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Abstract In this paper, we provide some fixed point results using continuous
selection given by Poonguzali et al. [15]. Also, using the selection theorem
we discusse the existence of fixed point for the product of two multivalued
mappings, that is, of the form Ax ·Bx. Using those fixed point results, we give
the existence of solution for a newly developed differential inclusion.
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1. Introduction and preliminaries

Continuous selection plays an important role in differential inclusion. Existence of
continuous selection for multivalued mapping was first studied by Michael [13]. Af-
ter Michael, many others started working in this area because of its wide application
in differential equations, etc. For its applications, one can refer to [1,2,6–8,12,17–19].
Rybinski [16] and Dhage [3, 4] used this continuous selection to give the existence
of solution to Krasnoselki type operators. In this approach, Poonguzali et al. [15]
provided the existence of continuous selection for some special type of multival-
ued mapping, which is a more general class of functions which contains set-valued
contractions as a subclass. Using the existence result, we derive some important
fixed point results. Again, using those fixed point results, we show the existence of
solution of a differential inclusion. Until now in literature, existence of fixed point
for product of two operators were proved for contraction type mappings.

In this paper, we are going to prove the existence of fixed point for a different
type of mapping which does not comes under contraction type.
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Let X be any normed linear space. Then B = {x ∈ X : ‖y‖ ≤ 1} represents the
closed unit ball and B0 = {x ∈ X : ‖x‖ < 1} represents the open unit ball in X.
Here the following notations are used frequently in this paper

P(X) = {A ⊂ X : A 6= ∅},
Pcl(X) = {A ∈ P(X) : A is closed},
Pcv(X) = {A ∈ P(X) : A is convex},
Pcp(X) = {A ∈ P(X) : A is compact}
Pbd(X) = {A ∈ P(X) : A is bounded}.

In [3], Dhage proved the following selection theorem.

Theorem 1.1. Let S be a closed convex and bounded subset of the Banach space
X, and let A : X → Pcl,cv,bd(X), B : S → Pcp,cv(X) be two multivalued operators
such that

(a) A is a multivalued contraction;

(b) B is l.s.c and compact;

(c) AxBy is a convex subset of X and x ∈ AxBy =⇒ x ∈ S for all y ∈ S;

(d) Mk ≤ 1, where M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.

Then the operator inclusion x ∈ AxBx has a solution in S.

For x ∈ X, A,B ∈ P(X),

d(x,A) = inf{‖x− u‖ : u ∈ A},
δ(A,B) = sup{d(x,B) : x ∈ A}.

Definition 1.1. Let A and B are any two subsets of a metric space X. Then the
Hausdorff distance between A and B is defined as

D(A,B) = max{δ(A,B), δ(B,A)}.

Let us consider the mapping H : X × Y → Pcl,cv(Y ). Then the fixed point set
is defined as PH(x) := {y ∈ Y : y ∈ H(x, y)}.

Definition 1.2. A multivalued mapping F : X → P(Y ) is called lower semicon-
tinuous (l.s.c) at x0 ∈ X if and only if for every ε > 0 and z ∈ F (x0) there exists a
neighborhood Uz containing x0 with the property that

z ∈ ∩{F (x) + εB0 : x ∈ Uz}

or equivalently, F is said to be l.s.c if xn → x and for any y ∈ Fx, then there exists
yn ∈ Fxn such that yn → y.

Definition 1.3. A multivalued mapping F is said to be weakly lower semicontin-
uous (w.l.s.c) at x0 ∈ X if and only if for every ε > 0 and for every neighborhood
V containing x0, there exists a point x1 ∈ V so that for every z ∈ F (x1) there is a
neighborhood Uz containing x0 satifying the condition that

z ∈ ∩{F (x) + εB0 : x ∈ Uz}.
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Naturally, F is l.s.c (w.l.s.c) if and only if F is l.s.c (w.l.s.c) at every x ∈ X.
Also, it is easy to see that the fact that F is l.s.c implies that F is w.l.s.c, but the
converse is not true.

A topological space X is said to be paracompact if every open cover of X has a
locally finite refinement. A cover {Uβ}β∈J is called a refinement of {Wα}α∈I if for
all β ∈ J , there exists α ∈ I such that Uβ ⊂ Wα. Also, a collection {Ai : i ∈ I} of
subsets of X is locally finite if and only if for each x ∈ X there is an open U 3 x
with |{i ∈ I : Ai ∩ U 6= ∅}| is finite. A topological space X is said to be perfectly
normal if it is normal and every closed subset is a Gδ subset. A multivalued mapping
H : X × Y → Pcl,cv(Y ) is said to be contraction in second variable if it satisfies

D(H(x, y1), H(x, y2)) ≤ K‖y1 − y2‖ for x ∈ X, y1, y2 ∈ Y, (1.1)

where K < 1. In a similar way, a multivalued mapping H : X × Y → Pcl,cv(Y ) is
said to be nonexpansive in second variable if it satisfies

D(H(x, y1), H(x, y2)) ≤ ‖y1 − y2‖ for x ∈ X, y1, y2 ∈ Y.. (1.2)

Observe that if a multivalued mapping satisfies (1.1) then it satisfies (1.2) but the
converse does not hold.

In 1989, Rybinski [16] proved the following theorem.

Theorem 1.2. Let X be a paracompact and perfectly normal topological space and
Y be a closed subset of a Banach space (Z, ‖·‖). Assume that H : X×Y → Pcl,cv(Y )
satisfies a multivalued contraction condition in second variable and also satisfies the
condition that for every y ∈ Y the multivalued mapping H(·, y) is w.l.s.c. Then
there exists a continuous mapping h : X × Y → Y such that h(x, y) ∈ X × Y.

In [15], Poonguzali et al. generalized the above result, that is, they proved the
existence of continuous selection by assuming weaker condition than contraction
condition. The statement of their result is as follows.

Theorem 1.3 ( [15]). Let X1 be a paracompact and perfectly normal topological
space and X2 be a Banach space. Assume that

(a) F : X1 ×X2 → Pcl,cv(X2) satisfies the property (1.2);

(b) for any given x ∈ X, the mapping F satifies

D(F (x, v1), F (x, v2)) ≤ λ[d(v1, F (x, v1)) + d(v2, F (x, v2))]

where λ < 1
2 ;

(c) for each x2 ∈ X2, the mapping F (·, x2) is w.l.s.c.

Then there exists a continuous mapping f : X1 × X2 → X2 such that f(x1, x2) ∈
PH(x1) for every (x1, x2) ∈ X1 ×X2.

In this paper, we have extended Theorem 1.1 to w.l.s.c mapping and relaxed the
condition (a) of Theorem 1.1.

2. Fixed point results using selection theorem

In this section, we show how the selection theorem is more useful in the theory of
fixed points.
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Lemma 2.1. Let X be a metric space, {Fn} ⊂ Cl(X) and F ∈ Cl(X) such that
limn→∞D(Fn, F ) = 0. If xn ∈ Fn and xn → x, then x ∈ F .

Proof. Let xn be in Fn for each n ∈ N such that xn converges to some x ∈ X.
Now consider

d(x, F ) ≤ d(x, xn) + d(xn, Fn) + d(Fn, F )

≤ d(x, xn) + d(xn, Fn) +D(Fn, F )

→ 0 as n→∞.

This shows that x ∈ F̄ . Since F is closed, x ∈ F .

Theorem 2.1. Let Λ : Y → X be an operator, H : Λ(Y )× Y → Pcl,cv(Y ) be as in
Theorem 1.3. Then there exists an element y ∈ Y such that y ∈ H(Λ(y), y).

Proof. By Theorem 1.3, there exists h : X × Y → Y . Let y ∈ Y . Now define
g : Y → Y by

g(w) = h(Λ(w), y).

Since g maps a nonempty compact convex subset to a compact subset, by application
of Schauder theorem, g has a fixed point. Hence there exists a point y ∈ Y such
that

y = g(y) = h(Λ(y), y) ∈ H(Λ(y), h(Λ(y), y)) = H(Λ(y), y),

as desired.

Corollary 2.1. Let all the assumptions of Theorem 1.2 be satisfied. Assume ad-
ditionally that Y is convex and compact and Γ : Y → X is a continuous mapping
such that Γ(Y ) is a relatively compact subset of X. Then there exists a point w ∈ Y
such that w ∈ H(Γ(w), w).

Krasnoselki was the first person who started studying hybrid fixed point theo-
rems in Banach spaces. There are cases where we are unable to apply either Banach
contraction theorem or Schauder theorem. For example, many problems in analysis
may split in the form H = T + S, where T is a contraction in some sense and S
is a compact mapping, but H has neither of this properties. So, in such cases, we
have to develop the theory to overcome such kind of problems. In that approach,
Krasnoselki started the study of hybrid fixed point theory. Followed by him, many
researchers gained interest in this area because of its wide application in pertur-
bation theory [9, 20]. The fixed point theory for set-valued mapping is an equally
important area in analysis. Several researchers have worked actively in this area.
For the past few years, the set-valued analogue of Krasnoselki fixed point results
was attracted by many researchers. Now, we are going to see such kind of fixed
point result. The following lemma is useful in proving our results:

Lemma 2.2 ( [3]). If A,B ∈ Pbd,cl(X), then D(AC,BC) ≤ D(0, C)D(A,B).

Theorem 2.2 ( [11]). Let Z be a uniformly convex Banach space and S be a closed
convex bounded nonempty subset of a Banach space Z. Let T : S → Pcp(S) be a
nonexpansive set-valued mapping. Then T has a fixed point.

Now, we are going to prove our main results.

Theorem 2.3. Let K be a compact convex subset of a uniformly convex Banach
space (Z, ‖ · ‖) and let A : X → Pcl,cv,bd(X), B : K → Pcv(X) be two multivalued
operators such that
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(a) A is a multivalued Lipschitz operator with Lipschitz constant k;

(b) D(A(x1), A(x2)) ≤ λ[d(x1, Ax1) + d(x2, Ax2)] where λ < 1
2 ;

(c) B is w.l.s.c;

(d) AxBy is a convex subset of K for all x, y ∈ K;

(e) Mk ≤ 1, where M = ‖B(K)‖ = sup{‖Bx‖ : x ∈ K}.

Then the operator inclusion x ∈ AxBx has a solution in K.

Proof. Define a multivalued operator H : K × K → Pcl,cv(K) by H(x, y) =
AxBy for all x, y ∈ K. Now we claim that for all y ∈ X, H satisfies the condition
(1.2). Let x1, x2 ∈ K. Consider

D(H(x1, y), H(x2, y)) = D(A(x1)B(y), A(x2)B(y))

≤ D(A(x1), A(x2))D(0, By)

≤ k‖x1 − x2‖B(K)

≤ kM‖x1 − x2‖
≤ ‖x1 − x2‖.

Hence Hy(·) := H(·, y) satisfies the condition (1.2) on K. Again, consider

D(H(x1, y), H(x2, y)) ≤ D(A(x1)B(y), A(x2)B(y))

≤ D(A(x1), A(x2))d(0, By)

≤ λ[d(x1, Ax1) + d(x2, Ax2)]d(0, By)

≤ λ[d(x1, Ax1)d(0, By) + d(x2, Ax2)d(0, By)]

≤ λ[d(x1, Ax1By) + d(x2, Ax2By)].

By Theorem 2.2, Fix(Hy) = {x ∈ K : x ∈ A(x)B(y)} is nonempty. Let
(xn) ∈ Fix(Hy) with xn → x. Then xn ∈ A(xn)B(y). Therefore,

D(A(xn)B(y), A(x)B(y)) ≤ ‖xn − x‖ → 0 as n→∞.

By Lemma 2.1, x ∈ A(x)B(y), which shows that Fix(Hy) is closed. Also, note
that H(x, .) is w.l.s.c and so H satisfies all the conditions of Theorem 1.3. Thus
there exists h : K × K → K such that h(x, y) ∈ A(h(x, y))B(y). Now define
L : K → Pcl(K) by

L(y) = Fix(Hy).

Consider the single-valued mapping l : K → K defined by l(x) = f(x, x) for
all x ∈ K. Then l is continuous and satisfies the property that l(x) = f(x, x) ∈
A(f(x, x))B(x) = A(l(x))B(x) for all x ∈ K. Since l is continuous on a compact
set, l is a compact mapping. Also, l satisfies all the condition of Schauder theorem
and so there exists p ∈ K such that l(p) = p. Hence

l(p) ∈ A(l(p))B(p) = A(p)B(p),

as desired.
The following example is to show condition (b) of Theorem 2.3 is not a contrac-

tion condition.
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Example 2.1. Consider X := (R2, ‖.‖2). Then, define A : X → Pcl,cv,bd(X) by

A((x, y)) :=

{
{0} × [0, y4 ] (x, y) ∈ {0} × [0, 1]

(0, 0) otherwise.
.

Then A satisfies condition (b) of Theorem 2.3, but not a contraction mapping.

For the better understanding of Theorem 2.3, we provide the following example.

Example 2.2. Consider X := (R2, ‖.‖2) and choose K := {0}× [0, 1]. Then, define
A : X → Pcl,cv,bd(X) and B : K → Pcl(X) by A((x, y)) := {0} × [y8 ,

y
4 ] (x, y) ∈ X

and B((x, y)) := (x, y) respectively.

To see that A satisfies condition (b) in Theorem 2.3, choose x1, x2 ∈ X. Then
x1 = (a1, b1) and x2 = (a2, b2) and also either b1 ≤ b2 or b2 ≤ b1. Without
loss of generality, assume b1 ≤ b2. Then D(Ax1, Ax2) = ‖ b24 −

b1
8 ‖, d(x1, Ax1) =√

a21 + (b1 − u)2, and d(x2, Ax2) =
√
a22 + (b2 − v)2, where u ∈ [ b18 ,

b1
4 ], v ∈ [ b18 ,

b1
4 ].

Then it is not hard to prove that d(x1, Ax1) ≥ 7
8b1 and d(x2, Ax2) ≥ 7

8b2. Now,
take λ = 2

7 , then we can easily see that D(Ax1, Ax2) ≤ λ[d(x1, Ax1) + d(x2, Ax2)].

Since D(Ax1, Ax2) = ‖ b24 −
b1
8 ‖, it is easy to see that A is a Lipschitz operator with

Lipschitz constant k = 3
8 . Also, A and B satisfy all the conditions of Theorem 2.3.

Hence (0, 0) is a solution for the inclusion equation x ∈ Ax Bx.

Corollary 2.2. Let K be a compact convex subset of a Banach space (Z, ‖ · ‖) and
let A : X → Pcl,cv,bd(X), B : K → Pcv(X) be two multivalued operators such that

(a) A is a multivalued Lipschitz operator with Lipschitz constant k;

(b) B is w.l.s.c;

(c) AxBy is a convex subset of K for all x, y ∈ K;

(d) Mk < 1, where M = ‖B(K)‖ = sup{‖Bx‖ : x ∈ K}.

Then the operator inclusion x ∈ AxBx has a solution in K.

3. Application to differential inclusion

Let T = [0, a] be a closed interval with a > 0. Now consider the differential inclusion
(shortly DI) 

(
x(t)

f(t, x(t))

)′
∈ H(t, x(t)) a.e. t ∈ T,

x(0) = p ∈ R,
(3.1)

where f : T × R→ R∗, R∗ denotes the set R \ {0} and H : T × R→ Pcl,cv(R).
A solution to DI (3.1) means that there should exist a function x ∈ C(J,R) and

should satisfy the following properties:

(i) the function x should be absolutely continuous;

(ii) the function t→ x(t)

f(t, x(t))
should be a differentiable function;

(iii)

(
x(t)

f(t, x(t))

)′
= v(t), t ∈ T for some v ∈ L1(T,R) and also v(t) ∈ H(t, x(t))

a.e. t ∈ T .
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Special cases of the above DI are the following:

(1) If f(t, x) = 1, then the DI becomes

{
x′ ∈ H(t, x) a.e. t ∈ T,
x(0) = p ∈ R.

(2) If H(t, x) = {g(t, x)}, then the DI reduces to the following case
(

x(t)

f(t, x(t))

)′
= g(t, x(t)) a.e. t ∈ T,

x(0) = p ∈ R.

The above DI’s have been studied by many researchers (see [5, 14]).

In this section, we are going to prove the existence of solution to the DI (3.1)
(which is newly developed DI in literature) under mixed Lipscitz and Caratheodory
conditions. Let X := C(T,R) with sup norm, that is, if f ∈ C(T,R), then ‖f‖ =
supt∈T |f(t)|. Define the multiplication operation “·” on X by (f · g)(t) = f(t)g(t)
for all t ∈ T . Then X forms a Banach algebra with respect to the sup norm and
multiplication operation.

Definition 3.1. Let F : T → P(R) be any multivalued mapping. Then F is said
to be measurable if for every x ∈ R, the function t → d(x, F (t)) is a measurable
function.

Definition 3.2. Let F : T → Pcp(R) be any measurable multivalued mapping.
Then F is said to be integrably bounded if there exists a function l ∈ L1(T,R) such
that ‖v‖ ≤ l(t) a.e. t ∈ T for all v ∈ F (t).

It is to be noted that if F is an integrably bounded multivalued function, then
the set S1

F which contains all Lebesgue integrable selections of F is closed and
nonempty (see [7]).

Definition 3.3. A multivalued mapping β : T×R→ Pcp(R) is called Caratheodory
if

(i) t→ β(t, x) is measurable for each x ∈ R, and

(ii) x→ β(t, x) is upper semi-continuous almost everywhere for t ∈ T.

Definition 3.4. A Caratheodory multivalued function β(t, x) is called L1- Caratheodor-
y if there exists a function l ∈ L1(T,R) such that

β(t, x)‖ ≤ l(t) a.e. t ∈ T

for all x ∈ R, and the function l is called a growth function of β on T × R.

Define S1
β(x) = {v ∈ L1(T,R) : v(t) ∈ β(t, x(t)) a.e. t ∈ T}. Here, the following

lemma due to Lasota and Opial [10] is very important for our result.

Lemma 3.1. Let E be a Banach space. If dim(E) < ∞ and β : T × E → Pcp(E)
is L1- Caratheodory, then S1

β(x) 6= ∅ for each x ∈ E.

We consider the following hypotheses in the sequel.

(P1) The function f is bounded on T × R→ R with bound L.
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(P2) Let f : T × R → R∗ be continuous. If there exists a bounded function
h : T → R with bound ‖h‖, then

|f(t, x)− f(t, y)| ≤ h(t)|x− y| a.e.t ∈ T

for all x, y ∈ R.
(P3) Also, f satisfies

|f(t, x)− f(t, y)| ≤ k[|x− f(t, x)|+ |y − f(t, y)] a.e. t ∈ T

for all x, y ∈ R and k < 1
2 .

(P4) H : T × R → Pcp,cv(R) is an L1-Caratheodory multivalued mapping with
growth function l.

(P5) x→ S1
H(x) is l.s.c.

Theorem 3.1. Assume that the hypotheses (P1)–(P5) hold. If

‖h‖
(
| p

f(0, p)
|+ ‖l‖L1

)
≤ 1,

then the DI has a solution on T.

Proof. Take X := C(T,R). Now define K := {x ∈ X : ‖x‖ ≤ M}, which is

equicontinuous, where M = L

(
| p

f(0, p)
|+ ‖l‖L1

)
. It is clear that K is a compact

convex subset of X. Define multivalued mappings A and B on K as follows:

A(x(t)) = f(t, x(t))

and

B(x(t)) = {z ∈ X : z(t) =
p

f(0, p)
+

∫ t

0

w(s)ds, w ∈ S1
H(x)}

for all t ∈ T. Then the DI (3.1) is equivalent to the following problem

x(t) ∈ Ax(t)Bx(t), t ∈ T.

Now, our aim is to show that the multivalued operators A and B satisfy all the con-
ditions of Theorem 2.3. Firstly, A and B are well-defined, since S1

H(x) is nonempty
for all x ∈ X. It is clear that A : K → Pcl,cv,bd(X). Let z1, z2 ∈ Bx. Then there
exist w1, w2 ∈ S1

H(x) such that

z1(t) =
p

f(0, p)
+

∫ t

0

w1(s)ds, t ∈ T

and

z2(t) =
p

f(0, p)
+

∫ t

0

w2(s)ds.

Take any λ ∈ [0, 1]. Then

λz1(t) + (1− λ)z2(t) = λ

(
p

f(0, p)
+

∫ t

0

w1(s)ds

)
+ (1− λ)

(
p

f(0, p)
+

∫ t

0

w2(s)ds

)
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=
p

f(0, p)
+

∫ t

0

[λw1(s) + (1− λ)w2(s)]ds

=
p

f(0, p)
+

∫ t

0

w(s)ds,

where w(s) = λw1(s) + (1− λ)w2(s) ∈ H(s, x) for all s ∈ T . This shows that Bx is
convex valued for all x ∈ K. Hence B : K → Pcv(X).

Next we claim that A is a multivalued Lipschitz mapping. Let x1, x2 ∈ K. Then

‖Ax1 −Ax2‖ = sup
t∈T
|Ax1(t)−Ax2(t)|

= sup
t∈T
|f(t, x1(t))− f(t, x2(t))|

≤ sup
t∈T

h(t)|x1(t)− x2(t)|

≤ ‖h‖‖x1 − x2‖,

which shows that A is a multivalued Lipschitz operator on K. Using (P3), one can
easily see that ‖Ax1 −Ax2‖ ≤ k[‖x1 −Ax1‖+ ‖x2 −Ax2‖], where k < 1

2 . Next, we
are going to show that B is l.s.c. Let (xn) ∈ K with xn → x and y ∈ Bx. Then

y(t) =
p

f(0, p)
+
∫ t
0
w(s)ds, w ∈ S1

H(x). By (P4), there exist wn ∈ S1
H(xn) for all

n ∈ N such that wn → w.
Now, our aim is to extract an uniformly convergent subsequence. For that, define

L : L1(T,R) → C(T,R) by L(v) :=
∫ t
0
v(s)ds. Since L is continuous, Lwn(t) →

Lw(t) pointwise on T as n→∞. Let t1, t2 ∈ T. Then

‖Lwn(t1)− Lwn(t2)‖ ≤ |
∫ t1

0

wn(s)ds−
∫ t2

0

wn(s)ds| ≤ |
∫ t2

t1

wn(s)ds|.

Observe that the right hand side converges to 0 as t1 → t2. This shows that (Lwn)
is equicontinuous and so by Ascoli theorem there exists an uniformly convergent

subsequence (wnk
) such that Lwnk

→ Lw uniformly. Now, define ynk
(t) =

p

f(0, p)
+∫ t

0
wnk

(s)ds, wnk
∈ S1

H(xnk
). Then ynk

→ y. Hence B is l.s.c.
Finally, we have to show that AxBx is a convex subset of K for all x ∈ K. Let

x ∈ K be taken arbitrarily and let v1, v2 ∈ K. Then there exists S1
H(x) such that

v1 = [f(t, x(t))]

(
p

f(0, p)
+

∫ t

0

w1(s)ds

)
,

v2 = [f(t, x(t))]

(
p

f(0, p)
+

∫ t

0

w2(s)ds

)
.

Let λ ∈ [0, 1]. Then

λv1 + (1− λ)v2

=λ[f(t, x(t))]

(
p

f(0, p)
+

∫ t

0

w1(s)ds

)
+ (1− λ)[f(t, x(t))]

(
p

f(0, p)
+

∫ t

0

w2(s)ds

)
=[f(t, x(t))]

(
λ

p

f(0, p)
+

∫ t

0

λw1(s)ds

)
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+ [f(t, x(t))]

(
(1− λ)

p

f(0, p)
+

∫ t

0

(1− λ)w1(s)ds

)
=[f(t, x(t))]

(
p

f(0, p)
+

∫ t

0

λw1(s) + (1− λ)w2(s)ds

)
.

Since H(t, x(t)) is convex, z = λw1 + (1−λ)w2 ∈ H(t, x(t)) for all t ∈ T. This gives
λv1 + (1− λ)v2 ∈ AxBx. Hence AxBx is a convex subset of X. By the condition,

Mk = ‖h‖
(
| p

f(0, p)
|+ ‖l‖L1

)
≤ 1

and so A and B satisfy all the conditions of Theorem 2.3. Therefore, the inclusion
equation x ∈ AxBx has a solution.
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