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Abstract: Locomotion control has long been vital to legged robots. Agile locomotion can be imple-
mented through either model-based controller or reinforcement learning. It is proven that robust
controllers can be obtained through model-based methods and learning-based policies have ad-
vantages in generalization. This paper proposed a hybrid framework of locomotion controller that
combines deep reinforcement learning and simple heuristic policy and assigns them to different acti-
vation phases, which provides guidance for adaptive training without producing conflicts between
heuristic knowledge and learned policies. The training in simulation follows a step-by-step stochastic
curriculum to guarantee success. Domain randomization during training and assistive extra feedback
loops on real robot are also adopted to smooth the transition to the real world. Comparison experi-
ments are carried out on both simulated and real Wukong-IV humanoid robots, and the proposed
hybrid approach matches the canonical end-to-end approaches with higher rate of success, faster
converging speed, and 60% less tracking error in velocity tracking tasks.

Keywords: legged locomotion; reinforcement learning; humanoid; motion planning

1. Introduction

In recent years, various legged robots are developed for traversing through rough and
dangerous terrains and working as a replacement for human effort [1]. Specially, dynamic
locomotion control, as an essential part of a robust and agile legged robot, has been studied
from various aspects.

Model-based methods are first studied and developed [2]. Heuristics methods are
widely adopted during early exploration, Raibert proposed hopping controller [2] and
extended to bipedal and quadruple robots, and Pratt proposed Virtual Actuator Control [3]
and Virtual Model Control (VMC) [4] on bipedal locomotion tasks. These methods adopt
reduced modeling and abstract the legged robot into a linear inverted pendulum (LIP) [5]
and its derivatives. To further improve the decision, optimization-based methods are in-
troduced to locomotion control [6]. To prevent redundant iterations when searching for
the optimal solution, Bledt et al. proposed a regularization-based approach [7]. It uses
sub-optimal heuristics to inform the solver through cost function. As a low-cost policy
that can approximate optimal solutions with linearization around the working limit cycle,
heuristics are still valuable.

Model-based methods have made great advances and are tested to be precise, pre-
dictive, and adaptive in various scenes. As they are all based on simplified models that
guarantee convergence and simplicity, the accuracy and performance drop when being far
away from the working point.

As an emerging and model-free technology, deep reinforcement learning (DRL) has
been a popular research field. Previous studies have demonstrated its potential for loco-
motion tasks. Haarnoja and Tan [8,9] first utilized learning-based gaits on a real robot and
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verified the feasibility of the end-to-end route. Subsequently, the work in [10–12] presents
learning separate skills such as trotting and fall recovery using a similar framework. As for
bipedal locomotion, a harder task, Hurst [13–15] proposed special periodical switching re-
wards and achieved robust locomotion over planes and stairs. To recombine multiple motor
skills into an adaptive multi-modal policy within one end-to-end framework, Yang [16] de-
signed a switching mechanism guided by a phase indicator. Based on that, the multi-expert
learning architecture [17] was proposed. It fuses multiple NNs into one according to a
gating network’s output to produce adaptive behaviors in response to changing situations.
Meanwhile, expanding information sources with perceptual sensing such as heightmap
scanning [18] and introducing latent encoders are also means to enhance trained policies.
ANYmal robot conquered a series of challenging terrains with privilege learning and latent
encoder [19,20]. Kumar et al. proposed Rapid Motor Adaptation framework [21] that en-
ables latent space identification and realized quadrupedal locomotion without predefined
references or trajectory generators.

On basis of end-to-end frameworks where the action is completely learned, the sum of
model-based control signals and the action of learned policies provide external guidance
and avoid pointless blind exploration during training. Low-cost model-based controllers
such as central pattern generator [19,22,23], model-based gait library [24–26], and heuristic
references [27,28] are often adopted in these approaches to achieve agile real-time controlled
locomotion. In these frameworks, NN policies learn the residual between optimal decision
and reference given by model-based modules. A common issue facing such a summation
mechanism is that learned policy might conflict with the other component and cause rigid
policy constrained by reference, or the learned policy overwrites the other [22]. Both parts
counteract, resulting in a mediocre final performance.

The most similar methodology to ours is linear policy locomotion developed by
Krishna [29,30], where the biped’s swing leg is controlled by simple NN policy, and the
stance leg is controlled by a model-based controller. However, we have an opposite un-
derstanding of the traits of walking phases. In previous studies, we observed that the stance
leg performs agile movements through acting ground reaction force (GRF) instead of acting
specific joint position trajectory. The swing leg works with a relatively low payload and
without restriction from the ground, but the foothold decided by it significantly impacts the
subsequent body states. Thus, joint-level accuracy and higher stiffness of swinging control
are required. Swing control is a rather deterministic tracking task and can be accomplished
by heuristic method and similar control policies with fixed-based manipulators [31]. Mean-
while, the stance leg faces more uncertainty during interaction with terrain and is often
controlled by torque controllers [25]. Adopting a learning-based method on stance control
can improve robustness compared with model-based approaches. It also narrows down
the space for exploration and grants higher efficiency in training.

In pursuit of better performance, separated controllers should be activated during
the corresponding phase and adapt to the phase’s attribute, instead of applying a unified
controller to fulfill different demands. Inspired by such philosophy, the paper proposes a
novel conflict-free hybrid approach to generate adaptive bipedal locomotion with a higher
success rate and is easy to transplant to other biped robots with different joint configurations
since the policy produces GRF commands. The proposed method is computationally efficient,
and also light-weight since there is no iteration-based numerical solver involved in the
framework. The main contributions of this paper are as follows:

1. We proposed an efficient hybrid locomotion policy that divides the task into a stance
part using model-free learning-based stance control and a swing part using heuristics
swing control. The trained policy can perform controllable and regulated gait.

2. To prevent policy divergence caused by fierce randomization at early stages, we pro-
posed a parallel curriculum learning schema with two-stage progressive domain
randomization for challenging locomotion tasks.

3. To further reduce the magnitude of sensor randomization which withdraws training
speed, we proposed heuristic-based regularization feedback loops on real-world robot
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systems in addition to a two-branch hybrid controller for resisting simulation model
mismatch and assisting stabilization.

The organization of this paper is as follows: Section 2 describes the hardware and
software platform and notations. Section 3 introduces the overall structure of our method.
Section 4 presents simulation and deployment results and comparisons with an end-to-end
benchmark. Finally, Section 5 states the discussion and inspiration for future work.

2. Platform and Notations
2.1. Robot Model

The robot platform adopted in our work is Wukong-IV adult-size humanoid. Wukong-
IV humanoid is designed and built by our research team. It is 1.4 m tall and weighs 45 kg,
actuated by electric motor joints. The robot has 6 degrees of freedom (DoF) on each leg and
4 DoFs on each arm. As a bionic humanoid robot, Wukong-IV’s joint configuration and
mass distribution bare resemblance to biological humans. A picture of its appearance is
shown in Figure 1A, the articulated system model used in simulation training is shown in
Figure 1B, and more detailed specifications are listed in Table A1.
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Figure 1. (A) Picture and hardware description of Wukong-IV humanoid robot. (B) Diagram of joint
and link definition for Wukong-IV humanoid robot abstract model.

The simulation environment is built with RaiSim [32]. Policy neural networks and
their training algorithm are utilized with PyTorch [33]. All training is performed on a desktop
workstation with a central processor of Intel Xeon Gold 6242R and a graphic processor of
NVIDIA Geforce RTX 3090.

2.2. Math Notations

In this article, the state of WuKong-IV’s floating base is denoted by qb = {px, py, pz, ψ,
θ, φ}. The first three elements compose base position, also denoted by p. The last three are
roll, pitch, and yaw angle of base. Robot base quaternion is denoted by ξ. Base linear and
angular velocity is v and ω. The joint level state is composed of joint angle q and joint angle
velocity q̇. In stance control, the policy gets input ot and outputs action at. The swing foot’s
position in the robot frame is denoted by e. Joint torques of legs are denoted by τstance and
τswing. To represents which foot touches the ground, gait is denoted by c.

For all notations, (·)t means the quantity in time step t, (·)∗ means the expected value
of the quantity, and δ(·) means compensation to be added to the scripted quantity.

3. Materials and Methods

The control frame of hybrid locomotion policy can be described in Figure 2. There are
three main branches in the overall structure. The middle branch (blue blocks) shows the
learning-based stance control policy (Section 3.1). The network outputs the expected GRF
to the stance leg. GRF maps to joint torque via jacobian and then is acted by the robot. The
upper branch (orange blocks) shows the heuristic swinging control policy (Section 3.3) which
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is a position-based method inspired by capture point method. The next foot placement
of swing legs is calculated from a clock signal and robot state, then cosine interpolation
generates the air position of swing foot, then inverse kinematics converts the position into
joint position, which is tracked by low-level PD. The lower branch (red block) is only used
in physical deployment (Section 3.5).

Heuristic
Foot 

Placement

Low-level
PD

State Estimator

Cosine
Interp

Inverse
Kinematics

Low-level
Jacobian

𝜙𝑡

𝑣𝑡
∗

Adaptive
Normalization

Assistive Feedback

𝑞𝑡
∗, ሶ𝑞𝑡

∗ 𝜏𝑠𝑤𝑖𝑛𝑔
∗

𝜏𝑠𝑡𝑎𝑛𝑐𝑒
∗

𝛿𝜏𝑠𝑡𝑎𝑛𝑐𝑒
∗

𝑎𝑡

𝛿𝑎𝑡

𝑜𝑡

𝑝𝑡, 𝜉𝑡
𝑣𝑡, 𝜔𝑡

𝑒𝑡, 𝑎𝑡−1

𝑠𝑤𝑖𝑛𝑔 𝑠𝑡𝑎𝑛𝑐𝑒

𝑞𝑡, ሶ𝑞𝑡

200Hz 1.0𝑘Hz

Neural
Policy

Command

Clock
signal

Figure 2. Control framework of hybrid walker. Locomotion task is divided into two different
phases and managed by two separate branches. Heuristics swing controller (orange blocks) controls
swing leg with a low-cost position-based approach. Learning-based stance controller (blue blocks)
adopts NN policy for controlling. Assistive branch (red block) is active only on the real robot for
compensating reality gap. Clock signal φ is a periodic ramp signal that increases from 0.0 to 1.0
throughout a gait period.

3.1. Learning-Based Stance Control
3.1.1. Observation Space and Action Space

Observation space ot consists of 33 dimensions of proprioceptive information. The ob-
servation vectors are normalized before being given to policy to neutralize the amplitude
difference between various observation channels (For normalization parameter update
strategy, see Section 3.1.4). Its components are as follows.

ot = {qb,t, q∗b , ωt, vt, ω∗, v∗, et, at−1} (1)

Action space at consists of 6-dimension expected GRF which includes reaction force F
and torque τ in XYZ directions. Fy component of action is mirrored along zero at the left
stance phase so that the policy network only has to explore a simpler region rather than
two unconnected regions. Its component is as follows.

at = {Fx, Fy, Fz, τx, τy, τz} (2)

3.1.2. Reward Design

Reward function design is also vital for training. Improper reward function would
lead to reward hacking, a phenomenon where policy takes unintended behavior to obtain
high reward value. Therefore, reward value should be a comprehensive evaluation of task
performance and meanwhile dense and smooth enough to learn. For locomotion tasks, the
reward function mainly consists of tracking terms that follow a goal and stabilizing terms
that prevent falling or collision. In our work, the reward function is composed of three
objectives including balancing, command tracking, and gait regulating. The full reward
composition is shown below.
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Rtrack = Fα1,β1(||v
∗
t − vt||) (3)

Rpose = Fα2,β2(1− ξ∗Tt · ξt) (4)

Rheight = Fα3,β3(|p
∗
z,t − pz,t|) (5)

Rgait = Fα4,β4(|c
∗
t − ct|) (6)

Rslip = Fα5,β5(||vankle,t||) (7)

Fα,β(x) = αe−βx2
(8)

R f all =

{
K for falling
0 for other

(9)

Rsum = Rtrack + Rpose + Rheight + Rgait + Rslip + R f all (10)

where vankle,t means the ankle velocity of the stance leg. Rpose and Rslip require the robot to
maintain balance with firm steps, Rtrack and Rheight encourage the robot to traverse under
certain commands, and Rgait regulates the gait frequency to meet the expected one. All
vectors above are expressed in the world frame. R f all penalizes major failures. Fα,β(x) is
the Gaussian kernel function, and subscripts α and β are weight coefficients that need to
be tuned. Every term except R f all is transformed from negative errors to positive rewards
with a Gaussian kernel to prevent proactive termination and set up upper boundaries for
each reward term to prevent any term from over-growing and shadowing the others. For
specific parameters we used in our experiments, check Table A2.

3.1.3. Policy Representation

In the aforementioned studies [8–12,14,15,19–21,26], Actor-Critic framework [34] is
adopted to train the policy for locomotion tasks. Multiple layer perception (MLP) with
two hidden layers and tanh as activation function is chosen for policy representation in
our study because of its simple structure, which boosts training and transition to non-
Python machines. Actor and critic networks share the same structure, configuration, and
observation input. The policy is trained with the widely-used Proximal Policy Optimiza-
tion algorithm (PPO) [35] based on surrogate loss, importance sampling, and AdamW
optimizer. No experience replay or any buffer of such kind is used in our framework, and
all data collected from simulation would be trained only once before being flushed away.
The combination of PPO and MLP has already been proved to be feasible in learning
robot locomotion policies by multiple research works [11,12,19,20]. Advanced network
structures such as LSTM or Transformer can also fit into the proposed framework as policy
representation, but more tuning and training effort will be required. The learning rate
and its decay threshold have been optimized to accelerate early convergence and avoid
over-fitting. Other hyper-parameters are maintained as default values provided by OpenAI
Baselines [36]. The detailed hyper-parameters can be found in Tables 1 and A3.

Table 1. Neural Network Hyper Parameters

Parameters Value

Network Type MLP
Latent Layer 2

Latent Node Number 256
Activation Tanh

3.1.4. Adaptive Normalization

Adaptive normalization is applied before the network (the blue block in Figure 2),
where the normalization parameters are updated every epoch according to observation
storage as shown in equations below and finally converge to the desired values associated
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with the task so that the system designers do not have to re-tune the normalization module
when changing task.

Ni = Ni−1 + ni (11)

µi = µi−1 + (s̄i − µi−1)
ni
Ni

(12)

σ2
i =

1
Ni

[Ni−1σ2
i−1 + nivi + Ni−1

√
ni
Ni

(µi − µi−1)] (13)

s′ =
s− µi

σ2
i + 10−8

, s ∈ Si (14)

where s′ is normalized observation vector. Si is the ith batch retrieved from the relevant
training episode. ni is the number of samples in batch Si. Ni is the total number of samples.
s̄i and vi are the mean value and sample variance of Si. µi and σ2

i are the mean value and
variance for normalization after the ith update.

3.2. Curriculum Schema

To improve adaption to various velocity commands and robustness against noisy
observations, the policies are trained with a two-stage parallel curriculum as shown in
Figure 3.
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𝑟𝑎𝑛𝑑𝑜𝑚
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
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𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑎𝑙𝑡𝑒𝑟𝑒𝑑
𝑖𝑛𝑒𝑟𝑡𝑖𝑎

Δ𝑥~𝑈(𝑎, 𝑏)

Figure 3. Curriculum schema. Section (A) shows parallel randomization curriculum including mass,
inertia and task goal randomization. (B) shows first curriculum stage with ideal training environment.
(C) describes second curriculum stage with sensor noise and random force perturbations. Check
Section 3.2 for more details.

Before training, parallel environments are built for both accelerating data collection and
fostering adaptability. Dynamics randomization is applied to every environment upon setup
and remains constant during training. In this way, the policy is exposed to and forced to adapt
to a wide range of possible dynamics in training, which reduces the reality gap resulting
from dynamics mismatch. Random selection is called in each environment when resetting
occurs. It randomly selects a target velocity under world frame from a discrete set. This
method is found to be more effective than directly generating continuous random target
velocity at every time step. Distribution of random velocity target can be expressed as:

P(v∗ = i) =
i
2
+ 0.1, i ∈ {0.0, 0.2, 0.4, 0.6} (15)

In the first stage, the policy is trained in an ideal environment and adaptively updates
normalization parameters µi and σ2

i . The policy network receives raw observation without
any external disturbance. Stage one ends when the average overall reward per trajectory
reaches a threshold that guarantees velocity tracking without falling.
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In the second stage, we add domain randomization to simulate noisy sensors and
external force perturbation on the torso. In test runs of some stage one results, instant
failure might happen after epoch time ends. Simulation time per epoch per environment
is prolonged by half in this stage to prevent this problem. Normalization parameters
become fixed in this stage, in case they are violated by randomization and new failure at
the beginning of the new stage.

Detailed parameter configurations are listed in Table A4.

3.3. Heuristic Swinging Control

Despite its limitations, heuristics are simple and intuitive enough to be widely used.
Inspired by capture point method [37], we adopt a simple linear policy for foot placement
planning. The heuristic foot placement policy can be described as follows:

et = δet + k1 · vt + k2 · v∗t (16)

where e is step displacement relative to hip expressed in world frame. δe is an offset vector.
k1 and k2 are both coefficient vectors to be tuned manually.

Foot placement under world frame then has to be converted into joint command.
The swing leg is not constrained by contact forces, thus position-based control method
can handle it. To avoid collision and singularity, we use trigonometric interpolation in
Cartesian space as described below, and transform it into joint space commands via inverse
kinematics. We adopted a geometric inverse kinematics computation The planning process
is also shown in Figure 4. Joint level position and velocity targets are sent to the low-level
controller to be tracked.

𝜙
0.0 1.00.80.60.40.2

𝑧𝑚𝑖𝑑

𝑧𝑒𝑛𝑑

𝑧𝑏𝑒𝑔𝑖𝑛
X

Z

Y

𝜙𝑡 = 0.0

𝜙𝑡 = 0.5

𝜙𝑡 = 1.0

𝐴 𝐵

Figure 4. Planned Foot Swinging Trajectory. (A) is the plot of phase value and Z axis position of
swing foot. White rectangle demonstrates the target position of foot under specific phase value φ.
(B) shows the 3-D curve of the planned spatial trajectory.

pw(φt) =

{
A1 cos 2πφt + B1 for 0.0 ≤ φt < 0.5
A2 cos 2πφt + B2 for 0.5 ≤ φt < 1.0

(17)

A1 = 0.5× (zbegin − zmid) (18)

A2 = 0.5× (zmid − zend) (19)

B1 = 0.5× (zbegin + zmid) (20)

B2 = 0.5× (zmid + zend) (21)

where zbegin, zend, and zmid refer to the z-axis positions of the swing foot when the swing
phase begins, ends, and is in the middle. All positions in the equations are expressed in
world frame. φ refers to the phase value which increases from 0.0 to 1.0 in a gait period.
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Phase switching is also done with heuristic conditions. When both the estimated contact
force on the swing foot and the time after the last switch reaches their thresholds, or time
reaches a larger threshold, a new switch is triggered.

3.4. Low-Level Controller

Different low-level controllers are placed after mentioned policies to convert their
output signals to joint-level torque commands. For the stance leg, when performing stable
locomotion, the acceleration of the robot is trivial enough to be ignored, so that the expected
GRF can be approximately equal to the opposite of the end-effect force applied by the stance
foot. For the swing leg, a simple proportional-derivative controller calculates feedback joint
torque commands. The formulas are defined as follows:

τstance = JT
stance(−at) (22)

τswing = Kp · (q∗t − qt) + Kd · (q̇t
∗ − q̇t) (23)

where JT
stance is the force jacobian of stance leg, Kp and Kd are coefficient vectors to be tuned.

3.5. Regularized Sim-to-Real Transfer

In addition to randomization mentioned in Section 3.2, dynamics randomization also
exists throughout all training stages. Randomized parameters including mass, inertia, and
CoM position of links, are generated and fixed when parallel environments are built. See
detailed distribution in Table A4.

To maintain the performance of the trained policy, we deploy it with heuristic-based
feedback loops to provide regularization on real robots to assist in stabilization around the
desired state. Inspired by VMC and Regularized Predictive Control methods, we condition
compensation for low-level controllers with floating-base state errors based on heuristic
control laws. The feedback formulations are as shown below.

∆F∗z = Kz(p∗z − pz) (24)

∆τabduction = Ky(θ
∗
t − θt) (25)

where Ky and Kz are both coefficients. Fz is expected GRF along Z axis, and θ is the roll
angle of the robot base.

4. Results
4.1. Simulation Training Results

Figure 5 compares the performance of our proposed method with other learning
approaches. Shaded areas refer to the range of a group of curves, and the solid curve refers
to the average of the group. All approaches share the same hyper-parameters. As for heuristics
and low-level parameters, we roughly tuned them to a near-optimal state that would not
cause frequent failure and proactive termination behaviors in the first 50 training epochs.
We chose the prior-free end-to-end approach proposed by Hurst [14] as the canonical
baseline, and an environment that enables domain randomization from the beginning to
demonstrate the practicability of the curriculum algorithm.

The proposed hybrid method earns higher rewards on average than the other ap-
proaches in both stages. In the early stage of the proposed training method, the curves
have large variance because, in each test run, the curriculum stage switches according to
its reward level, and the newly introduced disturbance in the second stage causes more
failures and reward drop.

In contrast, using end-to-end baseline approach the policy might occasionally perform
as nicely as the converged state of the proposed method, but the overall performance is
found to be unstable and bares a lower chance of success in practice.
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Figure 5. Training reward curves produced by different approaches. Vertical axis represents the
average reward gained in one episode among all environments. Blue: proposed approach. Orange:
hybrid method without curriculum stage one. Green: end-to-end aproach.

The results of the policy without the curriculum are shown in orange. Corresponding
curves reveal relatively weak performance with a high risk of falling. The possible reason
is that an over-challenging environment at the beginning leads to frequent failure, then
lack of valid data to update policy and normalization parameters, and eventually early
convergence before the policy learns to maintain balance.

Figure 6 shows the tracking performances of horizontal velocity. In the 40 s test episode,
the velocity reference is composed of a series of step signals. Compared with end-to-end
training results, the hybrid policy is proved able to track velocity reference up to 2 km/h
with less tracking error. The mean squared error of the hybrid policy and end-to-end
baseline policy are 2.232× 10−3 and 1.282× 10−2. We also tested the same trained hybrid
policy using robot models with 5 kg heavier torso (purple curve) and 5 kg lighter torso
(red curve). Generally, although payload variations cause larger oscillations and slower
responding performance, the proposed hybrid policy shows resistance to mass and inertia
discrepancy and finishes tracking tasks without falling.
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Figure 6. Step respond to step references. Data produced by a simulated robot controlled by different
policies to track a predefined reference command signal composed of multiple step signals.

Figure 7 shows the phase plane plot of X velocity tracking error using different policies.
All curves contain data of 2 s since velocity references shift. The curves of the hybrid policy
(orange and red) display a spiral pattern attracted to a region centering (0, 0). The stability
of the proposed hybrid method is displayed. The end-to-end baseline policy converges to
an offset region with a relatively random pattern, which suggests larger tracking error and
less stability.
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Figure 7. Phase plot of velocity X tracking error. Arrows in different colors indicate the direction of
corresponding phase curve. Data obtained from slicing the simulation trajectory in Figure 6.

Figure 8 shows the comparison of contact points and joint-level states. Trained hybrid
policy produces a regular gait with a frequency of 2.1 Hz, and steady contact indicates firm
contact within the stance phase. Compared with the hybrid policy, the baseline policy’s
performance is less periodic for its spiky joint angle curves and fitful contacts during the
left stance phase.
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Figure 8. Plot of hip joint position and contact time series while walking. Colored area refers to
the foot is having contact with ground at the time. Upper sub-plot’s data is generated by proposed
hybrid method, and lower sub-plot plots end-to-end baseline data. Both trajectories are recorded
from the test episode described in Figure 6.

Figure 9 displays how the robot controlled by hybrid policy regains its balance when
being externally pushed. A lateral pushing force of 14 N in world frame is randomly applied
on a point on its torso for 0.5 s when the robot is walking 0.6 m/s. After the pose is dragged
away from the upright state, two horizontal steps are then taken by the heuristic policy,
meantime learned policy maintains the posture of the torso. It is proven that the trained
hybrid locomotion controller has enough robustness to endure pushing force and retain
balance. In contrast, end-to-end baseline policy cannot endure the same pushing force
and falls with brittle actions. In consideration of safety for humans and robots, we did not
transfer trained baseline policy onto real robots.



Micromachines 2022, 13, 1688 11 of 14

0.2s0.0s 0.4s 0.6s 0.8s 1.0s 1.2s

: External Force         : Z Axis of Robot     : Contact Point

1.4s 1.6s

Figure 9. Snapshots of recovering from pushing force. Orange dashed lines refers to the Z axis of
robot frame (Corresponding video of the snapshots can be found in Supplementary Materials).

4.2. Sim-to-Real Transfer

Figure 10 shows snapshots of a real Wukong-IV robot controlled with the trained
hybrid policy. The robot can maintain balance and step in place. From Figure 11 it is clear
that equipped with assistive feedback, the performance of the proposed hybrid policy on a
real robot is more stable than ones without extra feedback loops. Unaided policies produce
vigorous oscillations and lead to failure soon after.

0.0𝑠𝑠 0.1𝑠𝑠 0.2𝑠𝑠 0.3𝑠𝑠 0.4𝑠𝑠 0.6𝑠𝑠0.5𝑠𝑠

:contact surface      : swing motion direction

Figure 10. Snapshots of real Wukong-IV robot stepping in place. The trained policy is the same with
policy tested in Section 4 (Corresponding video of the snapshots can be found in Supplementary
Materials).
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Figure 11. Plots of real robot with or without proposed assistive feedback loop. (A) Real robot
velocity plot when stepping in place. (B) CoM height plot when stepping in place. Orange plots
refers to the same experiment as shown in Figure 9. Green plots refers to hybrid policies without
assistive feedback.

To prove that assistive feedback is not overwriting the policy, in other experiments, the
policy network was disabled and assistive feedback was in charge of actuating the robot. As ex-
pected, despite multiple fine-tuning being carried out, the robot still instantly fell and crashed.

5. Discussion

We have presented a hybrid locomotion policy to produce nice results with achieving
resilient bipedal walking. Learning and heuristics cooperate within the proposed structure
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to finish the locomotion task. In the simulation, the policy is capable of tracking velocity
command up to 0.6 m/s. Sim-to-real transfer to Wukong-IV is feasible with assistive feed-
back loops. The proposed hybrid framework yields higher reward and better performance
than similar methods in terms of balance keeping and command tracking accuracy, and
thus proved to be a stable and efficient approach to training a locomotion controller with
adaption and robustness.

However, there are also limitations in the proposed methodology. Firstly, the perfor-
mance of policies on a real robot is degraded compared with it in the simulation. The most
possible reason is that the simulation and solution results of the software are too ideal,
resulting in a large gap with reality. During deployment, policies cannot fully bridge the
sim-to-real gap even with assistive feedback loops. In order to improve the performance
of real robots, more advanced accurate identification work should be done, and detailed
research on more oriented domain randomization combined with the dynamics of legged
robots will be demanded in the future. Secondly, the proposed locomotion is still a blind
one and just works on flat ground. For a humanoid robot, a highly nonlinear system,
relying solely on proprioceptive control, is not conducive for the robot to face complex
terrain. Future work is also recommended to adapt to more challenging terrain such as
stairs and uneven surfaces with perceptual information.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13101688/s1.
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Appendix A. Parameter Details

Table A1. Wukong-IV Hardware Specifications.

Parameters Value

Mass 45 kg
Height 1.4 m

Thigh Length 0.3 m
Shank Length 0.3 m
DoF per Leg 6
DoF per Arm 7
Power Source Lithium Battery
Joint Actuator Brushless Motor

https://www.mdpi.com/article/10.3390/mi13101688/s1
https://www.mdpi.com/article/10.3390/mi13101688/s1
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Table A2. Reward design and parameters.

Reward Term Coefficient

Rtrack α1 = 0.3, β1 = 40
Rpose α2 = 0.3, β2 = 500

Rheight α3 = 0.3, β3 = 400
Rgait α4 = 0.1, β4 = 10
Rslip α5 = 0.3, β5 = 100

For R f all , K = −600.

Table A3. Training Hyper Parameters.

Parameter Value

Parallel Environment 150
Maximum time steps per epoch (Stage One) 2000

Learning Rate 1 × 10−4

Discount Factor 0.996
Curriculum Reward Threshold 2300

Table A4. Randomization Parameters.

Variable Distribution

Link Mass ∆m ∼ U(0.85m, 1.15m)
Link CoM Position ∆x ∼ U(0.9x, 1.1x)

Link Inertia ∆I ∼ U(0.8I, 1.2I)
Sensor ∆x ∼ U(0.95x, 1.05x)

External Force along X Axis fx ∼ U(−10N,+10N)
External Force along Y Axis fy ∼ U(−10N,+10N)

Random external force is activated for 0.5 s in every 2.5 s.
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