = 0, \ldots, k]$; and $\text{sign}[\hat{\tau}_c^t] \neq \text{sign}[v_c^n(+) \text{ for } i = 0, \ldots, k]$ if the solution is obtained assuming that A_i does not detach but slips in the positive direction of the tangential coordinate.
d) $\hat{\tau}_n > 0$ and $\text{sign}[\hat{\tau}_n] \neq \text{sign}[u_t^{(+)}]$ for $i = 0, \ldots, k$; and $\text{sign}[\hat{\tau}_t] \neq \text{sign}[v_t^{(+)}]$ if the solution is obtained assuming that A_i does not detach but slips in the negative direction of the tangential coordinate.

Step 4: Stop when a solution is found that satisfies all the conditions given in step 3.

Step 5: Check the energy loss for the solution found is the previous step, if $\Delta KE \geq 0$ stop otherwise proceed to the next step.

Step 6: Obtain 4^k sets of new solutions by using the relations given in step 1 for the contacting ends and compute the impulse ratio at the colliding end by setting the energy loss equal to zero.

Step 7: Perform the tests that are given in step 3 for each contacting end and identify the proper solution.

4 Application to a three link chain with two contact points

In this section we apply the procedures proposed above to the three-link, 2 contact point kinematic chain show in Fig. (2). Slender members with 1 m lengths, 1 kg masses and moments of inertia of $1/12$ kg \cdot m2 that are connected with revolute joints are assumed. The angle θ_c is taken as zero. The joint coordinates at impact are selected as $\phi_2 = \pi/2$, $\phi_3 = \pi - \phi_1$, while ϕ_1 varies between $-\pi/2$ and $\pi/2$. Accordingly, the configuration of the chain at impact is gradually varied from a completely extended to a completely collapsed position. The pre-impact velocities are selected as $\dot{u}_0(0) = \dot{u}_0^{(+)}(0) = 0$, $\dot{\phi}_1(0) = 0.1$ rad/s, $\dot{\phi}_2(0) = 0.2$ rad/s, and $\dot{\phi}_3(0) = 0.3$ rad/s.

Figure (3) depicts the results obtained by letting $\mu_0 = 0.5$ and $\mu_c = 0$ and changing the coefficient of restitution from 0 to 1. When friction is absent at the colliding end, the differential and algebraic methods yield exactly the same results. Figure (3.a) shows the energy loss due to impact. The energy loss is zero for perfectly elastic collisions ($e=1$) when the end A_0 does not slip. As e is increased, the system loses more energy as a result of collision and the results are energetically consistent. Figures (3.b) and (3.c) depict the
Figure 2. Three-link chain with two contact points.

Comparing the two figures, we observe that when the normal velocity is nonzero the normal impulse is zero and normal velocity is zero when the normal impulse is nonzero. Thus, when friction is absent the end does not rebound if impulse imparted to the chain at A_0. Furthermore, increasing the coefficient of restitution at A_c causes higher normal impulse values but lower rebound velocities at A_0. Figure (4) depicts the results obtained by using the kinematic definition and solving the problem by differential and the algebraic formulations. The coefficients of friction are selected as $\mu_0 = \mu_c = 0.5$ and the coefficient of restitution is 0.9. Although the same definition of the coefficient of restitution is used we observe that the two approaches lead to dissimilar outcomes for certain configurations. As it can be seen from Fig. (4.a) both formulations may lead to energy gains as a result of collision. This is an inherent characteristic of the solutions obtained using the Newton’s definition of the coefficient of restitution. The solutions differ in the two intervals marked by B-C and D-E on the figure. We can observe from Fig. (4.b) that the two formulations lead to distinct outcomes when the tangential velocity at the colliding end is reversed. Furthermore, as it can be seen from the tangential velocities in the two intervals B-C and D-E, the differential formulation is more likely to predict slippage. This arises because the algebraic formulation overestimates the friction impulse when velocity reversals take place. On the other hand, when both solutions predict
stoppage or constant slip direction, the results become identical (intervals A-B, C-D, and E-F).

Figure (5) shows the results obtained by using the three approaches that do not lead to energy increases as a result of collision. The coefficients of friction are selected as $\mu_0 = \mu_c = 0.5$ and the coefficient of restitution is 0.9. The results obtained by the three approaches are dissimilar when the slip stops or reverses at the impact point. The solutions coincide only when the end
slips remains in the same direction (interval A-B). Furthermore, among the three methods the solutions obtained by the kinetic and energetic definitions are in closer agreement with each other compared to the solutions obtained using the method proposed in Brach (1991). In Fig. (6) the rebounds at the end A₀ for the three methods are considered. The most notable difference between the three approaches, is that the kinematic definition is used with the algebraic formulation and the other two are based on the differential formulation. For a wide variety of circumstances, the solutions predict rebound at A₀ without interaction with the contact surface, the assumption that is implicit in the algebraic formulation. Yet, when friction is present the differential methods may predict rebound with interaction with the surface for a special set of conditions. The two shaded regions in the figure are the intervals where such rebounds are observed. They are located at the transition

Figure 4 Impact with friction using the kinematic definition of the coefficient of restitution. a) energy loss, b) tangential velocity at A_c
regions from rebound at A_0 to no rebound where the chain is almost fully extended and when it is almost fully collapsed. In the two other transition regions the differential methods do not yield rebounds with interaction.

Figure 5 Impact with friction using the three solution schemes that do not lead to energy increases due to impact. a) energy loss, b) tangential velocity at A_c.

Figure (7) depicts the results obtained for perfectly plastic collisions ($e=0$) and selecting the friction coefficients as $\mu_0 = \mu_c = 0.5$. For this case the outcomes are different only when different formulations are used. More specifically, the differential solutions produce the same outcomes regardless of the definition of the coefficient of restitution. The algebraic solutions are the same since Whittaker’s method never leads to energy increases. The difference in energy curves are almost indistinguishable, but the two sets of solutions disagree in the prediction of rebounds at the non-contacting end. As can be seen from Figs (7.b) and (7.c), the differential methods predict
rebounds with interaction while the algebraic methods don’t.

5 Conclusion

This article considers the multi-contact, rigid body collisions of planar, kinematic chains in the presence of friction. Two general solution procedures that are based on the formulation of the equations of impact in algebraic and differential forms are presented in full detail. The algebraic formulation can be used to obtain solutions based on the kinematic definition of coefficient of restitution and treating the tangential motion at the point of impact either by using the approach in Whittaker (1904) or Brach (1990). The differential formulation can be used to solve the problem subject to the kinematic (Newton, 1686), kinetic (Routh, 1905 and Keller, 1986), and the energetic (Stronge 1990) definitions of the coefficient of restitution.

The results verify the prior observations that the solutions obtained are independent of the method of approach when friction is absent at the collision
Figure 7 Perfectly plastic impacts. a) energy loss, b) normal impulse at A_0, c) normal velocity at A_0

point or when the slip at this point does not change direction because of impact. Yet, when friction is present the predicted outcomes rely heavily on the particular formulation of the impact equations and the definition of the coefficient of restitution.

Considering the energy loss due to impact, the results predicted by the energetic definition of the coefficient of restitution is the most consistent because the approach properly accounts for the energy loss due to friction and due to plastic effects at the collision point. If we confine our observations only to energy loss, we can judge the consistency of various approaches by comparing the energy losses obtained by using each approach with the results
produced using the energetic definition. Accordingly, we deduce that the kinetic definition overestimates the energy loss but produces more consistent results than the other three methods. Brach’s approach overestimates the energy loss but resolves the energy inconsistencies in Whittaker’s method. The kinematic definition used with the differential formulation leads to energy increases as a result of collision. Surprisingly, Whittaker’s method, the most widespread among the five, produces the energetically least consistent results.

The prediction of rebounds at the non-impacting contact points also relies on the particular method of approach. The algebraic methods preclude the possibility of rebounds when the chain interacts with the surface (non-zero normal impulse). On the other hand, differential methods may predict rebound with interaction when friction is present at the impact point and the slip stops or reverses direction at this point. But, for a variety of circumstances all methods may exhibit the transitional behavior where rebounds occur only when the chain does not interact with the surface. Although, such transitions are intuitively difficult to accept, they occur smoothly and analytically speaking, consistent because the solutions meet at a point where the normal impulse and velocity are both equal to zero. Therefore, we are unable to refute this phenomenon based on solely theoretical results. This issue may provide an important factor in conducting an experimental study to assess the validity of such predictions.

Finally we note that the approaches presented here should be used with caution when applied to kinematic chains with very large number of elements. In such cases, the analyses presented here may not be proper because they neglect the impulses due to the weights of the members.

References

