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1. Introduction

The pressure of complex problems, derived from technological progress and globalization,
forced the Information and Communication Technology (ICT) world to build adequate hardware
and software support. Parallel computing is one of the pillars of the High Performance Computing
(HPC) concept. Software development for multicomputer and multiprocessor systems is not easy and
requires an adaptation effort from the specialists. Parallel programming is fundamentally different
from sequential programming. The programmers must increase their efforts so that the specific
technologies regarding parallel computing systems become more accessible to the ones that need this
potentially unlimited computing power. Nowadays, multiprocessor systems, multicore processors and
graphic cards are developing at a thundering rhythm. They tend to dominate the HPC world. GPGPU
computing (General Purpose Graphic Processing Unit Computing) prefigures itself as a new challenge
of the present. Multiprocessor systems integrated on a single chip appear on the horizon. However,
the perspective of the development of other new technologies is very promising. Non-deterministic
computing is widely studied, but very little exploited. Quantum computing tries to fill this gap.

As is well known, the quantum medium is the base of the theoretical fundamentation of the
quantum computer. In a recent paper [1], we have defined the fractal medium, and we have proven
that it has multiple computational properties: bistability, self-reproduction, capacity to memorize,
self-similarity, polarization, etc. Thus, the fractal medium could be the host for developing universal
computers to solve the inconveniences of classical and quantum computers.

Any structural unit of a complex system is in a permanent interaction with the “sub-fractal
level” (fractal medium) through the specific fractal potential. For motions on Peano curves at the
Compton scale, the fractal medium is assimilated to the sub-quantum level [2]. The fractal medium is
identified with a non-relativistic fractal fluid described by the fractal momentum and the fractal states’
density conservation laws. In the fractal hydrodynamics approach of the scale relativity theory with
an arbitrary constant fractal dimension, the fractal information, as a measure of the order degree of
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a complex system through its motion curves’ fractality, initially unstructured and made not explicit
on the fractal medium, becomes structured and so made explicit on the fractal medium in the form
of fractal patterns, by means of fractal spontaneous symmetry breaking. Moreover, the structured
relations among the fractal medium patterns induce a special fractal topology, which generates the
fundamental fractal logic elements (fractal bit, fractal gates, etc.). In such a perspective, the quantum
logic becomes a particular case of the fractal logic, for a given resolution scale dt/τ.

A fractal bit is a non-differentiable two-level system that, in addition to two pairwise orthogonal
fractal states |0(dt/τ)〉 and |1(dt/τ)〉 in the Hilbert fractal space C2(dt/τ), can be set to any
superposition of the form:
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Any non-differentiable two-level system is a potential candidate for a fractal bit. The Boolean
fractal states, zero and one, can be represented by a fixed fractal pair of orthogonal fractal states of the
fractal bit. In the following, we get:
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which is the standard fractal basis in C2( dt
τ ). A parameter representation of a normalized fractal state
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The computational properties of a fractal medium are very promising [1]. The property of
bistability is vital for a computational medium. The digital representation of the information is
possible only if the host environment is able to have several stable states. The self-reproducing
property makes possible the copy function in the computational medium. Furthermore, the capacity to
reproduce itself is very important for distributed computing. It assures the possibility to communicate
data. Moreover, the capacity to memorize is vital for a computational medium. Information storage is
possible only if the host environment is able to have a hysteresis type property [3]. The self-similarity
property is important for recursive and incursive computation. It is well known that it is difficult to
implement recursion on parallel and quantum computers. Fractal computers could overcome this
inconvenience due to their recursive nature. Polarization is an important property that allows one to
modify the state of a computing medium to a desired one. Having stable states through bistability
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makes it possible to force the fractal medium towards such a state. This is useful in the input or
write operations.

A fractal computer can be considered as a complex system hosted by a fractal medium, which
processes fractal bits, using the fractal logic theory. Such a computer is suitable to infinite contraction
and infinite extension because of the resolution scale included in its definition. The recursive and
non-deterministic computation seems to be natural for fractal computers [4].

Furthermore, the fractal properties of several parallel communication topologies induce the
idea that fractal computing would include classical parallel computing. Many parallel algorithms are
suitable for incursive and hyperincursive computation, which creates connections between the classical
parallel computing to quantum computing and fractal computing. In this paper, we will analyze such
parallel communication topologies and parallel algorithms, their fractal and incursive features.

2. Self-Similarity Property of Fractals

The name fractal was given by Benoit Mandelbrot [5], and it is inspired from the Latin word
“fractus” (broken, interrupted). Examples of fractals occurred long time before that date. They were
regarded as a “strange mathematical construction”. Benoit Mandelbrot’s great merit was to discover
their importance and the perspective of their applications [6].

Most fractals have the property of self-similarity. This concept was introduced by Gottfried
Leibniz. Many fractals have a non-integer dimension. The first definition of such a notion was given
by Hausdorff.

Let us remind about the building process of the Cantor set, Mc, in order to illustrate the properties
we want to highlight. In the following, we use the method from [6].

Georg Cantor showed that there are sets of the power continuum, e.g., the Mc set that we shall
build. Such a set can be put in one-to-one correspondence with a set R of points from an interval, let
us say [0,1], which is discontinuous everywhere. R is called a rare set, i.e., any open interval Io that
contains a point of R and has points that do not belong to R.

In order to construct Mc, we start with the closed interval [0,1] called the “initiator” and denoted
by I1 (Figure 1).

Figure 1. The initiator I1 of Cantor’s set.

The open interval (1/3, 2/3) is now cut out, and the set I2 results (Figure 2).

Figure 2. Second stage of Cantor’s set generation: set I2.

Afterwards, we remove the open intervals (1/9, 2/9) and (7/9, 8/9) from the middle of the
remaining sets and obtain the set I3 (Figure 3).

Figure 3. Third stage of Cantor’s set generation: set I3.

Using the same method, we obtain the I4, I5 . . . sets. If the procedure indefinitely continues, Mc is
the set of common points of these intervals.

Mc =
∞⋂

n=1

Mn
c (7)
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Mn
c = I1 ∩ I2 ∩ I3 ∩ ...∩ In ≡

n⋂
i=1

Ii (8)

Mc is a self-similar set. Any closed interval that remained after we had eliminated the open
intervals, after an infinite number of steps of the construction procedure, has a structure that is
equivalent to Mc. Indeed, considering the one-to-one application of Mc with one of its subsets, which
is Cantor’s set built on the initiator |p/3n, (p + 1) /3n| with p conveniently chosen, we can easily find
their equivalence (Figure 4).

Figure 4. Cantor’s set has the self-similarity property.

In order to define self-similarity, we make some comments. First, we have to limit to a space in
which it is possible to define the likeness. Since the example we had considered is a set of the Euclidean
space, this condition is satisfied. Second, we have to highlight that not any subset of the given set is
alike to the whole set. For example, the set {1/3, 2/3, 7/9} is a Cantor dust subset, but it does not
resemble it.

Definition 1. A fractal F, that is a subset of a metric space in which similarity is defined, is self-similar, if any
open O for which O ∩ F 6= ∅ contains a subset that is alike as F.

A classic example is the fern. If we take a leaf part of it, it will have the same form of ribs as the
whole leaf. However, this division is limited; it can not descend up to the size of a cell. In fact, the fern
is a pre-fractal, and self-similarity is limited.

3. Self-Similarity in Parallel Communication Topologies

In order to prove self-similarity in parallel communication topologies, we will analyze those most
used: full and complete binary tree, fat tree, mesh, hypercube, butterfly and banyan.

3.1. Full and Complete Binary Tree

This is one of the most used communication topologies in parallel computing.

Definition 2. A full and complete binary tree is either a tree with three vertices where one of them is named the
root, and it is linked by edges with the other two vertices, or it is a tree with three types of vertices: root, internal
vertices and leaves. The root is linked by edges with two vertices that are the roots of two full and complete binary
trees with the same number of vertices. Every internal vertex is linked by edges with three vertices: one of them
is named the parent, and the others are the roots of two full and complete binary trees with the same number of
vertices. Every leaf is linked by edges with one vertex named the parent.

This definition is based on a decomposition principle and highlights the fractal character of the
full and complete binary tree. For each node, the left and right subtrees are in their turn full and
complete binary trees. The process of division in the tree cannot continue indefinitely as in the case of
the Cantor set, but this disadvantage can be overcome by extending the tree with identical full and
complete binary trees attached in pairs to each leaf.
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Another definition is the following:

Definition 3. A full and complete binary tree is either a tree with three vertices where one of them is named the
root, and it is linked by edges with the other two vertices; or it is a tree formed by taking two full and complete
binary trees with the same number of vertices (two identical full and complete binary trees), adding a vertex and
than linking by edges the roots of the given binary trees.

This definition is based on a composition principle. In such a way, the composing process can
continue indefinitely. Every subtree is a full and complete binary tree. This gives to the full and
complete binary tree a self-similar characteristic (Figure 5).

Figure 5. Full and complete binary Tree.

3.2. Fat Tree

Definition 4. A fat tree is a full and complete binary tree where the vertices are linked by a set of edges.
The cardinal of the set of edges that link a vertex to its parent is half of the cardinal of the set of edges that link the
parent to its parent, in its turn.

For each node, the left and right subtrees are in their turn fat trees. This confers a fractal character
to the fat tree. The process of division in the tree cannot continue indefinitely. The presented extension
in the case of the full and complete binary tree does not work.

Analogous to the full and complete binary tree, another definition can be given as follows:

Definition 5. A fat tree is either a full and complete binary tree with three vertices or a graph formed by taking
two fat trees with the same number of vertices (two identical fat trees), adding a vertex and then linking through
a set of edges with the roots of the given fat trees. The cardinal of every set of edges is twice that of the cardinal of
the set of edges that link the roots of the given fat trees with the roots of their subtrees.

Similarly to a full and complete binary tree, the composing process can continue indefinitely.
Every subtree is a fat tree. This gives to the fat tree a self-similar characteristic (Figure 6).

Figure 6. Fat tree.
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3.3. Mesh

Definition 6. A mesh is a communication topology where the set of vertices V is organized as a k-dimensional
array through an indexing function I : V → L = {〈ik−1, ik−2 . . . , i0〉/0 ≤ ij < nj, j = k − 1, k − 2...0},
where nj is the size of the array j-dimension, {0, 1, . . . , nj − 1}, and n = nk−1 ∗ nk−2 ∗ · · · ∗ n0. We denote
by vik−1,ik−2 ...,i0 the vertex given by I−1(〈ik−1, ik−2...i0〉). On the j-th dimension, the vertex vik−1,ik−2...ij ...,i0 is
adjacent to vertex vik−1,ik−2,...,ij+1,...,i0 , where ij + 1 ≤ nj, and to vertex vik−1,ik−2,...,ij−1,...,i0 , where ij − 1 ≥ 0.

It is easy to observe that if we consider a piece of the k-dimensional array, defined by subsets
of indices for each j-dimension, {in f p

j , in f p
j + 1, . . . , supp

j }, the corresponding structure is also a
mesh (Figures 7 and 8). In such a piece, vertex vik−1,ik−2...ij ...,i0 is adjacent to vertex vik−1,ik−2,...,ij+1,...,i0 ,

where in f p
j < ij + 1 ≤ supp

j . Vertex vik−1,ik−2...ij ...,i0 is adjacent to vertex vik−1,ik−2,...,ij−1,...,i0 , where

in f p
j ≤ ij − 1 < supp

j .

Figure 7. Two-dimensional mesh.

Figure 8. Three-dimensional mesh.

3.4. Hypercube

Definition 7. A hypercube is a communication topology where the set of vertices V is of size n = 2k. k is the
dimension of the hypercube. Let us consider ik−1ik−2 . . . i0 a binary representation of i ∈ {0, ..., n− 1} and i(j)

the number whose binary representation is ik−1ik−2 . . . ij+1 ĩjij−1 . . . i0, where ĩj = 1− ij, 0 ≤ j < k. The edge
set of the graph representing the hypercube is defined as follows: the vertex vi is adjacent to vertices from the set
{vi(j) ; 0 ≤ j < k}.

A hypercube with k dimensions is composed of two (k − 1)-dimensional hypercubes.
The decomposing process can continue until k = 0.

Inversely, two hypercubes with k− 1 dimensions interconnected through corresponding vertices
generate a k-dimensional hypercube. The composing process can continue indefinitely.
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These properties give to the hypercube a self-similar characteristic (Figures 9–11).

Figure 9. Two and three-dimensional hypercube.

Figure 10. Four-dimensional hypercube.

Figure 11. Four-dimensional hypercube linearized.

3.5. Butterfly

Definition 8. The butterfly is a communication topology usually named a tree with multiple roots. The set of
vertices, V, is organized as a two-dimensional array of size n × m, where n = 2m−1, via an indexation
function I : V → L = {(i, j) / 0 ≤ i < n, 0 ≤ j < m}. We denote by vi,j the vertex given by
I−1((i, j)). The vertex vi,j, located on the column j, is connected to the column j + 1 with the vertices vi,j+1 and
vi⊕2m−j−2+bi/2m−j−1cx2m−j−1,j+1, where ⊕ means addition modulo 2m−j−1.

There is a single path between every pair of vertices situated on the left and right margin,
respectively (Figure 12).
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Figure 12. Butterfly.

An important remark is that the hypercube is a folding of the butterfly topology. We can obtain
a hypercube from a butterfly by merging all butterfly vertices that are in the same row and then
removing the edges that link the merged vertices.

3.6. Banyan

Definition 9. Banyan is also a communication topology where the set of vertices, V, is organized analogously
to butterfly as a two-dimensional array of size n × m, where n = 2m−1, via an indexation function
I : V → L = {(i, j) / 0 ≤ i < n, 0 ≤ j < m}. We denote by vi,j the vertex given by I−1((i, j)). The vertex
vi,j, located on the column j, is connected to the column j + 1 with the vertices Vbi/2c⊕0+bi/2m−j−1cx2m−j−1,j+1

and vi⊕2m−j−2+bi/2m−j−1cx2m−j−1,j+1, where ⊕ means addition modulo 2m−j−1.

Similarly to butterfly, there is a single path between every pair of vertices situated on the left and
right margin, respectively (Figure 13).

Figure 13. Banyan.
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4. Self-Similarity in Parallel Algorithms

There are many parallel algorithms that have self-similarity characteristics. We will present some
of them: compression on a tree and a hypercube and all-to-all communication on a hypercube. The
Cooley–Tukey algorithm for fast Fourier transform (FFT) and the bitonic merge sort algorithm are
other significant examples in this respect. We will renounce giving details about them, because their
implementation on a hypercube shows very easy self-similarity.

4.1. Compression on a Tree

Definition 10. Let us consider a set M of n = 2m elements, M = {ai/i = 0, 1, . . . , n− 1} ⊆ Mr = the
reference set. The set M follows being processed for calculating the value a1⊕ · · · ⊕ an, where⊕ is an associative
algebraic operation defined on Mr.

The reference set Mr could be R, and ⊕may be +, min, max, etc. The pseudocode Algorithm 1
describes the compression procedure on a tree.

Algorithm 1 Compression on a tree.

Notations:
- A[0...2n− 1] is a unidimensional array of size 2n = 2m+1.
Premise:
- The input data are stored in the array A[0...2n− 1], at the locations A[n], A[n + 1] . . . , A[2n− 1].
Algorithm:
for k← m− 1 down to 0 do

for all j : 2k ≤ j ≤ 2k+1 − 1 in parallel do

A[j]← A[2j]⊕ A[2j + 1]
end for

end for

An example is presented in Figure 14.

Figure 14. Maximum of eight integers on a full and complete binary tree.
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The evolution of the computation is similar to the reverse of the Cantor set building procedure.
In fact, the construction of the Cantor set corresponds to the first phase of the divide-and-conquer
paradigm, the same as the compression recursive algorithm. This explains such fitness.

4.2. Compression on Hypercube

The pseudocode Algorithm 2 describes the compression procedure on the hypercube [7].
An example is presented in Figure 15.

Algorithm 2 Summing n = 2m integers on a hypercube with p = 2q vertices (q dimensions, q < m):
pseudocode for the processing unit located at vertex i.

Notations:
- A is a unidimensional array of size n = 2m.
- H is a hypercube with p = 2q vertices.
- q is the number of H hypercube dimensions, q < m.
- s is an integer variable that stores the final sum, computed by processing unit located at vertex 0.
- sr is an integer variable that stores the partial sum received by processing unit located at vertex i
from a neighbor.
Premise:
- Initially, the number sequence is stored in the array A.
Algorithm:
for j← 0 to 2m−q − 1 do

s← s + A[i ∗ 2m−q + j]
end for
mask← 0
for j← 0 to q− 1 do

if (i and mask) = 0 then
if (i and 2j) = 0 then

source← i xor 2j

receive sr from source
s← s + sr

else
destination← i xor 2j

send s to destination
end if

end if
mask← mask xor 2j

end for

Figure 15. Summing 16 integers on a hypercube with four vertices.
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Again, the evolution of the computation is similar to the reverse of the Cantor set building procedure.

4.3. All-To-All Diffusion on a Hypercube

Definition 11. Each processing unit of pi sends a message to all others.

Algorithm 3 describes all-to-all diffusion on a hypercube [7]. An example is presented in Figure 16.

Algorithm 3 All-to-all communication on a hypercube: pseudocode for a processing unit located at
vertex i.

Notations:
- H is a hypercube with p = 2q vertices.
- q is the number of H hypercube dimensions.
Premise:
Initially, the processing unit pi from the vertex i has in its own memory a message mi

Algorithm:
collected_messages← mi

for j← 0 to q− 1 do
partner ← i xor 2j

send collected_messages to partner
receive message from partner
collected_messages← collected_messages ∪message

end for

Figure 16. Example of all-to-all communication on a three-dimensional hypercube.
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The computation pattern has a self-similarity property. At the k-th iteration, the processing
units from a k-dimensional hypercube exchange information with the processing units from the
corresponding k-dimensional hypercube.

5. Incursion in Parallel Communication Topologies and in Parallel Algorithms

5.1. Anticipatory Systems

The concept of an anticipatory system was proposed for the first time by Robert Rosen in [8]:
“a system containing a predictive model of itself and/or of its environment, which allows it to state at
an instant in accord with the model’s predictions pertaining to a later instant”. The final causation of
Aristotle stands at the base of such systems. The future influences the present time. In this way, the
causality principle seems reversed.

For example, organizing an event takes into account the past similar events, the present context
and a range of information posterior preparation phase: number of participants, weather, events in the
chosen location and many other unknown factors before the actual conduct of the event.

In general, any human action at each current time takes into account the past events, the
current situation in the environment, and the future anticipated events. The anticipation in
human actions deals with conscious and intentionality, a self-referential finality.

—Daniel M. Dubois [9]

As is well known, Aristotle’s causation system has four components: material cause, formal cause,
efficient cause and final cause. At present, it is considered that modem physics and mechanics only
deal with efficient cause and biology with material cause [10]. Robert Rosen considers that the first
three components of Aristotle’s causal system are included in the Newtonian formalism, but “the
introduction of a notion of final cause into the Newtonian picture would amount to allowing a future
state or future environment to cause change of state in the present, and this would be incompatible
with the whole Newtonian picture. This is one of the main reasons that the concept of Aristotelian
finality is considered incompatible with modern science. In modern physics, Aristotelian ideas of
causality are confused with determinism, which is quite different. That is, determinism is merely a
mathematical statement of functional dependence or linkage. As Russell points out, such mathematical
relations, in themselves, carry no hint as to which of their variables are dependent and which are
independent” [11].

The final cause could affect the present state of evolving systems. For this reason, the classical
mathematical models are unable to explain many of these biological systems. Furthermore, the final
cause seems to be essential for physical and computational systems [10].

5.2. Recursion, Incursion and Hyperincursion

An incursion is an extension of recursion [9,12,13]:

x(t + 1) = f [. . . , x(t− 2), x(t− 1), x(t), x(t + 1), . . . , p] (9)

The new state of the variable x depends on the past and/or present states, but also on future states.
A particular case is given by Equation (10):

x(t + 1) = f [x(t), x(t + 1), p] (10)

The value of the variable x depends on the value of this variable at the preceding time step t, but
also at time t + 1. This dependence is given by the function f . Equation (10) can be associated with a
self-referential system, which is an anticipatory system. By replacing the right occurrence of x(t + 1)
by f [x(t), x(t + 1), p], we obtain:
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x(t + 1) = f [x(t), f [x(t), x(t + 1), p], p] (11)

Now, the associated system explicitly contains a predictive model of itself. This inclusion can
continue indefinitely. This paradox can be solved in the following manner: such an anticipatory system
has fixed points, which represent its implicit finality. Contrary to the control theory, the goal of this
anticipatory system is not imposed from outside, but by the system itself.

The above anticipatory system is based on a composition principle. Containing the model of itself,
it evolves by assembling past states based on the model.

The hyperincursion is an incursion where there are multiple potential future states at each
time step [9].

Let us consider the following equation:

x(t) = ax(t + 1)[1− x(t + 1)] (12)

Equation (12) conducts to the hyper-recursive equation:

x(t + 1) = 1/2[1±
√
[1− 4x(t)/a]] (13)

There are two solutions at each time step. If the system selects itself as one of the two alternatives,
a self-organizing anticipatory system is defined. Without selection, this system will store in itself all of
the potential solutions. The immune systems work in a similar manner.

5.3. Incursion in Parallel Communication Topologies

Dubois proposed in [10] a hyperincursive fractal machine, that is a cellular automaton with
incursive sequential computations based on exclusive OR logic. A cell state is computed at the future
time t + 1 as a function of its neighbors at the present and/or past time steps, but also at the future
time step t + 1. The incursion becomes a hyperincursion when there are multiple possible future
states at each time step. Dubois’s hyperincursive fractal machine shows fractal pattern generation and
quantum effects [10].

The analysis of Dubois’s fractal machine conducts us to an important observation: the incursion
is natural in pipeline computation. Thus, parallel computing systems that use communication
topologies that permits pipeline computation are a natural habitat for solving incursive equations.
Full and complete binary tree, fat tree, mesh, hypercube, butterfly and banyan are such
communication topologies.

5.4. Incursion in the Floyd–Warshall Algorithm

Many parallel algorithms, especially those based on dynamic programming technique, are suitable
for incursive computation. We have chosen for demonstration the Floyd–Warshall algorithm, which is
the base of the famous Algebraic Path Problem (APP).

5.4.1. Floyd–Warshall Algorithm

We consider a weighted digraph (G, `) = (〈V, A〉, `). The problem resides in determining, for
any two nodes i, j, a path of minimum length from i to j (if there is one). The used method is dynamic
programming [14].

We extend the function ` to ` : V ×V → R, by assigning `ij = ∞ for those pairs of distinct nodes
where 〈i, j〉 6∈ A and `ii = 0 for every i = 0, . . . , n− 1.

Let us define the state of the problem as being the sub-problem corresponding to the determination
of the minimum length paths with intermediary nodes from the set X ⊆ V, MP2ND(X) (Minimum
Path between any two Nodes of a Digraph). Obviously, MP2ND(V) is the initial problem.
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The minimum path from i to j built with intermediary nodes from X will be denoted by `X
ij . If X = ∅,

then `∅
ij = `ij.

Let us consider the optimal decision that transforms the state MP2ND(X ∪ {k}) to MP2ND(X).
We assume that (G, `) is a weighted digraph without negative cycles. Let ρ be an optimum path from
i to j that contains intermediary nodes from the set X ∪ {k}. We have length(ρ) = `

X∪{k}
ij , where

length(ρ) is the length of the path ρ. If the node k does not belong to ρ, then the policy of obtaining ρ

corresponds to the state MP2ND(X), and by applying the principle of optimality, we obtain:

`X
ij = length(ρ) = `

X∪{k}
ij (14)

In the case when k belongs to the path ρ, we consider ρ1 the sub-path of ρ from i to k and ρ2 the
sub-path from k to j. The intermediate nodes on the two sub-paths are only from X.

According to the principle of optimality, the optimal policy corresponding to the state MP2ND(X)

is a sub-policy of the optimal policy corresponding to the state MP2ND(X ∪ {k}). It results that ρ1 and
ρ2 are optimal in MP2ND(X). From here, it results:

`
X∪{k}
ij = length(ρ) = length(ρ1) + length(ρ2) = `X

ik + `X
kj (15)

The functional analytical equation for the optimal values `X
ij is:

`
X∪{k}
ij = min{`X

ij , `X
ik + `X

kj} (16)

Lemma 1. If (G, `) does not have negative length cycles, we have the following relations:

`
X∪{k}
kk = 0 (17a)

`
X∪{k}
ik = `X

ik (17b)

`
X∪{k}
kj = `X

kj (17c)

for every i, j, k ∈ V.

By means of Lemma 1, the relation (16) becomes:

`
X∪{k}
ij = min{`X

ij , `X∪{k}
ik + `

X∪{k}
kj } (18)

This is an incursive equation.
Without loosing of generality, we can consider X = {0, 1, . . . , k− 1} and X ∪ {k} = {0, 1, . . . , k− 1, k}.
The computing of optimal values results from the solving of sub-problems:

MP2ND(∅), MP2ND({0}), MP2ND({0, 1}),

. . . , MP2ND({0, 1, . . . , n− 1}) = MP2ND(V)

Using the notation `k
ij for `{0,...,k}

ij , Relation (18) becomes:

`k
ij = min{`k−1

ij , `k
ik + `k

kj} (19)

The incursive relation (19) is the heart of the Floyd–Warshall algorithm.

5.4.2. Algebraic Path Problem

The algebraic path problem unifies the strategies used in solving three major class problems,
being independently developed, with its own algorithms:
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• Determining the minimum paths in a graph with the Floyd–Warshall algorithm;
• Determining the transitive closure of a partial order relation;
• Solving the linear equation systems with the Gauss–Jordan method.

Definition 12. Given a weighted graph G = (V, E, w), where V = {1, 2, . . . , n}, w : E→ H and (H,⊕,⊗)
forms a unit ring, determine the matrix Cn×n, so that:

C[i, j] =
⊕

p path
f rom i to j

w(p)

If p = i0i1...ik−1ik, then w(p) =
k−1⊗
l=0

w[il , il+1].

The incursive relation from the Floyd–Warshall algorithm can be generalized according to the
algebraic path problem definition.

There are multiple systolic approaches of the algebraic problem of paths. Noteworthy is the
implementation of Kleen’s algorithm on a connected-mesh network given by Y. Robert and D.
Trystram [15]. See Figure 17.

Figure 17. Systolic network of Y. Robert and D. Trystram.
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6. Conclusions and Future Work

Classical computers work under the classical physical laws, while quantum computers apply
quantum physics rules. They are placed at the macroscopic and the atomic scale, respectively. A fractal
medium could simultaneously host computations of both types (classical and quantum), because of
the scale factor included in its definition, which induces self-similarity, meaning that the part is the
same as the whole.

In this context, the most important contributions of this paper are the following:

1. We have proven that the most important parallel communication topologies and many parallel
algorithms have fractal properties. As a consequence, plausible computing on a fractal medium
could include classical parallel computing.

2. We have identified several parallel algorithms that are suitable for incursive and hyperincursive
computation. This opens strong relations among parallel computing, quantum computing and
fractal computing.

We intend to continue our investigation on a presumable fractal computer by defining a detailed
model, extending the fractal logic and simulating some algorithms.
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