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Abstract. Stability analysis of numerical methods for ordinary differential equations (ODEs)
is motivated by the question “for what choices of stepsize does the numerical method reproduce
the characteristics of the test equation?” We study a linear test equation with a multiplicative
noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta
method. We extend some mean-square stability results in [Saito and Mitsui, SIAM. J. Numer.
Anal., 33 (1996), pp. 2254–2267]. In particular, we show that an extension of the deterministic
A-stability property holds. We also plot mean-square stability regions for the case where the test
equation has real parameters. For asymptotic stability, we show that the issue reduces to finding the
expected value of a parametrized random variable. We combine analytical and numerical techniques
to get insights into the stability properties. For a variant of the method that has been proposed
in the literature we obtain precise analytic expressions for the asymptotic stability region. This
allows us to prove a number of results. The technique introduced is widely applicable, and we use
it to show that a fully implicit method suggested by [Kloeden and Platen, Numerical Solution of
Stochastic Differential Equations, Springer-Verlag, 1992] has an asymptotic stability extension of
the deterministic A-stability property. We also use the approach to explain some numerical results
reported in [Milstein, Platen, and Schurz, SIAM J. Numer. Anal., 35 (1998), pp. 1010–1019.]
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1. Introduction and motivation. Our aim is to study the stability of numeri-
cal methods for stochastic differential equations (SDEs) by generalizing concepts from
the well-established deterministic theory. We consider an autonomous scalar Itô SDE,

dX(t) = f(X(t))dt + g(X(t))dW (t), X(0) = X0,(1.1)

driven by the standard Wiener process W (t) [5, 13]. The following numerical method
computes approximations Xi ≈ X(i∆t):

Xn+1 = Xn + (1 − θ)∆tf(Xn) + θ∆tf(Xn+1) + ∆t
1
2 g(Xn)Vn.(1.2)

Here, ∆t > 0 is the constant stepsize, θ ∈ [0, 1] is a fixed parameter, and each Vn is an
independent Normal(0, 1) random variable. In the deterministic case, g ≡ 0, (1.2) is
called the theta method (TM) and the choice θ = 0 gives Euler’s method, θ = 1

2
gives

the trapezoidal rule, and θ = 1 gives the implicit, or backward, Euler method. The
method (1.2) is discussed in [18], where it is called the semi-implicit Euler method.
In particular, taking θ = 0 gives the widely used Euler–Maruyama method. Because
of its natural connection with the TM, we will refer to (1.2) as the stochastic theta
method (STM). For details of the concepts of order of convergence for (1.2) and other
numerical methods for SDEs, see, for example, [10]. In this work we are concerned
with the linear stability properties of the STM.
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In section 2 we summarize the idea of linear (or absolute) stability for the deter-
ministic TM. Here the underlying idea is one that has proved valuable throughout
many areas of numerical analysis—study a numerical method on a test problem which
is simple enough to allow analysis to be performed, but which retains features present
in more general problems of interest. In this context the test problem is linear, scalar,
and autonomous, and the property under consideration is stability of the trivial solu-
tion. The key question is then

for what stepsizes ∆t does the numerical method

share the stability property of the underlying test problem?(1.3)

In section 3 we introduce a linear stochastic test equation. We consider two nat-
ural, but distinct, definitions of stability for this test equation—mean-square stability
and asymptotic stability. In sections 4 and 5 we study the corresponding stability
properties for the STM. We show that a mean-square generalization of the determin-
istic A-stability property holds for 1

2
≤ θ, and for 0 ≤ θ < 1

2
we give a stability bound

for the stepsize. For real values of the test equation parameters, we characterize and
plot the stability regions. In the case of asymptotic stability, we do not find it possi-
ble to derive neat characterizations of the stability regions, and hence we rely upon a
mixture of analysis and numerical computation. In section 6 we consider a variant of
the STM for which a more detailed asymptotic stability analysis is possible. In this
case we are able to characterize the stability regions precisely and draw conclusions
in the spirit of (1.3). Some numerical simulations with the STM are presented in
section 7. These tests indicate that the linear stability theory has relevance to the
behavior near equilibrium on a nonlinear problem. In subsection 8.1 we apply our
asymptotic stability analysis to two other methods from the literature. We show that
a fully implicit method proposed by Kloeden and Platen [10] has an extremely de-
sirable asymptotic stability extension of A-stability. We also confirm the numerical
evidence reported by Milstein, Platen, and Schurz [14], which shows that a particular
balanced method has good asymptotic stability. Subsection 8.2 discusses related work
and possible extensions.

Our approach was heavily influenced by the ideas of Mitsui and his coworkers
[11, 17, 18]. In [11, 18] the concept of mean-square stability with respect to a linear
test equation was studied. In particular, the condition (4.2) below that characterizes
mean-square stability of the STM was derived in [18]. Our contribution to mean-
square stability comes from studying this condition with (1.3) in mind. A similar
approach was taken in [19]. In [17], the authors introduced the concept of T -stability
for the Euler–Maruyama scheme based on a two point or three point random variable,
applied to a test equation with real coefficients. This stability condition arises by
averaging the stability function. Our analysis in section 6 coincides with the T -
stability approach in the case θ = 0. However, we prefer to use the term asymptotic
stability for this property, since, as we show in sections 5 and 6, it can be motivated
from the analogous concept of asymptotic stability for the underlying SDE. Lemma 5.1
shows that studying asymptotic stability reduces to studying the expected value of a
random variable with one complex parameter. In this way, we are able to investigate
stability for the Normal(0, 1) sampling methods.

2. Deterministic ODEs: Linear stability concepts. There is a vast liter-
ature on the stability of numerical methods for deterministic ordinary differential
equations (ODEs); see, for example, [7] for a review. In this section we summarize



STOCHASTIC STABILITY 755

well-known results for the TM in a way that helps to motivate the SDE analysis.
Linear stability (or absolute stability) is based on the scalar test equation

d

dt
X(t) = λX(t), t > 0, X(0) = X0 6= 0,(2.1)

where λ ∈ C is a constant. For this equation,

lim
t→∞

X(t) = 0 ⇔ λ ∈ C
−,(2.2)

where C
− denotes the left-half complex plane. The TM applied to (2.1) produces the

recurrence

Xn+1 = Xn + (1 − θ)∆tλXn + θ∆tλXn+1,(2.3)

which is well defined for 1 − θλ∆t 6= 0. This recurrence depends on the parameter θ
and the product ∆tλ ∈ C. For a given θ, we let Sθ denote the stability region for the
TM; that is, the set of points ∆tλ ∈ C for which Xn → 0 as n → ∞. If C

− ⊆ Sθ,
then the method is said to be A-stable. In other words the method is A-stable if and
only if the following statement is true:

Whenever the test problem (2.1) is such that limt→∞ X(t) = 0, the
method (2.3) gives limn→∞ Xn = 0 for all ∆t > 0.

It is easily shown that the region Sθ has the following form:

0 ≤ θ < 1

2
, Sθ = interior of B( −1

1−2θ
, 1

1−2θ
),

θ = 1

2
, Sθ = C

−,
1

2
< θ ≤ 1, Sθ = exterior of B( 1

2θ−1
, 1

2θ−1
),

where B(c, r) denotes the disc with center c ∈ C and radius r. It follows that the TM
is A-stable if and only if 1

2
≤ θ. For θ = 1

2
the method has a stability region that

matches exactly the region for the test problem. We also note that for 0 ≤ θ < 1

2
,

since the relevant disc intersects the imaginary axis tangentially at the origin, for
λ ∈ C

− with small real part the method is stable only for very small ∆t. In later
sections we will be concerned with similar effects; hence we formalize this result as a
lemma.

Lemma 2.1. Given ε > 0 and 0 ≤ θ < 1

2
, there exists λ = λ(ε, θ) ∈ C

−,
normalized to |λ| = 1, such that the TM with ∆t = ε gives limn→∞ |Xn| = ∞.

Proof. The condition for stability may be written

∆t <
−2<{λ}

(1 − 2θ)|λ|2 .(2.4)

Choosing λ so that <{λ} = −min{(1 − 2θ)ε/4, 1/2} and |λ| = 1, we see that ∆t = ε
violates (2.4).

3. Stochastic ODEs: Linear stability concepts. A stochastic analogue of
(2.1) is the problem

dX(t) = λX(t)dt + µX(t)dW (t), t > 0, X(0) = X0,(3.1)

where λ, µ ∈ C are constants and where X0 6= 0 with probability 1. Because of the
factor X(t) in the second term on the right-hand side of (3.1), this is said to be a linear
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equation with multiplicative noise. This equation has been considered by a number
of authors [4, 8, 11, 12, 15, 17, 18, 19], in some cases with the restriction λ, µ ∈ R.

Solutions of (3.1) have the following properties [18]:

lim
t→∞

E(|X(t)|2) = 0 ⇔ <{λ} + 1

2
|µ|2 < 0,(3.2)

lim
t→∞

|X(t)| = 0,with probability 1 ⇔ <{λ− 1

2
µ2} < 0,(3.3)

where E(·) denotes the expected value. The property on the left-hand side of (3.2) is
known as mean-square stability, whereas the left-hand side of (3.3) defines asymptotic
stochastic stability (in the large). See, for example, [5, 13] for further details of stability
concepts for SDEs. Note that for µ = 0 these stability conditions collapse to the
deterministic one, <{λ} < 0.

Applying the STM (1.2) to the problem (3.1) produces

Xn+1 =

(
1 + (1 − θ)∆tλ + ∆t

1

2µVn

1 − θ∆tλ

)
Xn,(3.4)

where we recall that each Vn is an independent Normal(0, 1) random variable. The
recurrence (3.4) may be regarded as a stochastic difference equation or a Markov
chain with uncountable state space. For a particular θ and ∆t, the general form of the
recurrence is

Xn+1 = (a + bVn)Xn,(3.5)

where

a :=
1 + (1 − θ)∆tλ

1 − θ∆tλ
and b :=

∆t
1

2µ

1 − θ∆tλ
(3.6)

are independent of n.
In order to study the stability properties of the STM, we must therefore study

the long term behavior of random variables of the form (3.5). In section 4 we consider
mean-square stability, and in section 5 we consider asymptotic stability.

4. Mean square stability. By analogy with the definition for the SDE (3.1),
we will say that the sequence (3.5) is mean-square stable if limn→∞ E(|Xn|2) = 0.
Note that the STM depends upon the problem parameters λ and µ, and the method
parameters θ and ∆t. For a particular choice of parameters, we will say that the STM
is mean-square stable if it produces a mean-square stable sequence. Our interest lies
in finding the parameter values for which the STM is stable, and comparing results
with the region <{λ} + 1

2
|µ|2 < 0 in (3.2) for the underlying SDE.

To analyze mean-square stability of the STM, we see from (3.5) that

|Xn+1|2 =
(
|a|2 + (ab + ab)Vn + |b|2V 2

n

)
|Xn|2.

Taking expected values gives

E(|Xn+1|2) =
(
|a|2 + |b|2

)
E(|Xn|2),

and hence

lim
n→∞

E(|Xn|2) = 0 ⇔ |a|2 + |b|2 < 1.(4.1)
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It follows from (4.1) that the STM is mean-square stable if and only if

|1 + (1 − θ)∆tλ|2 + ∆t|µ|2
|1 − θ∆tλ|2 < 1.(4.2)

We see from (4.2) that mean-square stability is dependent upon the quantities θ, ∆tλ
and ∆t|µ|2. Saito and Mitsui [18] derived the condition (4.2). They plotted domains
of stability for various slices through the parameter values. However, in the spirit
of (1.3), it is natural to compare the mean-square stability of the SDE (3.1) and the
method (3.4). We now proceed in this manner.

For convenience, we let Ssde and Sstm(θ,∆t) denote the sets of pairs of complex
problem parameters for which the problem and method are stable, respectively; that
is,

Ssde := {λ, µ ∈ C : <{λ} + 1

2
|µ|2 < 0},

Sstm(θ,∆t) := {λ, µ ∈ C : (4.2) holds}.

The following result is immediate from (4.2).
Theorem 4.1. For all ∆t > 0 we have

Sstm(θ,∆t) ⊂ Ssde for 0 ≤ θ < 1

2
,

Sstm( 1

2
,∆t) ≡ Ssde,

Sstm(θ,∆t) ⊃ Ssde for 1

2
< θ.

For 0 ≤ θ < 1

2
, given (λ, µ) ∈ Ssde, the STM is mean-square stable if and only if

∆t <
−2(<{λ} + 1

2
|µ|2)

|λ|2(1 − 2θ)
.(4.3)

In the case θ ≥ 1

2
, Theorem 4.1 shows that whenever the SDE is stable then so

is the STM for any ∆t > 0, an observation that is also made in [19]. This is a direct
generalization of the deterministic A-stability property. For 0 ≤ θ < 1

2
, Theorem 4.1

shows that (a) if the SDE is unstable, then so is the STM for all ∆t, and (b) if the
SDE is stable, then so is the STM for sufficiently small ∆t. However, in the latter
case, as we have already seen from Lemma 2.1, the resulting stepsize restriction can
be arbitrarily severe, even when λ and µ are bounded.

Since mean-square stability of the STM depends upon λ∆t and |µ|2∆t, in the
general case λ, µ ∈ C it is not easy to visualize regions of stability. However, if we
restrict attention to λ, µ ∈ R then we may draw pictures in an appropriate real plane.
By analogy with the standard practice for deterministic stability regions [7], we will
draw these regions in the x-y plane, where x = ∆tλ and y = ∆tµ2. In this way,
given problem parameters λ and µ, varying ∆t corresponds to moving along a ray
that passes through the origin and (λ, µ2). The next result is immediate from (4.2).

Lemma 4.2. Suppose λ, µ ∈ R and let x = ∆tλ, y = ∆tµ2. The STM is mean-
square stable if and only if y < (2θ − 1)x2 − 2x.

The upper left-hand and right-hand pictures in Figure 4.1 illustrate the cases
θ = 0 and θ = 0.25, respectively. The mean-square stability region is shown with
vertical hashing. Superimposed on the pictures with horizontal hashing is the region
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Fig. 4.1. Real mean-square stability regions for the STM (vertical hashing) and the underlying
SDE (horizontal hashing). Top left, θ = 0; top right, θ = 0.25; bottom left, θ = 0.75; bottom right,
θ = 1.

y < −2x where the underlying SDE (3.1) is stable. The lower left-hand and right-
hand pictures in Figure 4.1 illustrate the cases θ = 0.75 and θ = 1, respectively. We
remark that general set relations in Theorem 4.1 are seen to be true in these special
cases.

The following straightforward consequence of Lemma 4.2 shows that the type of
stability region shrinkage for 0 ≤ θ < 1

2
outlined in Lemma 2.1 for the determin-

istic case with λ ∈ C arises in the mean-square stability case even when only real
parameters are allowed.

Theorem 4.3. Given ε > 0 and 0 ≤ θ < 1

2
, there exist λ = λ(ε, θ) ∈ R and

µ = µ(ε, θ) ∈ R with λ+ 1

2
µ2 < 0, normalized to λ2 +µ2 = 1, such that the STM with

∆t = ε is not mean-square stable.

5. Asymptotic stability. By analogy with the definition for SDEs, we will say
that the sequence (3.5) is asymptotically stable if limn→∞ |Xn| = 0, with probability
1. For a particular choice of λ, µ, θ and ∆t, we will say that the STM is asymptotically
stable if it produces an asymptotically stable sequence. As in the previous section, we
seek to characterize those λ, µ, θ,∆t for which the STM is stable, and then to compare
the results with the corresponding constraint for the underlying test problem.

The following lemma is useful for our purposes.
Lemma 5.1. Given a sequence of real-valued, nonnegative, independent, and iden-

tically distributed random variables {Zn}, consider the sequence of random variables
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Fig. 5.1. Plot of γ(c) := E(log |1 + cVi|) against c.

{Yn}n≥1 defined by

Yn =

(
n−1∏

i=0

Zi

)
Y0,(5.1)

where Y0 ≥ 0 and where Y0 6= 0 with probability 1. Suppose that the random variables
log(Zi) are square-integrable. Then

lim
n→∞

Yn = 0, with probability 1 ⇔ E(log(Zi)) < 0.

Proof. Taking logs in (5.1) gives

log(Yn) =

n−1∑

i=0

log(Zi) + log(Y0).(5.2)

Now let µ := E(log(Zi)) and Sn :=
∑n−1

i=0
log(Zi). Since log(Zi) is integrable, the

strong law of large numbers [1] shows that

lim
n→∞

(
Sn

n
− µ

)
= 0, with probability 1.(5.3)

If µ < 0, then it follows from (5.3) that limn→∞ Sn = −∞ with probability 1. Hence,
in (5.2), limn→∞ Yn = 0 with probability 1.
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Fig. 5.2. Real asymptotic stability region for (3.5).

Similarly, if µ > 0 then it follows from (5.3) that limn→∞ Sn = ∞ and limn→∞ Yn =
∞ with probability 1.

If µ = 0 we may appeal to the law of the iterated logarithm [1], which shows that

lim sup
n→∞

Sn√
2n log log n

= σ, with probability 1,

where σ is the variance of log(Zi). Hence, in this case it is not true that limn→∞ Yn = 0
with probability 1.

We remark that in the proof of Lemma 5.1 the strong law of large numbers was
used to show that E(log(Zi)) ≤ 0 and E(log(Zi)) < 0 are necessary and sufficient,
respectively, for asymptotic stability. This result requires only the assumption that
E(| log(Zi)|) is finite. Applying the law of the iterated logarithm to get the full result
required the stronger assumption that E((log(Zi))

2) is finite.
In order to apply Lemma 5.1 to (3.5) we take Yn := |Xn| and Zi := |a + bVi|,

where we recall that a, b ∈ C are constants and Vi is Normal(0, 1). The condition
determining asymptotic stability is then E(log |a + bVi|) < 0. Note that, for a 6= 0,

E(log |a + bVi|) = log |a| + E(log |1 + cVi|), where c := b/a.(5.4)

Hence, the stability issue reduces to the study of the expected value of a random
variable with one complex parameter. In the case where Vi is Normal(0, 1) it appears
not to be possible to find a simple analytical formula for E(log |1 + cVi|) in terms of
c. The symbolic algebra facility in Mathematica [21] shows that the required integral
can be expressed in terms of Meijer’s G-function [6]. However, this does not provide
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Fig. 5.3. Real asymptotic stability region for STM with θ = 1 (vertical hashing) and the
underlying SDE (horizontal hashing).

a straightforward means for analytically determining stability regions of the STM. In
section 6 we show that further analysis is possible for as variant of the STM where the
Normal(0, 1) distribution is replaced by a two point distribution. In the remainder of
this section, we consider the case where λ, µ ∈ R, and hence a, b, c ∈ R, and focus on
numerical computations.

In Figure 5.1 we plot γ(c) := E(log |1+cVi|) for real c > 0. Note that a symmetry
argument shows that the stability is unchanged if a 7→ −a or b 7→ −b, so the restriction
to c > 0 is not significant. The plots were computed using numerical quadrature to
approximate the relevant integrals.

Using Lemma 5.1 and the information in Figure 5.1, for any a and b we may
now check whether the sequence Xn in (3.5) is asymptotically stable. We used
this approach to produce Figure 5.2, which shows the positive a and b for which
(3.5) is asymptotically stable. The boundary of this region has the parametric form
a = exp(−γ(c)), b = c exp(−γ(c)), for c > 0. The boundary of the unit circle is
superimposed using the symbol o. From (4.1), this is the region where the sequence
is mean-square stable.

It is interesting to note the “bulge” in the asymptotic stability region in Figure 5.2
as b increases from zero. For example, fixing a = 1.1, we see that b = 0.2 gives
instability, b = 1.0 gives stability, and b = 1.8 gives instability. In other words, a
small amount of noise fails to stabilize the iteration, a larger amount of noise induces
stability, and an even larger amount of noise destabilizes. This property arises as a
consequence of the fact that γ(c) dips below zero for small c in Figure 5.1.
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In order to test whether the STM is asymptotically stable for a particular choice
of ∆tλ and ∆tµ2, we may check whether a and b in (3.6) lie in the stability region
in Figure 5.2. In this manner, for each θ we could compute (a finite portion of) the
stability region in the x-y plane, where x := ∆tλ and y := ∆tµ2. In the case where
θ = 1 it is possible to visualize this region directly from Figure 5.1. Here, a = 1/(1−x)
and b = y

1
2 /(1−x), so that c = b/a = y

1
2 . Hence, using Lemma 5.1 and (5.4) it follows

that the stability region is defined by x < 1 − exp(γ(y
1
2 )) and x > 1 + exp(γ(y

1
2 )).

The result is shown with vertical hashing in Figure 5.3. The region y > 2x where the
SDE is asymptotically stable is shown with horizontal hashing.

Although it does not seem possible to obtain simple analytical formulas describing
stability regions of the STM, we can prove that an extension of A-stability does not
hold. This is essentially a consequence of the fact that the recurrence (3.5) has a pole
at x = 1/θ, whereas the test equation (3.1) can be made stable at this value.

Theorem 5.2. For each θ ≥ 1

2
, there exist λ, µ ∈ R and ∆t > 0 such that

λ− 1

2
µ2 < 0 but the resulting STM is not asymptotically stable.

Proof. With the notation x = ∆tλ and y = ∆tµ2 let x = (1 − δ)/θ, where δ
is a small parameter to be determined, and let y = 4x = 4(1 − δ)/θ. Then, from
Lemma 5.1, the condition for asymptotic stability of the STM becomes

log

∣∣∣∣1 +
(1 − θ)

θ
(1 − δ)

∣∣∣∣+ log

∣∣∣∣
1

δ

∣∣∣∣+ E

(
log

∣∣∣∣∣1 + 2

√
1 − δ

θ

Vi

1 + (1 − θ)δ/θ

∣∣∣∣∣

)
< 0.

Clearly, by choosing δ sufficiently small we can violate this condition.

6. The weak stochastic theta method. Some authors have analyzsed numer-
ical methods in which the samples from a Normal(0, 1) distribution are replaced by
samples from a simpler distribution [2, 10, 17]. This allows cheaper simulations when
only weak convergence is required. From the point of view of our study, sampling
from a simpler distribution gives the advantage of allowing analytical expressions to
be derived for regions of asymptotic stability. The numerical method that we consider
in this section has the form

Xn+1 = Xn + (1 − θ)∆tf(Xn) + θ∆tf(Xn+1) + ∆t
1
2 g(Xn)Ṽn.(6.1)

Here each Ṽn comes from a two point distribution: P (Ṽn = 1) = P (Ṽn = −1) = 1

2
.

Note that (6.1) differs from (1.2) only in the choice of the “noise” factor. In the case
θ = 0, this method appears in [2, 17] and [10, p. 328], and is known to have weak
order of convergence equal to one. We therefore refer to the method (6.1) as the weak
stochastic theta method (WSTM).

Initially, it may seem strange to analyze asymptotic stability for a method that
does not make use of the underlying Wiener path, and hence is only weakly conver-
gent. However, we feel that there are good reasons for this pursuit. First, studying the
numerical solution on a linear test equation may be equally well regarded as study-
ing error propagation in the method and we may wish for the error to decay with
probability one. Second, time averages equal ensemble averages for ergodic problems,
and so paths of the WSTM might be used in this context. Third, analytical insight
about the method (6.1) gives an indication of what to expect from the Normal(0, 1)
sampling method (1.2), for which analysis is harder.

Applying the WSTM to the test problem (3.1) produces the recurrence

Xn+1 = (a + bṼn)Xn,(6.2)
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where a and b are defined in (3.6). The relation (4.1) remains valid, and we see that
the mean-square stability of the WSTM is identical to that of the corresponding STM.
To study asymptotic stability, a straightforward application of Lemma 5.1 gives the
following result.

Lemma 6.1. For a, b ∈ C, the recurrence (6.2) satisfies

lim
n→∞

|Xn| = 0, with probability 1 ⇔
∣∣a2 − b2

∣∣ < 1.(6.3)

Note that if we sample the recurrence (6.2), then the growth factor taking us
from Xn to Xn+1 is equally likely to be a + b or a − b. Lemma 6.1 shows that
asymptotic stability requires the “geometric mean growth factor,”

√
(a + b)(a− b),

to have modulus less than unity. Saito and Mitsui [17] used this averaged growth
factor approach to define T -stability for the Euler–Maruyama method (that is, the
STM with θ = 0) with a two point and three point noise sample. In this case, the
definition coincides with our definition of asymptotic stability.

For the case where λ and µ are real, the following result is immediate from
Lemma 6.1.

Corollary 6.2. For λ, µ ∈ R the WSTM (6.1) is asymptotically stable if and
only if

∣∣(1 + (1 − θ)x)2 − y
∣∣ < (1 − θx)2,(6.4)

where x = ∆tλ and y = ∆tµ2.
Using

RASsde := {(x, y) : x, y ∈ R, y ≥ 0 and y > 2x},
RASwstm(θ) := {(x, y) : x, y ∈ R, y ≥ 0 and (6.4) holds}

to denote the real asymptotic stability regions of the SDE and the WSTM, respec-
tively, the following further corollaries can be deduced directly from Corollary 6.2.

Corollary 6.3. For 0 ≤ θ < 1

2
,

(a) RASwstm(θ) ⊂ RASsde, and
(b) given any ε > 0, there exist x = x(ε, θ) and y = y(ε, θ) with (x, y) ∈ RASsde

such that x2 + y2 < ε but (x, y) /∈ RASwstm(θ).
Part (a) of Corollary 6.3 shows that, for 0 ≤ θ < 1

2
, the WSTM always reflects

instability in the test equation (3.1). Part (b) shows that the range of scaled stepsizes
for which the WSTM reflects stability in the test equation may be made arbitrarily
small by appropriate choice of λ and µ. This is analogous to the circumstance outlined
in Lemma 2.1 for the deterministic problem with complex parameters.

Corollary 6.4. For θ = 1

2
,

(a) RASwstm( 1

2
) ⊂ RASsde, and

(b) (x, y) ∈ RASsde and y < 2 ⇒ (x, y) ∈ RASwstm( 1

2
).

Corollary 6.4 shows that for θ = 1

2
, the method always reflects instability and will

preserve stability if ∆t < 2/µ2.
Corollary 6.5. For 1

2
< θ ≤ 1,

(a) RASwstm(θ) 6⊆ RASsde and RASsde 6⊆ RASwstm(θ), and
(b) (x, y) ∈ RASsde and y < 1/(θ2 + (1 − θ)2) ⇒ (x, y) ∈ RASwstm(θ).
Part (a) of Corollary 6.5 shows that, for 1

2
< θ ≤ 1, the WSTM does not always

reflect stability or instability of the test problem. However, part (b) shows that
stability is preserved if ∆t < 1/(µ2(θ2 + (1 − θ)2)), and hence if ∆t < 1/µ2.
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Our analysis of the case λ, µ ∈ R shows that the WSTM does not possess the
asymptotic stability extension of A-stability for 1

2
≤ θ ≤ 1. However, Corollary 6.4

part (b) and Corollary 6.5 part (b) show that the range of stepsizes for which the
method is stable can be bounded away from zero over all λ ∈ R and all normalized
µ ∈ R for which the SDE is stable. Hence, the stability properties do not degenerate
to the extent illustrated by Lemma 2.1 for the deterministic TM with 0 ≤ θ < 1

2
.

We now consider λ, µ ∈ C. Part (b) of Theorem 6.6 below shows that in this
case stability region shrinkage of the type indicated in Lemma 2.1 does occur. Note
that the result below is more negative than that in Lemma 2.1 in the sense that the
parameters λ and µ may be chosen independently of θ. On the other hand, part (a) of
Theorem 6.6 shows that given fixed λ and µ for which the SDE is stable, a nonempty
range of stable stepsizes exists.

Theorem 6.6. Consider the WSTM applied to (3.1).
(a) Given λ, µ ∈ C such that <{λ− 1

2
µ2} < 0, so that the SDE (3.1) is asymptot-

ically stable, there exists ∆t? = ∆t?(λ, µ) > 0 such that the WSTM is asymptotically
stable for any 0 ≤ θ ≤ 1 and 0 < ∆t < ∆t?.

(b) Given any ε > 0, there exist λ, µ ∈ C with <{λ − 1

2
µ2} < 0, normalized to

|λ|2 + |µ|2 = 1, such that the WSTM is not asymptotically stable when ∆t = ε for any
0 ≤ θ ≤ 1.

Proof. For a and b defined in (3.6), the condition |a2 − b2| < 1 in Lemma 6.1,
which determines asymptotic stability for the WSTM, may be written

4<{λ− 1

2
µ2} + ∆t[2(1 − θ)2<{λ2} +

∣∣2(1 − θ)λ− µ2

+ (1 − θ)2λ2∆t
∣∣2 − 2θ2(|λ|2 + 2<{λ}2)]

+ 4∆t2θ3<{λ}|λ| − θ4∆t3|λ|4 < 0.(6.5)

If <{λ− 1

2
µ2} < 0, this has the form

|<{λ− 1

2
µ2}| > ∆tg1(θ, λ, µ

2) + ∆t2g2(θ, λ, µ
2) + ∆t3g3(θ, λ, µ

2),(6.6)

where g1, g2, and g3 are smooth, real-valued functions of θ, λ and µ2. Since the
left-hand side of (6.6) is positive, for each θ we may find ∆̂t such that (6.6) holds for

0 < ∆t < ∆̂t, and we may obtain ∆t? by minimizing over 0 ≤ θ ≤ 1. This proves
part (a).

To prove part (b) we consider the case λ = −δ and µ2 = (1 − δ2)i, where δ > 0
is a small parameter to be determined. When ∆t = ε, the stability criterion (6.5) for
this λ and µ becomes

−4δ + ε[2(1 − θ)2δ2 +
∣∣−2(1 − θ)δ − (1 − δ2)i + (1 − θ)2δ2ε

∣∣2

−6θ2δ2] + 4ε2θ3δ3 − θ4ε3δ4 < 0.(6.7)

For fixed ε, the left-hand side of (6.7) tends to ε as δ → 0. Hence, by choosing δ
sufficiently small, we can violate the stability criterion.

7. Numerical tests. For deterministic ODEs, linear stability theory for numer-
ical methods is known to be relevant to behavior around fixed points for systems [9],
as well as forming a starting point for more general theories on nonlinear problem
classes and partial differential equations. How much of this theory carries through
to the SDE setting? We do not attempt to answer that question in any generality.
Instead we focus on behavior around a scalar fixed point and perform numerical tests.
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Fig. 7.1. θ = 0 method: sample approximation to E

(
(Xn − 1)2

)
against tn.

Our approach is to solve a nonlinear problem and compare the behavior to that pre-
dicted for the corresponding linearized version. We wish to check whether the linear
theory gives a reasonable guide to the general behavior as problem parameters are
varied. Note that for numerical simulations in a stochastic setting it is not realistic to
attempt to determine parameter values that give a precise cut-off between stability
and instability, especially in the asymptotic stability case. Hence, we are looking for
a reasonable match between the linear theory and the numerical results, rather than
a precise connection.

For the tests, we take the SDE

dX(t) = −λX(t) (1 −X(t)) dt− µX(t) (1 −X(t)) dW (t),(7.1)

which is a normalized version of a population model in [5, equation (2.7)]. Note that
linearizing about the fixed point X(t) ≡ 1 leads to the linear test equation (3.1). We
use constant positive initial conditions throughout the tests.

We first test the mean-square stability behavior of the θ = 0 (Euler–Maruyama)
method. We take ∆t = 1 and solve over 0 ≤ t ≤ 50. To estimate E

(
(Xn − 1)2

)
,

we average over 105 numerically generated paths. We fix λ = −1 and use µ =
0.5, 0.75, 0.8, 1.0, 1.25. From Lemma 4.2 (or Figure 4.1), with λ = −1 and ∆t = 1, the
linear problem is mean-square stable for µ2 < 1. The left-hand picture in Figure 7.1
plots the sampled approximation to E

(
(Xn − 1)2

)
against tn for X0 = 1.05. We

see that the µ = 0.5, 0.75 computations appear to be mean-square stable with the
remainder unstable. For the right-hand picture in Figure 7.1 we use X0 = 1.01. We
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Fig. 7.2. θ = 1 method: |Xn − 1| against tn for one path.

see that taking the initial condition closer to the fixed point has made the µ = 0.8
computation stable.

Next we test asymptotic stability by applying the θ = 1 method with ∆t = 1,
X0 = 1.1 and 0 ≤ t ≤ 100. In order to apply the method (1.2) to (7.1) we must
solve a quadratic equation on each step. For these tests, we compute the absolute
values of the roots of the quadratic and use the one closest to Xn as Xn+1. All
tests use the same path (generated by randn(’state’,100); dW = randn(100,1);

in Matlab version 5.3 [20]). First, we set λ = −1. Examining the stability region
boundary in Figure 5.3 we find that with ∆t = 1 and λ = −1 the θ = 1 method is
asymptotically linearly stable for µ2 values between 0 and (to two significant digits)
13. For the test, we take µ = −2,−2.5,−3,−3.5,−4. The left-hand plot in Figure 7.2
shows |Xn − 1| against tn. We see that the µ = −2,−2.5,−3 paths appear to give
asymptotic stability. For a second test, we set µ = −1 and vary λ. For ∆t = 1 and
µ = −1 examining the data in Figure 5.3 shows that the method is asymptotically
linearly stable for λ < 0.2 and λ > 1.8. The right-hand plot in Figure 7.2 shows
|Xn − 1| against tn for λ = −1.5,−0.5, 1, 1.5, 3. We see that the λ = −1.5,−0.5, 3
paths appear to be stable.

Overall, we conclude that in these tests the appropriate linear stability theory
gives a good guide to the behavior of the STM when the solution is close to equilib-
rium. Investigating whether rigorous results of this nature can be proved is clearly of
fundamental importance in this area.
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8. Further remarks.

8.1. Other numerical methods. The techniques for analyzing stability devel-
oped in this work can be applied to a wide range of numerical methods for SDEs.
We illustrate this point by studying two methods from the literature that are fully
implicit; that is, implicit in both the deterministic and the stochastic terms. These
methods were intended to have good stability properties, and we show here that this
is indeed the case.

First, we consider the method from [10, p. 337]. When applied to the test equation
(3.1) this method takes the form

Xn+1 = Xn + ∆t(λ− µ2)Xn+1 + µXn+1∆t
1
2 Ṽn,

where Ṽn has the two point distribution discussed in section 6. Note that for µ = 0
this coincides with the deterministic implicit Euler method (θ = 1 in section 2),
which is A-stable. If we consider the case where λ and µ are real, and let x = ∆tλ
and y = ∆tµ2, then the method may be written in the form

Xn+1 =

(
1

1 − x + y − y
1
2 Ṽn

)
Xn.

From Lemma 5.1, this sequence is asymptotically stable if and only if

E

(
log

∣∣∣∣
1

1 − x + y − y
1
2 Ṽn

∣∣∣∣
)

< 0.

This condition may be rearranged to

|1 + x2 + (y − 2x)(1 + y)| > 1.(8.1)

Now we recall that the condition for asymptotic stability of the underlying test equa-
tion is y > 2x. Hence we see that (8.1) holds whenever the SDE is stable. This
shows that, for real parameters in the test equation, the method has the extension of
deterministic A-stability to the case of stochastic asymptotic stability. To our knowl-
edge, this is the first time that such a property has been identified. (We emphasize,
however, that the method is not designed to give strong convergence.)

Milstein, Platen, and Schurz [14] looked at the construction of implicit methods
for SDEs with good linear stability properties and proposed a class of methods that
are implicit in the stochastic term. They motivated their work by considering a special
case of the linear test equation (3.1) where λ = 0 and µ ∈ R. Note from (3.2) and
(3.3) that this equation is not mean-square stable but is asymptotically stable for any
µ 6= 0. As a prototype of the class of balanced methods, the method

Xn+1 = Xn + µXn∆t
1
2Vn + µ(Xn −Xn+1)∆t

1
2 |Vn|

was proposed in [14] for this test equation. Numerical evidence in [14] suggested that
this method has good asymptotic stability properties. Writing the recurrence as

Xn+1 =

(
1 +

∆t
1
2µVn

1 + ∆t
1
2µ|Vn|

)
Xn,(8.2)

we see from Lemma 5.1 that the condition for asymptotic stability is

E

(
log

∣∣∣∣∣1 +
∆t

1
2µVn

1 + ∆t
1
2µ|Vn|

∣∣∣∣∣

)
< 0.(8.3)
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Numerical tests indicate that (8.3) is true for any µ 6= 0 and ∆t > 0, and hence the
method reproduces the asymptotic stability of the test problem.

In the case where the Normal(0, 1) random variable Vn in (8.2) is replaced by the

two point random variable Ṽn discussed in section 6, it follows from Lemma 5.1 that
the method is asymptotically stable for all µ > 0.

We also note that the Euler–Maruyama method, that is, the STM with θ = 0,
is applied to this test equation in [14]. On the basis of numerical simulations, the
authors suggest that given µ, there is a critical ∆t beyond which “the global error
explodes in practice and the scheme becomes useless.” Using Lemma 5.1 we may
analyze the recurrence from the point of view of asymptotic stability. We see that
there is indeed a critical stepsize limit; namely, ∆t < (ĉ/µ)2, where ĉ ≈ 1.6 is the
nonzero root of γ(c) in Figure 5.1.

8.2. Related work and extensions. This work has focused on the linear test
equation (3.1) with multiplicative noise, which has also been discussed in [4, 8, 11,
12, 15, 17, 18, 19]. Other authors have studied the behavior of numerical methods for
the additive noise case

dX(t) = λX(t)dt + µdW (t).(8.4)

In this case the stability properties are strongly tied to those of the underlying deter-
ministic method—that is, the method remaining when µ = 0 in (8.4). See [16] for a
review.

Hernandez and Spigler [8, section 4] introduced a different concept of stability
for numerical methods applied to the test equation (3.1) and gave a technique for
computing the resulting stability regions for a general class of numerical methods.
This approach is similar in spirit to the T-stability idea of Saito and Mitsui [17],
which is mentioned in section 6. The idea in [8] is to ask for the growth factor over
a single step to be bounded above by a threshold less than 1 with high probability.
Plotting stability regions in this manner is highly computer-intensive and the approach
has the drawbacks of (a) requiring arbitrary tolerance parameters to be specified and
(b) having no direct connection to a stability property of the underlying SDE. A
more systematic approach to investigating asymptotic stability that is also based on
computer simulation can be found in [3, section 5.6].

As a final remark, we mention that the extent to which this scalar linear stability
theory is relevant to systems, linearized problems, fully nonlinear problems and partial
differential equations is an open question of great importance.
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