Abstract—This paper describes an exact algorithm for multi-layer topological planar routing in switchboxes and channels. Using recent developments in set covering resolution, this method produces in a few minutes the optimum solutions for routing problems that were previously solved by heuristics.

I Introduction

A routing region (Fig. 1) is an area enclosed by an external boundary, with some blocks inside the boundary (called holes), and pins on the external and internal boundaries. A routing area is a switchbox when there is no hole, and a channel when pins are located on the top and bottom of the boundaries. A net is a set of pins to be connected without going through any boundary. A planar subset is a set of nets that can be routed in one layer without crossing each other. The maximum k-layer problem consists of routing as many nets as possible with k planar subsets. The minimum α-cover problem consists of routing at least a fraction α of the nets with as few planar subsets as possible.

These problems are motivated by MCM, PCB and performance-driven IC routing. For submicron VLSI designs, wire delays dominate gate delays, and the routing area exceeds the area used by transistors. Thus multi-layer routing technology is of increasing importance in such a high performance design. Polynomial algorithms have been developed for special cases, but the general problem is NP-complete [2].

The approach we propose to multi-layer topological routing is made of two steps:
(a) compute all the maximal planar subsets.
(b) solve a set covering problem.

Not only is the set covering problem NP-complete, but also the number of maximal planar subsets can be exponential w.r.t the number of nets. However we show that these two steps can be solved exactly with a low computational cost in practice.

In this paper, step (a) is addressed in Section II for switchboxes or channels only. Section III shows how step (b) can be solved using a new lattice based paradigm. Section IV explains how this paradigm can be efficiently implemented with ZBDDs (Zero suppressed Binary Decision Diagrams). Experimental results are discussed in Section V.

II Maximal Planar Subsets for Switchboxes and Channels

Two nets are compatible iff they can be routed in a single layer without crossing. In the case of
switchboxes or channels, sets of mutually compatible nets (called clusters) are exactly the planar subsets. Consider Fig. 2, where pins with the same number form a net. Nets 1, 2 and 3 form the cluster \{1, 2, 3\}, and these three nets can be routed in a plane without crossing each other. The maximal clusters are \{1, 2, 3, 4\}, \{1, 2, 5\} and \{3, 4, 6\}. The minimum layer routing is \{\{1, 2, 5\}, \{3, 4, 6\}\}.

If we see the set of nets \(V\) as a set of vertices, and the set of compatible pairs \(E\) as a set of edges, then a cluster is a clique of the undirected graph \((V, E)\). Thus step (a) amounts to computing all the maximal cliques of this graph.

Given the set \(U\) of incompatible pairs, a cluster is a set of nets that does not contain any elements of \(U\). Thus we can express the set of all clusters \(\text{Cluster}\) by:

\[
\text{Cluster} = \text{NotSupSet}(2^V, U), \quad \text{where}
\]

\[
\text{NotSupSet}(X, Y) = \{x \in X \mid \forall y \in Y, y \not\subseteq x\}.
\]

The set of all maximal planar subsets \(\text{MaxPlanSet}\) is:

\[
\text{MaxPlanSet} = \max_{\subseteq} \text{Cluster}, \quad \text{where}
\]

\[
\max_X \subseteq = \{x \in X \mid \forall x' \in X, x \subseteq x' \Rightarrow x = x'\}.
\]

III Solving Set Covering

Let \(X\) and \(Y\) be two sets, and \(R\) a binary relation on \(X \times Y\). An element \(y\) of \(Y\) covers an element \(x\) of \(X\) iff \(x \in Y\). The set covering problem \((X, Y, R)\) consists of finding a minimum subset \(S\) of \(Y\) such that any \(x\) of \(X\) is covered by some \(y\) of \(S\). Step (b) amounts to solving:

\[
(V, \text{MaxPlanSet}, \in).
\]

The classical approach consists of building the corresponding covering matrix, and of solving it using the Quine–McCluskey procedure [1]. The size of the covering matrix is in \(O(|V| \times |\text{MaxPlanSet}|)\), which limits this approach since \(|\text{MaxPlanSet}|\) can be exponential (> 100000 in some of our examples) w.r.t. \(|V|\).

To overcome this limitation, we use the results developed in [3]. The method consists of transforming the original set covering problem (1) into an isomorphic set covering problem (2) expressed on a complete lattice. Here, an obvious translation is:

\[
\langle X, \text{MaxPlanSet}, \subseteq \rangle, \quad (2)
\]

where \(X = \{\{v\} \mid v \in V\}\).

\(X\) and \(\text{MaxPlanSet}\) are subsets of the lattice \((2^V, \subseteq)\). Applying the fundamental result of [3, Theorem 8], the following reduction rules:

\[
\langle X, Y, \subseteq \rangle \rightarrow \langle X, \max_{\subseteq} \tau_X(Y), \subseteq \rangle, \quad (X, Y, \subseteq) \rightarrow \langle \max_{\subseteq} \tau_Y(X), Y, \subseteq \rangle, \quad \text{and}
\]

\[
\langle X, Y, \subseteq \rangle \rightarrow \langle X - E, Y - E, \subseteq \rangle \quad \text{with} \quad E = X \cap Y,
\]

where \(\tau_X\) and \(\tau_Y\) are defined from \(2^V\) into \(2^V\) by:

\[
\tau_X(y) = \bigcup_{x \in X, x \subseteq y} x
\]

\[
\tau_Y(x) = \bigcap_{y \in Y, y \supseteq x} y
\]

are applied on (2) to yield a new set covering problem, say (3), which is isomorphic to the cyclic core of (1). From the solutions of (3), one can recover the solutions of (1) using basic set operations [3]. The interest of such an approach is that the reduction to the isomorphic cyclic core (3) can be done with ZBDDs in an implicit way, i.e., with a complexity that does not depend on the number of elements of \(X\) and \(Y\).
IV Algorithms

ZBDD (Zero suppressed Binary Decision Diagram) is a graph data structure to represent subsets of 2^V in a compact and canonical way. We have shown that steps (a) and (b) can be solved by using some complex set operations defined on 2^V. Indeed, these set operations can be efficiently implemented with ZBDDs, so that their costs are not related to the size of the sets they operate on, but to the size of the ZBDDs representing these sets. In practice, very large sets can be represented with small ZBDDs (e.g., the ZBDD of 2^V has size $O(|V|)$), which enables us to solve effectively the multi-layer problems.

Given $V = \{v_1, \ldots, v_n\}$, let a combination be a subset of V, and X be a set of combinations, i.e., $X \subseteq 2^V$. The set X can be decomposed w.r.t. to an element v_k in two unique sets X_{v_k} and X_{v_k}, where: X_{v_k} is the set of combinations belonging to X that do not contain v_k; X_{v_k} is made of the combinations belonging to X that contain v_k, from which v_k has been removed. For instance, with $X = \{\{\}, \{v_1, v_2\}, \{v_1, v_3, v_5\}, \{v_1\}\}$ and $k = 1$, we have $X_{v_1} = \{\{\}, \{v_1\}\}$ and $X_{v_1} = \{\{v_2\}, \{v_3, v_5\}\}$.

![Figure 4: A ZBDD.](image)

If X is recursively decomposed w.r.t. the elements of V by applying the decomposition

$$X = \text{vertex}(v_k, X_{v_k}, X_{v_k}),$$

one obtains a binary tree whose leaves are $\{\}$ and $\{\{\}\}$. When representing sets of sparse combinations, most of the right branches (which denote the subsets of combination where v_k’s do not occur) points to $\{\}$. This suggests the following compression scheme [4]: (1) isomorphic subgraphs are shared in memory; (2) a vertex whose right branch points to $\{\}$ is removed and replaced with the vertex pointed by its left branch. The resulting graph is the ZBDD of X, and is canonical w.r.t. to the ordering of the elements of V.

Fig. 4 shows the ZBDD of the set X given above.

Fig. 3 describes the complex set operations needed to solve steps (a) and (b) in terms of basic set operations (union, intersection, vertex, etc). $\text{MaxSet}(X)$ evaluates $\text{max}_{\subseteq} X$, $\text{MaxTauRow}(X, Y)$ evaluates $\text{max}_{\subseteq} \tau_Y(X)$, and $\text{MaxTauCol}(Y, X)$ evaluates $\text{max}_{\subseteq} \tau_X(Y)$, with both X and Y subsets of the lattice $(2^V, \subseteq)$. Function NotSubSet, defined as $\text{NotSubSet}(X, Y) = \{x \in X \mid \forall y \in Y, x \not\subseteq y\}$, can be implemented in a way similar to NotSupSet. All these operations use a divide-and-conquer strategy on the decompositions of the arguments’ ZBDDs w.r.t. their top labels v_k.

V Experimental Results and Conclusion

Table 1 presents some experimental results on multi-layer topological routing problems. The CPU time includes reading the incompatible pairs, building the ZBDD of the maximal planar subsets, and solving the covering problem.

Computing the ZBDD of the maximal planar subsets does not take more than 15 seconds. Note that the size of the ZBDD (i.e., its number of vertices) remains small, even when the number of maximal planar subsets is large.

The cyclic core is implicitly computed using the ZBDD based method presented in Section III and IV. The set covering problem is reduced by a factor > 20. The cyclic core is then explicitly solved using the minimizer SCHERZO [3].

The difference between the greedy solution [2] and the optimum solution is not significant. However, the interest of this exact approach is as follows:

- Our formulation only uses two aspects of the problem: (1) whether two nets can be routed
function NotSupSet(X, Y);
if X = {} or {} ∈ Y or X = Y return {};
if X = {} ∩ Y return X;
let T1 = NotSupSet(X_vk, Y_vk) ∩ NotSupSet(X_vk, Y_vk)
T0 = NotSupSet(X_vk, Y_vk) in
return vertex(v_k, NotSupSet(T0, T1), T1);

function MaxSet(X);
if X = {} or X = {} return X;
let T1 = MaxSet(X_vk)
T0 = MaxSet(X_vk) in
return vertex(v_k, NotSupSet(T0, T1), T1);

function MaxTauRow(X, Y);
if Y = {} or X = {} return {};
if Y = {}
if {} ∈ X return {} else return {};
if X = {} and {} ∈ Y return {};
let X1 = NotSupSet(X_vk, Y_vk)
T1 = MaxTauRow(X1 ∪ X_vk, Y_vk)
T0 = MaxTauRow(X_vk − X1, Y_vk ∪ Y_vk) in
return vertex(v_k, NotSupSet(T0, T1), T1);

function MaxTauCol(Y, X);
if Y = {} or X = {} return {};
if Y = {}
if {} ∈ X return {} else return {};
if X = {} return {};
let Y0 = NotSupSet(Y_vk, X_vk)
T0 = MaxTauCol(Y0 ∪ Y_vk, X_vk)
T1 = MaxTauCol(Y_vk − Y0, X_vk ∪ Y_vk) in
return vertex(v_k, NotSupSet(T0, T1), T1);

Figure 3: Set operations needed to solve steps (a) and (b) implicitly.

in the same layer or not, which is a local information; (2) for switchboxes and channels, a planar subset is a set of mutually compatible nets. Since our method does not exploit the special structure of the problem, it can be extended to handle the general case.

- The method can handle practical design constraints, like the physical capacity constraint, i.e., the maximal number of nets that are allowed to be routed in one layer.

REFERENCES

For each example, \#net is the number of nets, and \#uncomp the number of uncompatible pairs. ZBDD is the size (number of vertices) of the ZBDD representing the #plan maximal planar subsets. The cyclic core CC has size row × col (note that the size of the explicit initial covering problem is #net × #plan). Sol gives the greedy and exact solutions for the minimum 1-cover problem. The CPU time to solve exactly the problem is given in seconds on a 60 MHz SuperSparc (85.4 SpecInt).

Table 1: Experimental results: minimum 1-cover problem and maximum k-cluster problem.