Ising Spin Glass

- Ising spin glasses are prototypical models for disordered systems.
- Ising spin glasses are also challenging class of optimization problems:
 - Fast growth of the number of local optima.
 - High-quality solutions divided by a barrier of low-quality solutions.
 - High-order interactions.
 - Cannot be factored into subproblems of bounded order on a single level (and 3D is NP-complete).

Purpose of this work

- Use cluster exact approximation method as a fast polynomial solver capable of reaching high-quality local optima efficiently by changing large parts of solutions.
- Use hierarchical BOA and other evolutionary algorithm to supply starting points for CEA.
- Compare the resulting hybrids on large sets of spin glass instances in 2D and 3D.

Energy of a spin glass

\[E(C) = \sum_{(i,j)} s_i J_{ij} s_j \]

Optimization problem: Find ground state

- Given all coupling constants \(J_{ij} \).
- Find values of spins so that energy is minimized.

Cluster Exact Approximation (Hartmann, 1996)

- Basic principle:
 - Find largest nonfrustrated subcluster, defined as the largest subset of spins that can be arranged optimally with respect to each other without conflicting constraints (greedy).
 - Subclusters usually contain majority of spins.
 - Consider the problem of setting only spins in the nonfrustrated cluster given that all remaining spins remain fixed.
 - Convert the problem into maximum flow.
 - Use polynomial maximum flow algorithm to set all subcluster spins optimally.
 - Assuming that all remaining spins remain fixed; we know we have reached optimality with respect to the selected cluster.
 - However, unless we could select all the spins or we got lucky that the remaining spins are set as in some ground state configuration, we cannot guarantee global optimum...

- Advantages
 - Speed (polynomial performance).
 - Power (changes large subsets of spins optimally).

- How do we use CEA?
 - Use CEA to improve every solution we reach with an evolutionary algorithm.
 - Repeat CEA updates until many failures to improve.
 - Number of failures set to grow with spin glass size.

Experiments

- Compared evolutionary algorithms
 - Estimation of distribution algorithms (EDAs):
 - Hierarchical Bayesian optimization algorithm (hBOA) (Pelikan & Goldberg).
 - Univariate marginal distribution algorithm (UMDA).
 - Simple genetic algorithm (one-point crossover).
- Compared hybrids
 - Use deterministic 1-bit-flip hill climber (DHC).
 - Use cluster exact approximation (CEA).

Comparison of hBOA+DHC, GA+DHC and UMDA+DHC

Comparison of hBOA+CEA and GA+CEA

Conclusions

- hBOA outperforms others in all settings.
- Hybrids prove important in solving large problems.
- CEA works great.
 - CEA allows all algorithms to solve much bigger problems.
 - Proves the utility of hybridization in solving complex problems.
- Bad news
 - CEA hurts asymptotic growth of time complexity.
 - So for extremely large problems, simple DHC will outperform CEA...
 - But in currently feasible applications, CEA remains the winner.
- Ideas for future work
 - How to improve CEA by enabling it to select good subclusters?
 - How to maximize performance by dividing the labor between hBOA and CEA more carefully?

Acknowledgments

- NSF
- NSF CAREER grant ECS-0547013 (at UMSL)
- ITR grant DMR-03-25939 (at Materials Computation Center, UIUC)
- Air Force
 - Air Force Materiel Command, USAF, under grant FA9550-06-1-0096 (UIUC, partly UMSL)
- University of Missouri
 - High Performance Computing Collaboratory sponsored by Information Technology Services
 - Research Award
 - Research Board