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Materials and Methods 

To build models that can predict odorous/odorless status for any molecule, we generated a large 
dataset with sufficient chemical diversity to learn generalizable rules relating chemical structure to 
odor status. We used two strategies to gather information on odor status: scraping odor publicly 
available classifications from the literature and websites (low cost, lower confidence) and testing 
compounds with human subjects (high cost, higher confidence). We classified 128 molecules as 
odorous or odorless through human subject testing and 1796 additional molecules through web 
and literature searches; in total, our dataset includes 1924 unique molecules. We used 
chemoinformatic softwares OpenBabel, Dragon, and EPISuite to generate chemical features for 
each molecule. More detailed information on the construction of this dataset follows. Code used 
to generate models and figures can be found at https://github.com/emayhew/OlfactorySpace. 

Gathering odor classifications from literature sources and websites. Molecules with stated 
odorous/odorless classifications were gathered from the literature (1–6) and from databases of 
odorous molecules (Sigma Aldrich Flavors & Fragrances, 
www.sigmaaldrich.com/industries/flavors-and-fragrances.html; The Good Scents Company 
database, www.thegoodscentscompany.com). Additionally, we collected and classified molecules 
with odor information from the websites Available Chemicals Directory (psds.ac.uk/acd; keyword: 
odorless), Wikipedia (wikipedia.org; keyword: odorless), and PubChem 
(pubchem.ncbi.nlm.nih.gov; keywords: odor, odour, smell, fragrance, aroma, sense of smell, no 
odor, no odour, no smell, no fragrance, odorless, odourless). The source of the odorous/odorless 
classification for each molecule in our dataset is given in Dataset S1. 

Selecting compounds for human psychophysics testing. In selecting chemical compounds to 
be evaluated by human subjects, we were constrained by the availability of safety data. We 
gathered candidate molecules from four chemical libraries in which the majority of compounds 
are considered safe by experts: Generally Recognized as Safe database (GRAS, 
www.fda.gov/food/generally-recognized-safe-gras/gras-substances-scogs-database), Prestwick 
chemical library (www.prestwickchemical.com/screening-libraries/prestwick-chemical-library/), 
The Good Scents Company database (www.thegoodscentscompany.com), and Arctander’s 
Perfume and Flavor Chemicals database (Arctander 1969). From these databases, we gathered 
a total set of 6009 unique compounds and calculated structural and physicochemical descriptors 
(Dragon v6, Talete; www.talete.mi.it).  

Machine learning (ML) models can only learn rules and patterns present in the training set. In 
order to build well-performing and generalizable models, it is critical to generate a training set that 
represents the full space that the model should describe and is drawn from the same population 
as the validation and test sets. To choose a set of compounds that can best represent the totality 
of chemical space, we performed k-means clustering on the centered and scaled Dragon 
descriptors with thirty clusters and aimed to pick four compounds from each cluster. By including 
molecules from every cluster in the training, validation, and test sets, we ensured that patterns 
learned by our models applied to the full range of chemical compounds and could be tested on 
validation and test sets with a similar composition. A total of 128 compounds (Dataset S2) were 
selected to span the maximum range of chemical space regardless of their perceptual properties. 
All 128 compounds evaluated by human subjects for our study have no known risk to humans at 
the delivered concentrations, and have been approved by authoritative agencies such as the 
Food and Drug Administration (FDA) and the European Medicines Agency (EMEA).  

Determining odor classification using human psychophysics. We prepared samples for 
human subject testing by aliquoting neat material (1 mL of liquid compounds or 1 g of solid 
compounds) into triple-washed amber jars (2 acidic and 1 neutral wash cycle). Compounds with 
an extremely strong odor or compounds that were not available in large quantities (e.g. reserpine) 
were presented at lower concentrations or in dilution; information on compound dosing is included 
in Dataset S2. Between experimental sessions, we stored jars containing chemical compounds in 
a 3-shelf acrylic cabinet supplied by a low flow of continuous carbon-filtered air to ensure the 
stored odorants would not be contaminated by outside ambient air or other jars. During testing 
sessions, experimenters wore lab coats and odorless gloves to prevent contamination of the jars. 
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Ninety unique normosmic participants (64 females) aged 18-54, (median 27.9) who consented to 
our study were tested, and the protocol for the present study was approved by University of 
Pennsylvania Institutional Review Board. Approximately 15 participants were recruited for each 
set of 5 compounds (hereby referred to as “blocks”) but were permitted to participate in multiple 
blocks. Twenty-six blocks were run in total (130 compounds). 

Each test session consisted of 28 trials: 5 target compounds were presented 5 times each 
alongside two blank jars in a 3-alternative forced choice test. Participants were asked to choose 
the jar that contained an odorant, as well as rate their confidence in choosing the correct jar, 
ranging from 0 (Completely Unsure) to 10 (Extremely Confident). The remaining 3 trials were 
presentations of a control compound, linalool (1 mL, neat), to screen participant olfactory function. 
All participants were blindfolded during the entire test session, and the jars were delivered to the 
nose of participants by the experimenter. Participants also performed an auditory task during 30-
second breaks between each trial to maintain subject attention while minimizing olfactory 
adaptation. The order of presentations of target and blank jars were randomized and responses 
were recorded using E-prime 3.0 (Psychology Software Tools, Pittsburgh, PA). The University of 
Pennsylvania Institutional Review Board approved this research protocol, and all human research 
participants gave informed consent. 

After each block was completed, the probability of detection of each compound within the block 
was calculated. The scale of probability ranges from p=0.0 (undetectable) to p=1.0 (perfect 
detection), with a chance detection probability of p=0.33. Based on the binomial probability 
distribution for n=75 trials and chance p=0.33 (the cumulative, one-tailed probability of recording 
33 or more correct trials out of 75 is p=0.035), compounds correctly discriminated from blanks in 
≥ 33 trials were determined to be odorous (α=0.05). Once ≥ 33 correct identifications were made 
for all compounds in a block, we terminated data collection for that set of compounds and moved 
on to the next block. The number of completed and correct trials for each compound is included in 
Dataset S1, and the proportion of correct trials for each molecule is plotted in Fig. S4. 

Correcting for odorous impurities in odorless compounds. We performed headspace 
extraction using StableFlex 2CM solid-phase microextraction (SPME) fibers (Supelco), exposing 
the SPME fibers for 5 minutes to the headspace of a jar prepared as described above. We then 
inserted the SPME fibers (60 s desorption time) into Thermo Scientific ISQ single-stage 
quadrupole GC-MS and Thermo-Fisher Trace GC Ultra GC-O instruments fitted with identical 
Restek 30-meter Stabilwax columns (1 µm coating) so that a given molecule should elute with the 
same retention time (RT) on both instruments. We used Xcalibur software (Thermo Electron 
Corp.) to analyze the GC-MS spectra and identified all compounds present above 10% relative 
abundance. In the case of a few compounds for which the volatility was too low for SPME, we 
performed direct injection of analytes (100 ppm). In direct injection experiments, the most 
abundant compound is guaranteed to be the nominal compound, and RT for the target molecule 
was determined by FID. We recorded the RT and odor quality notes for all odors perceived during 
each GC-O experiment.  

Compounds which had either no peak in the GC-MS spectra or no corresponding GC-O odor 
within 60s of the GC-MS(RT) were reclassified as odorless. In total, 23 of the 111 compounds 
tested (21%) were reclassified, highlighting the importance of controlling for impurities in olfactory 
research. Results of QC on odor classification are shown in Fig. S4, and information on the cause 
of GC reclassifications is included in Dataset S2. 

Preparing data for model-building. We pooled data on 128 compounds tested in our human 
psychophysics experiment with 1796 additional molecules for which an odor classification was 
available from literature sources or websites. Of these 1924 molecules, 1615 were classified as 
odorous and 309 were classified as odorless. We used Open Babel (7) to generate an energy-
minimized 3-dimensional structure file (.sdf) for each molecule from the Simplified Molecular-Input 
Line-Entry System (SMILES) string. Next, we used the chemoinformatic software Dragon (Talete 
v6; http://www.talete.mi.it) to calculate 4885 structural and physicochemical descriptors based on 
the 3-D structure. Additionally, we gathered data on the boiling point and vapor pressure of the 
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molecules. We calculated an approximate boiling point for each molecule using two published 
methods (8, 9). Due to large observed errors between experimental values and estimates 
generated with these methods, we also generated estimated and experimental boiling point and 
vapor pressure values using the program EPI Suite (U.S. EPA). Finally, we collected 
experimental boiling point values from PubChem. We used experimental data in all cases where 
it was available (1270 experimental boiling point values, 1122 experimental vapor pressure 
values) and estimates only where it was not. Boiling point estimates calculated using the Banks 
method were used only for comparison with experimental data and to make predictions on GDB 
molecules where no experimental values were available. Importantly, while we used multiple 
sources to generate chemical descriptors, the three features used by our transport ML model 
(boiling point, vapor pressure, octanol/water partition coefficient) are all available through open-
access sources (EPI Suite, U.S. EPA). 

Prior to any data analysis or modeling, we removed 60 compounds from the data set to form a 
test set and validation set of 30 compounds each (Dataset S1). Previous studies show that while 
ML approaches can learn well from noisy training sets, it is critical to have high confidence in the 
classification of examples used to measure model performance (10). Both the validation and test 
set molecules were drawn exclusively from the pool of 128 molecules tested in the lab. Because 
we wanted to ensure that validation and test sets were representative of the full data set, both 
datasets were composed of 1 molecule from each of 30 clusters and had an odorous:odorless 
ratio of 80:20 (the full lab-tested data set ratio at that time). The remaining 1867 compounds (68 
tested in lab, 1796 gathered from the literature and websites) were pooled to form our training set 
(Dataset S1). Once the model training parameters were finalized, the 30 validation molecules 
were added to the training set.  

We dropped any features with more than 10% missing values and then performed k-nearest 
neighbor imputation for remaining missing values (k=5, R package bnstruct v1.0.8). We 
normalized the raw physicochemical descriptors in the training set by scaling each descriptor 
from 0 to 1, then applied the same normalization factors to descriptors in the validation and test 
sets. Consequently, the model was blind to the range of descriptors outside of the training set (11, 
12). We then trimmed the dataset by dropping descriptors that were highly correlated (r > 0.99) or 
had negligible variation between molecules. All data processing and analysis was conducted 
using the open-source statistical software R (version 3.5.3), and preprocessing steps were done 
using the preProcess function in the R package caret (version 6.0.81) (13). 

Training and evaluating models. Selecting the best algorithm for a problem is often an 
empirical process. We compared the performance of five ML algorithms that have been 
successfully applied in related research to generate odor classification models: logistic 
regression, support vector machine (SVM)  (14, 15), random forest (RF) (16–18), stochastic 
gradient boosting (GB) (19, 20), and extreme gradient boosting (XGB) (21, 22). Models were 
optimized during training to maximize the area under the receiver operating characteristic curve 
(AUROC) on cross-validation splits. We chose to optimize models based on AUROC because it 
more heavily penalizes false positives, making it a better metric than accuracy in cases with 
imbalanced classes. All models were trained using the caret package for R (13) (training control 
parameters: method = repeatedcv, number = 5, repeats = 2). We addressed this significant class 
imbalance in our dataset (1619 odorous:310 odorless) by applying a Synthetic Minority Over-
sampling TEchnique (SMOTE) to our training set using the R package DMwR (version 0.4.1) 
(23). We tested several ratios of odorous:odorless training sets and chose the ratio (62 
odorous:38 odorless) which optimized cross-validation AUROC.  

The XGB algorithm produced the best-performing models as assessed through cross-validation 
(CV) AUROC. We applied regularization during model training. We used a tuning grid of L1 and 
L2 weights ranging from 1E-5 to 1 and selected the weights that resulted in the highest CV 
AUROC (L1: alpha = 0.4, L2: lambda = 0.2; CV AUROC = 0.9954); however, we found that CV 
AUROC did not vary much with changing weights (range: 0.9941 – 0.9954). Our final ML models 
were generated using the following parameters:  
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 ML transport model ML many-feature model 

Algorithm eXtreme Gradient Boosting eXtreme Gradient Boosting 

nrounds 100 100 

lambda 0.2 0.2 

alpha 0.3 0.4 

eta 0.3 0.3 

 

We tested the performance of all models on our held-out test set of 30 molecules. ROC curves for 
models trained with each algorithm and feature set are plotted in Fig. S2.  

To better measure the uncertainty in model performance, we subsequently tested on 25 random 
draws of 30 lab-tested molecules, training on all remaining molecules. Model tuning parameters 
and AUROC mean and median values across the 25 splits are reported in Table S1. We report 
these performance statistics in the manuscript, but the original model (trained on all molecules 
except those in the held-out test set) is used to produce subsequent figures and analyses.  

Comparing model performance across chemical classes. To evaluate the performance of our 
models across chemical classes, we generated 80 randomized train-test splits (80:20 ratio) from 
our full dataset of 1924 molecules. We trained each model and evaluated its AUROC 
performance on the relevant subset of the test split. We report average AUROCs across the 80 
randomized train-test splits. Each chemical class subset was constructed by filtering for 
molecules matching the SMARTS queries below. 

Chemical class SMARTS query used 

Benzene c1ccccc1 

Ester [CX3](=O)O[#6] 

Carboxylic Acid [CX3](=O)[OX2H1] 

Aldehyde or ketone [$([#6][CX3](=O)[#6]),$([#6][CX3H1](=O))] 

Alkyl (4+ carbon chain) [CH2X4][CH2X4][CH2X4][CH2X4] 

Amine [NX3;H2,H1,H0;!$(NC=O);!$(NO)] 

Organohalide [#6][#9,#17,#35,#53] 

Hydroxyl [C;!$(C=O)][OX2H] 

Ether [!$(C=O);$([C&!a])][OX2&H0][!$(C=O);#6] 

Inorganic [#6]  (Query results were inverted as SMARTS 
does not support negative matches) 

Organosulfide [SX2][#6] 

 

Estimating number of possible odorants. In order to generate an estimate of the total number 
of possible odorants, we applied an XGB-trained transport model based on estimated boiling 
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point and log P to a representative set of molecules from the GDB chemical database (24, 25). 
Estimated boiling point values were used because experimental values are not available for the 
majority of molecules in the GDB database. The database was binned by heavy atom count 
(HAC), and each bin was randomly downsampled to contain no more than 10,000 molecules. The 
final GDB subset included 107,086 total molecules (Dataset S3).  

To estimate the possible number of odorous molecules, we need to estimate both the possible 
number of unique molecules and the proportion of those molecules that will be odorous. The 
GDB-17 database generated by Ruddigkeit et al (25) includes 166.4 billion molecules with 17 or 
fewer heavy atoms composed of only C, H,  N, O, S, and halogens; this dataset provides a 
conservative estimate of the number of possible, relevant molecules. In a later study, Ruddigkeit 
et al (26) found that known fragrance molecules have up to 21 heavy atoms, so our estimate of 
possible odorants with up to 17 heavy atoms is likely to be an undercount of total possible 
odorants.  

The proportion of molecules predicted to be odorous is heavily dependent on HAC. We calculated 
an average odorous probability for each HAC from 1 to 17. In our conservative estimate, we 
simply multiplied the average odorous probability by the number of molecules of that HAC in 
GDB-17 and summed these values. To show the variability in these estimates, we subsequently 
used transport model-predicted odorous probabilities to generate 10 binary odorous/odorless 
classifications for each of the 107,086 molecules in our GDB subset. The standard error bars in 
Fig. 3a represents the variation in the proportion of odorous molecules by HAC across the 10 
simulations. To show the trend in the proportion of predicted odorants with increasing HAC, we fit 
a logistic regression model (glm function, R) to the binary odor classifications as a function of 
HAC (Fig. 3a). 

Because our model is based on principles of physical transport which apply to all molecules, we 
anticipate that our model will produce accurate predictions for all GDB-17 molecules. However, to 
provide a more cautious estimate, we also segmented our down-sampled set of GDB-17 
molecules based on the distance to their nearest neighbor in our training data. For each molecule 
in our training data and GDB-17 subset, we generated bit-based Morgan fingerprints (radius=2, 
nBits=2048; RDKit) and calculated Tanimoto similarity between each GDB-17 molecule and its 
nearest training set neighbor. In Fig. S3, we show the cumulative number of predicted novel 
odorants as a function of ML Transport model-generated odorous probabilities for several 
Tanimoto similarity cut-offs. Considering only GDB-17 molecules with structurally similar 
molecules in our training data (Tanimoto similarity > 0.4), we calculate a lower bound estimate of 
10 million predicted odorants in GDB-17 with structurally similar known odorants.   

Our estimate is sensitive to the composition of our training set: increasing the ratio of odorous 
molecules in the dataset increases the proportion of predicted odors. However, the poor model 
performance with extreme training set imbalance suggests that balanced training sets like ours 
gives better estimates of size of odor space. 

Visualizing odors in chemical space. A two-dimensional semi-supervised embedding of odor 
space was created by applying the UMAP algorithm (27) to a random sample (n=107,086 
molecules) of the GDB-17 database along with an additional n=8,366 molecules drawn from the 
experimental olfaction literature.  All molecules containing atoms other than H, C, Cl, F, I, N, O, S, 
P (n=420 molecules) were excluded.  N=4,864 physicochemical features were computed using 
Dragon 6.0 software.  Missing feature values (0.06%) were median imputed and then all features 
were scaled between 0 and 1.  The UMAP algorithm was also shown the model-predicted 
odorous probabilities of a random 25% of the odorants to assist in clustering molecules of similar 
odor probability. An interactive version of is available at http://odormap.pyrfume.org. 
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Table S1. Model performance across algorithms and feature sets. For each algorithm, tuning 
parameters (determined using cross-validation on only the literature-classified molecules) are 
given, and resampled test set (using only the lab-classified molecules) area under the receiver 
operating characteristic curve (AUROC) is reported for models trained on either transport features 
(molecular weight, vapor pressure, boiling point, log P) or many features (>3700 chemoinformatic 
features calculated using Dragon software). Reported AUROC mean and median values are 
calculated from 25 random test set draws of 30 lab-tested molecules each; models were trained 
on all molecules not drawn into the test set. 

Algorithm Tuning Parameters Feature Set 
 Test Set Performance 

AUROC mean ± std (median) 

eXtreme Gradient 
Boosting 

Learning Rate=0.1;  
Number of Estimators=100 

Transport 0.975 ± 0.028 (0.985) 

Many-feature 0.974 ± 0.024 (0.977) 

Gradient Boosting 
classifier 

Learning Rate=0.1;  
Number of Estimators=100 

Transport 0.980 ± 0.026 (0.994) 

Many-feature 0.974 ± 0.026 (0.976) 

Random Forest 

Max Depth=3;  
Number of Estimators=100 

Transport 0.990 ± 0.011 (0.995) 

Number of Estimators=100 Many-feature 0.977 ± 0.028 (0.986) 

Support Vector 
classifier 

Kernel=rbf; 
C=0.1 

Transport 0.987 ± 0.020 (0.995) 

Many-feature 0.988 ± 0.14 (0.990) 

Logistic 
Regression 

C=0.1  Transport 0.981 ± 0.021 (0.986) 

C=0.001  Many-feature 0.963 ± 0.033 (0.973) 
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Fig. S1. DeepOlf model underperforms on cleaned dataset. We measured the performance of the 
DeepOlf model published by Sharma et al (2020)6 on our full cleaned dataset (n=1924); this plot 
of true positive rate versus false positive rate shows the receiver operating characteristic (ROC) 
curves for the DeepOlf, ML Transport, and ML Many-Feature models. Chance classification 
accuracy is represented as a dotted black line. The area under the ROC curve for each model is 
reported in parentheses next to the model name.  
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Fig. S2. Performance on the held out test set by various models. The receiver operating 
characteristics (ROC) curve is plotted for models trained with many features (left) or transport 
features (right) by four machine learning algorithms (GBM – gradient boosting machine, RF – 
random forest, SVM – support vector machine, XGB – eXtreme Gradient Boosting), indicated by 
line color. The area under the curve (AUC) is labeled for each model; models trained with only 
transport features outperform models trained with many features regardless of algorithm when 
tested on the original test set (30 molecules: 10 odorless, 20 odorous).   
 
  



 
 

10 
 

 
Fig. S3. Possible odorant estimates as a function of nearest training set example. Our transport 
model predicts 40 billion molecules in GDB-17 will be odorous (probability of having an odor > 
0.5). By segmenting GDB-17 molecules by the minimum Tanimoto (structural) similarity to a 
training set molecule, we show a conservative lower bound estimate of 10 million predicted 
odorous molecules that have a structurally similar neighbor (Tanimoto similarity > 0.4) in our 
training data. 
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Fig. S4. Classification of molecules as odorous or odorless through human psychophysics 
experiments and analytical quality control. Blindfolded subjects were presented with 1 compound-
containing jar and 2 blank jars in each trial of a 3-alternative forced choice task; the proportion of 
correct responses is plotted for the 128 lab-tested molecules The chance rate of selecting the 
correct jar is ⅓, and the minimum statistically significant (a = 0.05) correct selection rate is 0.43 (> 
32 correct selections). Molecules correctly differentiated from the blanks in more than 32 trials 
were initially classified as odorous, plotted in red or green, while molecules correctly selected 
below this rate were classified as odorless, plotted in blue. A paired gas chromatography-mass 
spectrometry/gas chromatography-olfactometry (GC-MS/GC-O) quality control (QC) procedure 
was applied to identify cases in which odorous contaminants, and not the nominal compound, 
were responsible for the human-detectable odor; these molecules were reclassified as odorless 
(plotted in green).  
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Dataset S1 (separate file). Complete dataset used in model training and testing. The dataset 
includes 1924 molecules, identified by a SMILES string; given for each molecule is an odor 
classification (odor/odorless), the source of that classification, the train/validation/test set 
assignment, model-predicted odorous probability, and physicochemical features used by models 
to generate predictions.  

Dataset S2 (separate file). Information on the odor classification of 128 lab-tested molecules. 
Each molecule is identified by a common name and SMILES string. Table includes number of 
successful and total trials from the 3-alternative forced choice (3-AFC) experiment, the initial 
odorous/odorless classification resulting from the 3-AFC experiment, and final classification 
following GC-MS/GC-O QC.  

Dataset S3 (separate file). Subset of molecules from GDB-17 used in enumeration calculations. 
Each molecule is represented by a SMILES string, and for each molecule is given the heavy atom 
count (HAC) and the transport ML model predicted odorous probability.  
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