I. General experimental procedure 2
II. Chemical syntheses 4
1 General procedures for the synthesis of quinolones 4
1.1 Synthesis of non-commercially available acetanilides S1 4
1.2 General procedure 1 (GP1): Synthesis of 2-chloroquinoline-3-carbaldehydes S2 5
1.3 General procedure 2 (GP2): Synthesis of 2-quinolone-3-carbaldehydes S3 9
1.4 General procedure 3 (GP3): Synthesis of 3-(hydroxy(aryl)methyl)-2-quinolones rac-3 13
1.5 General procedure 4 (GP4): Synthesis of 3-benzyl-2-quinolones 2 21
1.6 General procedure 5 (GP5): Synthesis of 3-(1-hydroxyalkyl)-2-quinolones rac-7 28
1.7 General procedure 6 (GP6): Synthesis of 3-alkyl-2-quinolones 6 36
1.8 Single procedures 43
2 Oxygenation of quinolones 47
2.1 General procedure 7 (GP7): Racemic oxygenation of 3-substituted quinolones 47
2.2 General procedure 8 (GP8): Enantioselective oxygenation of 3-benzylquinolones 2 50
2.3 General procedure 9 (GP9): Enantioselective oxygenation of 3-alkylquinolones 6 54
3 Kinetic experiments 59
3.1 General procedure 10 (GP10): Rate profiling of the enantioselective oxygenation 59
3.2 Kinetic resolution of 3-(hydroxy(p-tolyl)methyl)-2-quinolone (rac-3a) 64
III. Analytical Data 67
$1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of new compounds 67
1.1 2-Chloroquinoline-3-carbaldehydes S2 67
$1.2 \quad$ 2-Quinolone-3-carbaldehydes S3 69
1.3 3-(Hydroxy(aryl)methyl)-2-quinolones 3 74
1.4 3-Benzyl-2-quinolones 2 87
$1.5 \quad$ 3-(1-Hydroxyalkyl)-2-quinolones 7 100
1.6 3-Alkyl-2-quinolones 6 114
1.7 Other compounds 127
2 HPLC Traces 131
2.1 3-(Hydroxy(aryl)methyl)-2-quinolones 3 131
$2.2 \quad$ 3-(1-Hydroxyalkyl)-2-quinolones 7 144
3 X-ray crystallographic data 161
3.1 Crystal structure report for compound 5 (CCDC 1967795) 161
IV. Abbreviations 164
V. References 166

I. General experimental procedure

All experiments were performed in flame-dried glassware under an argon atmosphere and under anhydrous conditions using Schlenk techniques.

Solvents and reagents: Dry dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF) were obtained from an MBraun MB-SPS 800 solvent purification system. Dry benzene (PhH), dimethylformamide (DMF), methanol (MeOH) and pyridine (py) were obtained from either Sigma-Aldrich or Acros in the highest available purity ($>99 \%$, extra dry over molecular sieves) and used without further purification. Technical solvents used for aqueous workup and purification by either crystallization or column chromatography [acetone, dichloromethane ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), ethyl acetate (EtOAc), hexane, methanol (MeOH), pentane] were distilled prior to use. lodosobenzene ${ }^{[1]}$ (PhIO) and manganese(III)-5,10,15,20-tetrakis(pentafluorophenyl)-porphyrin chloride ${ }^{[2]}$ (Mn[TPFPP]CI) were synthesized according to procedures previously described in literature and. PhIO was stored at $-20^{\circ} \mathrm{C}$ under argon.

Chromatography: Thin layer chromatography (TLC) was performed on pre-coated glass-backed Merck Kieselgel $60 F_{254}$ plates with visualization effected with ultra-violet irradiation ($\lambda=254,366 \mathrm{~nm}$) and/or staining using potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ solution prepared from potassium permanganate (3.00 g), potassium carbonate (20.0 g) and 5% aqueous sodium hydroxide solution (5.00 mL) in water (300 mL). Flash column chromatography was performed on silica 60 (Merck, 230-400 mesh) with the indicated eluent mixtures. Automated flash column chromatography was performed on a Büchi C-815 Flash chromatography instrument for clean separation of all products of the enantioselective oxygenation reaction. In all cases, Büchi FlashPure silica flash cartridges (12 g , manufacturer number 11067704) were used in combination with either method A (acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent mixture, flow rate $30 \mathrm{~mL} / \mathrm{min}, 4 \%$ [1 min], $4 \% \rightarrow 8 \%$ [11 min], 8% [7 min], $8 \% \rightarrow 12 \%$ [8 min], 12% [6 min], ELSD detection) or method $\mathrm{B}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvent mixture, flow rate $30 \mathrm{~mL} / \mathrm{min}, 1 \%$ [1 min], $1 \% \rightarrow 3 \%$ [5 min], 3% [10 min], $3 \% \rightarrow 5 \%$ [5 min], $5 \% \rightarrow 10 \%$ [5 min], 10% [3 min], UV detection).

Melting points: Determined using a Kofler heating bar designed by L. Kofler (Reichert) without correction or using a Büchi M-510 melting point apparatus, with range quoted to the nearest whole number.

Infrared Spectroscopy: Spectra were recorded on a Perkin Elmer Frontier Optica+SP10 spectrometer by ATR technique. The signal intensity is assigned using the following abbreviations: vs (very strong), s (strong), m (medium), w (weak).

NMR spectroscopy: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AVHD-300, AVHD-400 or AVHD-500 spectrometers at 303 K operating at $300 \mathrm{MHz}, 400 \mathrm{MHz}$ and 500 MHz , respectively. Data is reported in the following manner: chemical shift [in parts per million (ppm) relative to residual $\mathrm{CHCl}_{3}\left(\delta_{H}=7.26 \mathrm{ppm}\right)$, MeOD- $d_{3}\left(\delta_{H}=3.31 \mathrm{ppm}\right.$) or DMSO- $d_{5}\left(\delta_{H}=2.50 \mathrm{ppm}\right)$], number of protons, multiplicity and coupling constant J (measured in Hz to the nearest 0.1 Hz). The multiplicity of a signal is indicated as: s -singlet, bs-broad singlet, d-doublet, t -triplet, q quartet, hept-heptet, m-multiplet, or combinations of these. Apparent multiplets which occur as a result of coupling constant equality between magnetically non-equivalent protons are marked as virtual (virt). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the same AVHD-400 or AVHD-500 spectrometers at 303 K operating at 101 MHz and

126 MHz respectively with proton decoupling. The chemical shift [in parts per million (ppm)] is reported relative to residual $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$, MeOD- $d_{3}\left(\delta_{\mathrm{C}}=49.00 \mathrm{ppm}\right)$ or DMSO- $d_{5}\left(\delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AVHD-500 (471 MHz) spectrometer and used without reference. Spectra are reported based on appearance, not on theoretical multiplicities derived from structural information.

Mass Spectroscopy (ESI): High-resolution mass spectra (HRMS) were recorded on a Thermo Finnigan LTQ FT (HRMS-ESI) with each value obtained within 5 ppm of the calculated mass.

Specific rotations: Optical rotations were determined using a Bellingham+Stanley ADP440+ polarimeter with a 0.5 cm cuvette at $\lambda=589 \mathrm{~nm}$ (Na-D-line) at 303 K . Specific rotation is reported as followed: $[\alpha]_{\mathrm{D}}{ }^{\top}$ in $10^{-1} \mathrm{grad} \mathrm{cm}^{2}$ g^{-1} (c was defined as g per 100 mL solvent).

GLC-FID: GC analysis for kinetic studies was performed on an Agilent Technologies 7890B with a DB-5ht column ($15 \mathrm{~m}, 0.32 \mathrm{~mm}, 0.10 \mu \mathrm{M}$). Standard method used for separation of all the compounds $\mathbf{2 a}, \mathbf{3 a}$ and $\mathbf{4 a} \mathbf{a} \mathbf{6 0}{ }^{\circ} \mathrm{C}$ [1 min], $15^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 300^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C}$ [5 min].

Chiral HPLC: Analytical HPLC (Thermo Fisher, Dionex Ultimate 3000 pump, Dionex Ultimate 3000, LPG 3400SD Pump, WPS3000SL Autosampler, DAD 3000 photodiode array detector) was performed using different chiral stationary phases (Daicel ChiralCel, Chemical Industries, flow rate, type and eluent is given for the corresponding compounds) and UV detection ($\lambda=210$ or 254 nm) at 303 K .

II. Chemical syntheses

1 General procedures for the synthesis of quinolones

1.1 Synthesis of non-commercially available acetanilides S1

1.1.1 \quad m-Acetanisidide (S1j)

Py ($1.96 \mathrm{~mL}, 1.93 \mathrm{~g}, 24.4 \mathrm{mmol}, 0.6$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(4.22 \mathrm{~mL}, 4.56 \mathrm{~g}, 44.7 \mathrm{mmol}, 1.1$ equiv) were added sequentially to a solution of m-anisidine ($4.56 \mathrm{~mL}, 5.00 \mathrm{~g}, 40.6 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}, 0.67 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 20 h at ambient temperature. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 160 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous NaHCO_{3} solution (80 mL) and brine (80 mL). After removal of all volatiles in vacuo m-acetanisidide ($\mathbf{(S 1 j}$) was obtained as an off-white solid in high purity ($6.55 \mathrm{~g}, 39.7 \mathrm{mmol}, 98 \%$) and was used without further purification for the next step.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.27\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, $6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{COCH} \mathrm{H}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] =168.4 (CO), 160.3 (C-3), 139.2 (C-1), 129.8 (C-5), 112.0 (C-4), 110.2 (C-6), $105.7(\mathrm{C}-2), 55.5\left(\mathrm{OCH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 166.0863$; found: 166.0863.
Spectral data matches those reported in the literature. ${ }^{[3]}$

1.1.2 3 '-Ethylacetanilide (S1n)

NEt_{3} ($5.02 \mathrm{~mL}, 36.0 \mathrm{mmol}, 1.2$ equiv) was added to a solution of 3 -ethylaniline (3.73 mL , 30.0 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{~mL}, 0.6 \mathrm{~m})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. AcCl ($2.35 \mathrm{~mL}, 33.0 \mathrm{mmol}, 1.1$ equiv) was added dropwise and the reaction mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(80 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 160 \mathrm{~mL})$ and the combined organic layers were washed with brine (150 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of all volatiles in vacuo the crude 3'-ethylacetanilide (S1n) was obtained as a pale brown solid in high purity and was used without further purification for the next step ($4.81 \mathrm{~g}, 29.5 \mathrm{mmol}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=7.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.36\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.61\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right) 1.21\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=168.7(\mathrm{CO}), 145.4$ (C-3), 138.0 (C-1), 129.0 (C-5), 124.0 (C-4), 119.6 (C-2), $117.4(\mathrm{C}-6), 29.0\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{COCH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 164.1070; found: 164.1070.
Spectral data matches those reported in the literature. ${ }^{[4]}$

POCl_{3} (9.6 equiv) was added dropwise to neat DMF (3.4 equiv) at $0^{\circ} \mathrm{C}$ and upon complete addition the solution was allowed to warm to ambient temperature. Acetanilide S1 (1.0 equiv) was added in one portion and the reaction mixture was heated to $85^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to ambient temperature and was poured into ice water whereupon a yellow or orange solid precipitated. The resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 min before it was filtered over a sintered glass funnel. The remaining solids were washed with $\mathrm{H}_{2} \mathrm{O}$, dried under high vacuum and eventually recrystallized to yield the entitled 2-chloroquinoline-3-carbaldehyde S2.

1.2.1 2-Chloroquinoline-3-carbaldehyde (S2a)

Following GP1 the entitled 2-chloroquinoline-3-carbaldehyde (S2a) was obtained from acetanilide ($5.41 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0$ equiv) as bronze needles via recrystallization from EtOAc ($3.29 \mathrm{~g}, 17.2 \mathrm{mmol}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right)$, 7.99 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.89 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.66\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.0\right.$, $\left.6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 189.3 (CHO), 150.3 (C-2), 149.7 (C-8a), 140.5 (C-4), 133.8 (C-8), 129.9 (C-6), 128.8 (C-7), 128.3 (C-5), 126.7 (C-4a), 126.5 (C-3).

HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OCIN}[\mathrm{M}+\mathrm{H}]^{+}: 192.0211$; found: 192.0211.
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.2.2 2-Chloro-6-methylquinoline-3-carbaldehyde (S2f)

Following GP1 the entitled 2-chloro-6-methylquinoline-3-carbaldehyde (S2f) was obtained as a yellow crystalline solid from 4'-methylacetanilide ($2.61 \mathrm{~g}, 1.75 \mathrm{mmol}, 1.0$ equiv) via recrystallization from EtOAc ($1.28 \mathrm{~g}, 6.22 \mathrm{mmol}, 36 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.74(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=189.4$ (CHO), 149.3 (C-2), 148.3 (C-8a), 139.6 (C-4), 138.5 (C-6), 136.0 (C-7), 128.4 (C-5), 128.2 (C-8), 126.6 (C-4a), $126.3(\mathrm{C}-3), 21.6\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{OCIN}[\mathrm{M}+\mathrm{H}]^{+}$: 206.0367; found: 206.0367.
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.2.3 2-Chloro-7-methylquinoline-3-carbaldehyde (S2g)

 as pale yellow needles from 3^{\prime}-methylacetanilide ($2.61 \mathrm{~g}, 1.75 \mathrm{mmol}, 1.0$ equiv) via recrystallization from EtOAc ($2.14 \mathrm{~g}, 10.4 \mathrm{mmol}, 59 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=10.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.72\left(\mathrm{~d},{ }^{5} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.85 (dd, $\left.,^{4} J=1.7,{ }^{5} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.48\left(\mathrm{dd},{ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.61\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=189.3$ (CHO), 150.3 (C-2), 149.9 (C-8a), 145.1 (C-7), 139.9 (C-4), 130.5 (C-6), 129.4 (C-5), 127.7 (C-8), 125.7 (C-3), 124.6 (C-4a), $22.4\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{OCIN}[\mathrm{M}+\mathrm{H}]^{+}$: 206.0367; found: 206.0367.
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.2.4
 2-Chloro-6,7-dimethylquinoline-3-carbaldehyde (S2h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.5(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 2.50$ (s, 3H), 2.46 ($s, 3 H$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=189.6$ (CHO), 149.6 (C-2), 148.9 (C-8a), 145.2 (C-7), 139.3 (C-4), 138.6 (C-6), 128.8 (C-5), 128.1 (C-8), 125.8 (C-3), 125.3 (C-4a), 21.1 (C-11), 20.2 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OCIN}[\mathrm{M}+\mathrm{H}]^{+}: 220.0524$; found: 220.0523 .
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2966\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2855(\mathrm{w}, \mathrm{C}-\mathrm{HO}), 1657$ (vs, C=O), 1555 (vs, C=C), 1484 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1411 (m), 1050 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{Cl}$), 891 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 828 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 772 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), $660(\mathrm{~m})$.
m.p. $=169^{\circ} \mathrm{C}$.

1.2.5 2-Chloro-6-methoxyquinoline-3-carbaldehyde (S2i)

Following GP1 the entitled 2-chloro-6-methoxyquinoline-3-carbaldehyde (S2i) was obtained as an orange crystalline solid from p-acetanisidide ($6.00 \mathrm{~g}, 36.3 \mathrm{mmol}, 1.0$ equiv) via recrystallization from EtOAc ($2.98 \mathrm{~g}, 13.5 \mathrm{mmol}, 37 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.52(\mathrm{dd}$, $\left.{ }^{3} J=9.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.20\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 189.5 (CHO), 158.8 (C-6), 147.7 (C-2), 145.8 (C-8a), 138.7 (C-4), 129.9 (C-8), 127.8 (C-3), 126.6 (C-7), 126.4 (C-4a), 106.4 (C-5), $55.8\left(\mathrm{OCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$: 222.0316; found: 222.0317.
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.2.6

2-Chloro-7-methoxyquinoline-3-carbaldehyde (S2j)

Following GP1 the entitled 2-chloro-7-methoxyquinoline-3-carbaldehyde ($\mathbf{S 2 j}$) was obtained as a light brown solid from m-acetanisidide ($\mathbf{S} 1 \mathbf{j}$) $(6.55 \mathrm{~g}, 39.7 \mathrm{mmol}, 1.0$ equiv) via recrystallization from EtOAc ($5.18 \mathrm{~g}, 27.7 \mathrm{mmol}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.38(\mathrm{~d}$, $\left.{ }^{2} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=189.2$ (CHO), 164.2 (C-7), 152.0 (C-4a), 151.1 (C-8a), 139.5 (C-4), 130.9 (C-5), 124.4 (C-2), 121.8 (C-3), $121.6(\mathrm{C}-6), 106.8(\mathrm{C}-8), 55.9\left(\mathrm{OCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 222.0316; found: 222.0317 .
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.2.7 2,7-Dichloroquinoline-3-carbaldehyde (S2k)

Following GP1 the entitled 2,7-dichloroquinoline-3-carbaldehyde ($\mathbf{S 2 k}$) was obtained as colorless needles from 3^{\prime}-chloroacetanilide $(2.97 \mathrm{~g}, \quad 1.75 \mathrm{mmol}, \quad 1.0$ equiv) via recrystallization from MeCN ($1.05 \mathrm{~g}, 4.64 \mathrm{mmol}, 27 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 8.14(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=189.6$ (CHO), 150.9 (C-2), 149.2 (C-7), 141.7 (C-4), 139.0 (C-8a), 132.5 (C-5), 129.5 (C-6), 127.2 (C-8), 127.1 (C-3), 125.6 (C-4a).

HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OCl}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 225.9821; found: 225.9821.
Spectral data matches those reported in the literature. ${ }^{[5]}$

Following GP1 the entitled 2-chloro-7-fluoroquinoline-3-carbaldehyde (S2I) was obtained as colorless needles from 3^{\prime}-chloroacetanilide $(2.68 \mathrm{~g}, 1.75 \mathrm{mmol}, \quad 1.0$ equiv) via recrystallization from EtOAc ($2.08 \mathrm{~g}, 9.92 \mathrm{mmol}, 57 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.01\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5), 7.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=9.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.45\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=189.0(\mathrm{CHO}), 165.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=257.5 \mathrm{~Hz}, \mathrm{C}-7\right), 151.7(\mathrm{C}-2), 151.1(\mathrm{~d}$, $\left.{ }^{3} J_{C F}=13.7 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right), 140.1(\mathrm{C}-4), 132.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=10.6 \mathrm{~Hz}, \mathrm{C}-5\right), 126.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{a}\right), 123.8(\mathrm{C}-3), 119.1(\mathrm{~d}$, $\left.{ }^{2} J_{C F}=25.6 \mathrm{~Hz}, \mathrm{C}-6\right), 113.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.6 \mathrm{~Hz}, \mathrm{H}-8\right)$.
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=-101.3\left(\mathrm{td},{ }^{3} \int_{\mathrm{HF}}=9.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HF}}=6.0 \mathrm{~Hz}, 1 \mathrm{~F}\right)$ HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OCIFN}[\mathrm{M}+\mathrm{H}]^{+}$: 210.0116; found: 210.0116.

Spectral data matches those reported in the literature. ${ }^{[6]}$

1.2.9 2-Chloro-7-ethylquinoline-3-carbaldehyde (S2m)

Following GP1 the entitled 2-chloro-7-ethylquinoline-3-carbaldehyde ($\mathbf{S 2 m}$) was obtained as a bronze crystalline solid from 3'-ethylacetanilide ($\mathbf{S 1 n}$) ($3.26 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv). Excess toluene was removed via azeotropic distillation from toluene and the desired product S2m was used without further purification ($4.05 \mathrm{~g}, 18.4 \mathrm{mmol}, 92 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{H}-5\right), 7.87(\mathrm{~d}$, $\left.{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.93\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 189.4 (CHO), 151.3 (C-7), 150.4 (C-2), 150.2 (C-8a), 140.0 (C-4), 129.7 (C-6), 129.6 (C-5), 126.5 (C-8), $125.8(\mathrm{C}-3), 125.0(\mathrm{C}-4 \mathrm{a}), 29.5\left(\mathrm{CH}_{2}\right), 14.9\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OCIN}[\mathrm{M}+\mathrm{H}]^{+}$: 220.0524; found: 220.0524 .
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2876$ ($\mathrm{w}, \mathrm{C}-\mathrm{HO}$), 1687 (vs, C=O), 1580 (vs, C=C), 1483 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1134 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{Cl}$), 984 ($\mathrm{s}, \mathrm{sp}^{2}$ C-H), 821 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 755 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=101^{\circ} \mathrm{C}$.

A 4 m aqueous HCl solution (0.14 m) was added to the corresponding 2-chloroquinoline-3-carbaldehyde S2 (1.0 equiv) and the suspension was heated to $110^{\circ} \mathrm{C}$ for 5 h . The reaction was cooled to ambient temperature and the suspension was filtered over a sintered glass funnel. The remaining solids were washed with water and dried under high vacuum to yield the entitled 2-quinolone-3-carbaldehyde S3 in high purity, which was used without further purification for the next step.

1.3.1 2-Quinolone-3-carbaldehyde (S3a)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=12.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.51(\mathrm{~s}, 1 \mathrm{H} \mathrm{H}-4), 7.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.66\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.36\left(\mathrm{dq},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$, 7.25 (ddd, $\left.{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=189.7$ (CHO), 161.4 (C-2), 142.4 (C-4), 141.1 (C-8a), 133.7 (C-7), 130.9 (C-5), 125.6 (C-3), 122.6 (C-6), 118.1 (C-4a), 115.4 (C-8).

HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 174.0550; found: 174.0550 .
Spectral data matches those reported in the literature. ${ }^{[5]}$

1.3.2 6-Methyl-2-quinolone-3-carbaldehyde (S3f)

Following GP2 the entitled 6-methyl-2-quinolone-3-carbaldehyde (S3f) was obtained from 6-methyl-2-chloroquinoline-3-carbaldehyde (S2f) ($949 \mathrm{mg}, 4.61 \mathrm{mmol}, 1.0$ equiv) as a yellow powder ($700 \mathrm{mg}, 3.74 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=12.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.71\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.54 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 7.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=189.9$ (CHO), 161.4 (C-2), 142.1 (C-4), 139.3 (C-8a), 135.2 (C-7), 131.8 (C-6), 130.1 (C-5), 125.5 (C-3), 118.1 (C-4a), 115.4 (C-8), $20.3\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 188.0706; found: 188.0706.

Spectral data matches those reported in the literature. ${ }^{[7]}$

1.3.3

7-Methyl-2-quinolone-3-carbaldehyde (S3g)

Following GP2 the entitled 7-methyl-2-quinolone-3-carbaldehyde ($\mathbf{S 3 g}$) was obtained from 7-methyl-2-chloroquinoline-3-carbaldehyde ($\mathbf{S 2 f}$) ($1.33 \mathrm{~g}, 6.47 \mathrm{mmol}, 1.0$ equiv) as a yellow powder ($1.09 \mathrm{~g}, 5.85 \mathrm{mmol}, 90 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=12.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.71\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.54 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 7.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=189.9$ (CHO), 161.4 (C-2), 142.1 (C-4), 139.3 (C-8a), 135.2 (C-7), 131.8 (C-6), 130.1 (C-5), 125.5 (C-3), 118.1 (C-4a), 115.4 (C-8), $20.3\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 188.0706; found: 188.0706 .

Spectral data matches those reported in the literature. ${ }^{[8]}$

1.3.4 6,7-Dimethyl-2-quinolone-3-carbaldehyde (S3h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta[\mathrm{ppm}]=12.1(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.11 (s, 1H, C-8), 2.31 (s, 3H, H-11), 2.25 (s, 3H, H-10).
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 189.7 (CHO), 161.6 (C-2), 144.3 (C-7), 141.9 (C-4), 139.8 (C-8a), 131.5 (C-6), 130.3 (C-5), 124.6 (C-3), 116.4 (C-4a), 115.6 (C-8), 20.4 (C-11), 18.8 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 202.0863; found: 202.0862 .

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2909\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2849(\mathrm{w}, \mathrm{C}-\mathrm{HO}), 1650$ (vs, C=O), 1553 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1478 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1230 (m), 942 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$) 880 ($\left.\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 829\left(\mathrm{~m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right)$.
m.p. $=303^{\circ} \mathrm{C}$.

Following GP2 the entitled 2-quinolone-3-carbaldehyde S3i was obtained from 6-methoxy-2-chloroquinoline-3-carbaldehyde ($856 \mathrm{mg}, 3.86 \mathrm{mmol}, 1.0$ equiv) as a yellow powder ($671 \mathrm{mg}, 3.30 \mathrm{mmol}$, 86\%).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=12.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.46\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 189.9 (CHO), 161.1 (C-2), 154.5 (C-6), 141.8 (C-4a), 136.0 (C-8a), 125.7 (C-3), 123.7 (C-7), 118.7 (C-4a), 116.8 (C-8), 111.1 (C-5), $55.6\left(\mathrm{OCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.0655; found: 204.0655.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2843$ ($\mathrm{w}, \mathrm{C}-\mathrm{HO}$), 1663 ($\mathrm{vs}, \mathrm{C}=\mathrm{O}$), 1556 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1500 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1378 (s$), 1231$ ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 1177 (s), 1111 (s), 1034 (s, C-O), 914 (s, sp² C-H), 820 (vs, sp ${ }^{2}$ C-H), 676 (s).
m.p. $=285^{\circ} \mathrm{C}$.

1.3.6

7-Methoxy-2-quinolone-3-carbaldehyde (S3j)

Following GP2 the entitled 2-quinolone-3-carbaldehyde S3j was obtained from 6-methoxy-2-chloroquinoline-3-carbaldehyde ($1.50 \mathrm{~g}, 6.77 \mathrm{mmol}, 1.0$ equiv) as a brown powder ($1.25 \mathrm{~g}, 6.15 \mathrm{mmol}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=12.1(\mathrm{bs}, 1 \mathrm{H} . \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 6.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.81\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{OH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=189.4$ (CHO), 163.9 (C-7), 161.9 (C-2), 143.6 (C-8a), 142.3 (C-4), 132.7 (C-5), 122.5 (C-3), 112.6 (2C, C-4a, C-6), $97.6(\mathrm{C}-8), 55.7\left(\mathrm{OCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.0655; found: 204.0655 .
m.p. $=275^{\circ} \mathrm{C}$.

Spectral data matches those reported in the literature. ${ }^{[9]}$

1.3.7

 7-Chloro-2-quinolone-3-carbaldehyde (S3k)

Following GP2 the entitled 7-chloro-2-quinolone-3-carbaldehyde (S3k) was obtained from 2,7-dichloroquinoline-3-carbaldehyde (S2k) ($721 \mathrm{mg}, 3.19 \mathrm{mmol}, 1.0$ equiv) as a white powder ($620 \mathrm{mg}, 2.99 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=12.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.53\left(\mathrm{~d},{ }^{5} \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.97(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.37\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=189.6(\mathrm{CHO}), 161.3$ (C-2), 141.9 (2C, C-4, C-7), 138.2 (C-8a), 132.8 (C-5), 125.7 (C-3), 123.0 (C-6), 117.0 (C-4a), 114.7 (C-8).

HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 208.0160; found: 208.0159.
Spectral data matches those reported in the literature. ${ }^{[5]}$

Following GP2 the entitled 7-fluoro-2-quinolone-3-carbaldehyde (S3I) was obtained from 7-fluoro-2-chloroquinoline-3-carbaldehyde (S2I) ($1.04 \mathrm{~g}, 4.60 \mathrm{mmol}, 1.0$ equiv) as a white powder ($866 \mathrm{mg}, 4.17 \mathrm{mmol}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=12.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.03\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HF}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.16\left(\right.$ virt td, $\left.{ }^{3} \mathrm{~J}^{3} \mathrm{~J}_{\mathrm{HF}}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.08\left(\mathrm{dd},{ }^{3} J_{\mathrm{HF}}=10.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-8$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=189.6(\mathrm{CHO}), 165.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=251.9 \mathrm{~Hz}\right.$, (C-7), $161.5(\mathrm{C}-2), 143.0(\mathrm{~d}$, $\left.{ }^{3} J_{C F}=13.2 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right), 142.1(\mathrm{C}-4), 134.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=11.1 \mathrm{~Hz}, \mathrm{H}-5\right), 124.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{a}\right), 115.4(\mathrm{C}-3), 111.4(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CF}}=23.7 \mathrm{~Hz}, \mathrm{C}-6\right), 101.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=25.9 \mathrm{~Hz}, \mathrm{C}-8\right)$.
${ }^{19}$ F NMR (471 MHz, DMSO- d_{6}) $\delta[p p m]=-103.5\left(\right.$ virt q, $\left.{ }^{3}{ }^{3} \approx^{4} J_{\mathrm{HF}}=8.9 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
HRMS (+ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$: 192.0455; found: 192.0455.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2861$ ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2802 ($\mathrm{w}, \mathrm{C}-\mathrm{HO}$), 1680 (vs, C=O), 1623 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1560 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1507 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1414 (m), 1228 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{F}$), 1125 (s$), 900$ ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 826 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 769 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 671 (m).
m.p. $=>300^{\circ} \mathrm{C}$ (decomposition).

1.3.9 7-Ethyl-2-quinolone-3-carbaldehyde (S3m)

Following GP2 the entitled 6,7-dimethyl-2-quinolone-3-carbaldehyde (S3m) was obtained from 7-ethyl-2-chloroquinoline-3-carbaldehyde ($\mathbf{S 2 m}$) ($3.52 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0$ equiv) as a yellow powder ($2.46 \mathrm{mg}, 12.2 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ [ppm] = $12.2(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 7.16\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.69\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.20$ ($\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=189.7$ (CHO), 161.7 (C-2), 150.7 (C-7), 142.3 (C-4), 141.5 (C-8a), 130.9 (C-5), 124.7 (C-3), 123.3 (C-6), 116.3 (C-4a), $113.9(\mathrm{C}-8), 28.7\left(\mathrm{CH}_{2}\right), 15.0\left(\mathrm{CH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 202.0863; found: 202.0863.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2877$ ($\mathrm{w}, \mathrm{C}-\mathrm{HO}$), 1686 (vs, C=O), 1624 (s$), 1580$ ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1483 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1365 (m), 1134 ($\mathrm{m}, \mathrm{sp}^{2}$ C-Cl), 984 ($s, s p^{2} C-H$), 821 ($m, s p^{2} C-H$), 755 ($m, s p^{2} C-H$).
m.p. $=273^{\circ} \mathrm{C}$.

1.4

One third of the required aryl bromide (total amount: 2.5 equiv) was added to a vigorously stirring mixture of Mg turnings (2.5 equiv) in approximately one third of the required amount of THF (1.0 M). Once heat evolution was observed the rest of the aryl bromide and THF were added and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 1 h affording a 1.0 m Grignard solution. Once cooled the freshly prepared arylmagnesium bromide solution was added to a suspension of the corresponding 2-quinolone-3-carbaldehyde $\mathbf{S 3}$ in THF (0.4 M) and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ until TLC indicated complete consumption of the starting material (typically 2 h). The reaction was cooled to ambient temperature and quenched by addition of saturated aqueous NaHCO_{3} solution and EtOAc. The organic layer was separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of all volatiles in vacuo the crude material was purified by FCC on silica gel $\left(1 \% \rightarrow 4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+0.1 \% \mathrm{Et} 3 \mathrm{~N}\right)$ to yield the entitled racemic benzylic alcohol.

1.4.1 3-(Hydroxy(p-tolyl)methyl)-2-quinolone (rac-3a)

A 1.0 m solution of p-tolylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 4-bromotoluene ($369 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$, 2.5 equiv) in THF (2.6 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}$, 1.0 equiv) in THF (3 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3a was obtained as a white solid ($278 \mathrm{mg}, 1.05 \mathrm{mmol}, 87 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.31$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}] 8.06\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50$ ($d d d,{ }^{3} J=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 7.24$ (ddd, ${ }^{3} \mathrm{~J}=7.9,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.13 (d, ${ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12$), 5.92 (s, 1H, H-9), 2.30 (s, 3H, H-14).
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD-d $) ~ \delta[p p m]=163.6(\mathrm{C}-2), 141.0(\mathrm{C}-10), 139.0(\mathrm{C}-8 \mathrm{a}), 138.3(\mathrm{C}-13), 137.0(2 \mathrm{C}, \mathrm{C}-4, \mathrm{C}-3)$, 131.3 (C-7), 129.9 (C-12), 129.2 (C-5), 128.1 (C-11), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 71.4 (C-9), 21.2 (C-14). HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1176; found: 266.1176 .

Spectral data matches those reported in the literature, ${ }^{[10]}$ however decomposition in CDCl_{3} after a time period of $>16 \mathrm{~h}$ was observed. Accordingly, an additional data set in MeOD- d_{4} is provided.

1.4.2 $\quad 3$-(Hydroxy(m-tolyl)methyl)-2-quinolone (rac-3b)

A 1.0 m solution of m-tolylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 3-bromotoluene ($364 \mu \mathrm{~L}$, 3.00 mmol , 2.5 equiv) in THF (2.7 mL) and was added to a solution of aldehyde $\mathbf{S 3 a}$ (208 mg , $1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3b was obtained as a white solid ($289 \mathrm{mg}, 1.09 \mathrm{mmol}, 91 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.34$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50$ (ddd, $\left.{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.25\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-6, \mathrm{H}-13), 7.19\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14\right), 7.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD-d $)_{4}$) [ppm] = 163.6 (C-2), 143.9 (C-10), 139.0 (2C, C-8a, C-12), 137.1 (C-4), 137.0 (C-3), 131.3 (C-7), 129.2 (3C, C-5, C-14, C-15), 128.8 (C-11), 125.3 (C-15), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 71.5 (C-9), 21.5 (C-16).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1776; found: 266.1777.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3392$ (bs, O-H), 2971 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2919 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1651 (vs, C=O), 1585 (m, C=C), 1569 (m, C=C), 1428 (w), 1215 (w), 1036 (w), 789 (w, sp² C-H), 754 (m, sp ${ }^{2}$ C-H).
m.p. $=184^{\circ} \mathrm{C}$.

1.4.3 3-(Hydroxy(o-tolyl)methyl)-2-quinolone (rac-3c)

A 1.0 m solution of o-toluylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 2-bromotoluene ($361 \mu \mathrm{~L}$, 3.00 mmol , 2.5 equiv) in THF (2.6 mL) and was added to a solution of aldehyde S3a (208 mg , $1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3c was obtained as a white solid ($315 \mathrm{mg}, 1.19 \mathrm{mmol}, 99 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.37$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.91\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.64\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.51 (ddd, $\left.{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 7.25 (ddd, ${ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.20-7.12 (m, 3H, H-12, H-13, H-14), 6.21 (d, ${ }^{4} \mathrm{~J}$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=163.8$ (C-2), 141.5 (C-10), 139.1 (C-8a), 137.9 (C-4), 137.5 (C-11), 136.5 (C-3), 131.5 (C-12), 131.4 (C-7), 129.2 (C-5), 128.6 (C-13), 127.5 (C-15), 126.9 (C-14), 123.9 (C-6), 121.3 (C-4a), 116.2 (C-8), 68.1 (C-9), 19.4 (C-16).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1776; found: 266.1776 .

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3301$ (bs, w, O-H), 2925 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2855 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1649 (vs, C=O), 1586 (m, C=C), 1570 (m, C=C), 1428 (w), 1215 (w), 1024 (w), 751 (m, sp² C-H).
m.p. $=208^{\circ} \mathrm{C}$.

1.4.4 3-((3,4-Dimethylphenyl)(hydroxy)methyl)-2-quinolone (rac-3d)

A 1.0 M solution of 3,4 -dimethylphenylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 4-bromo-o-xylene ($406 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.6 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3d was obtained as a white solid ($318 \mathrm{mg}, 1.14 \mathrm{mmol}$, 95\%).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.37$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.06\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $7.50\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2\right.$, $7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.20\left(\mathrm{~d}, \mathrm{~J}^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right.$), $7.14\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15\right), 7.06(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14\right), 5.89\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17)$.
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6(\mathrm{C}-2), 141.3(\mathrm{C}-10), 138.9$ (C-8a), 137.3 (C-12), 137.0 (C-3), 137.0 (C-4), 136.8 (C-13), 131.3 (C-7), 130.4 (C-14), 129.4 (C-11), 129.2 (C-5), 125.6 (C-15), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 71.4 (C-9), 19.9 (C-16*), 19.5 (C-17*).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1334.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3367$ (bs, w, O-H), 2970 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2919 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1651 (vs, C=O), 1586 (m, C=C), 1570 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) , 1501 (w), 1428 (w), 1214 (w), 1025 (w), 824 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 802 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 755 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=190^{\circ} \mathrm{C}$.
*assignment is interconvertible

1.4.5

 3-(Hydroxy(phenyl)methyl)-2-quinolone (rac-3e)

A commercially available solution of phenylmagnesium bromide (1.0 m in THF, 3.00 mL , $3.00 \mathrm{mmol}, 2.5$ equiv) was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}$, 1.0 equiv) in THF (3.0 mL). After purification by FCC the entitled benzylic alcohol rac-3e was obtained as a white solid ($278 \mathrm{mg}, 1.05 \mathrm{mmol}, 87 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.33$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.08\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.50 (ddd, ${ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.47-7.43 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-11$), 7.35-7.28 (m, $3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-12$), 7.27-7.21 (m, 2H, H-6, H-13), 5.96 ($s, 1 \mathrm{H}, \mathrm{H}-9$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6$ (C-2), 144.1 (C-10), 139.0 (C-8a), 137.1 (C-3), 136.9 (C-4), 131.4 (C-7), 129.3 (C-12), 129.2 (C-5), 128.5 (C-13), 128.2 (C-11), 123.9 (C-6), 121.3 (H-4a), 116.2 (C-8), 71.5 (C-9). HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 252.1019; found: 252.1020.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3368$ (bs, m, O-H), 3061 (w), 3030 (w), 1649 (vs, C=O), 1569 (m, C=C), 1427 (w), 1215 (w), 1021 (w), 740 ($s, s p^{2} C-H$), 700 ($s, s p^{2} C-H$).
m.p. $=200^{\circ} \mathrm{C}$.

1.4.6 3-(Hydroxy(4-methoxyphenyl)methyl)-2-quinolone (rac-3f)

 alcohol rac-3f was obtained as a white solid ($389 \mathrm{mg}, 1.38 \mathrm{mmol}, 92 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.27$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=8.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.51\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.43-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 7.26\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.6,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-12), 5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6(\mathrm{C}-2), 160.6$ (C-13), 139.0 (C-8a), 137.1 (C-3), 136.8 (C-4), 136.0 (C-10), 131.3 (C-7), 129.5 (C-11), 129.2 (C-5), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 114.6 (C-12), 71.2 (C-9), 55.7 $\left(\mathrm{OCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 282.1125; found: 282.1125.
Spectral data matches those reported in the literature, ${ }^{[10]}$ however decomposition in CDCl_{3} after a time period of $>16 \mathrm{~h}$ was observed. Accordingly, an additional data set in MeOD- d_{4} is provided.

1.4.7 3-((4-Fluorophenyl)(hydroxy)methyl)-2-quinolone (rac-3g)

A 1.0 M solution of p-fluorophenylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 1-bromo-4-fluorobenzene ($330 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.8 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3g was obtained as a white solid ($278 \mathrm{mg}, 1.05 \mathrm{mmol}, 87 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.35$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.12\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.69\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $7.50\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-8$), 7.25 (ddd, $\left.{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.03$ (virt t, ${ }^{3} \mathrm{~J} \approx^{3} \mathrm{~J}_{\mathrm{HF}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12$), $5.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=244.0 \mathrm{~Hz}, \mathrm{C}-13\right), 163.4(\mathrm{C}-2), 140.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=3.2 \mathrm{~Hz}, \mathrm{C}-10\right)$, 139.0 (C-8a), 137.0 ($d,{ }^{4} J_{\text {CF }}=4.8 \mathrm{~Hz}, \mathrm{C}-3$), 136.8 (C-4), 131.4 (C-7), $130.0\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{J}} \mathrm{CF}=8.1 \mathrm{~Hz}, \mathrm{C}-11\right.$), 129.2 (C-5), 123.9 (C-6), $121.3(\mathrm{C}-4 \mathrm{a}), 116.2(\mathrm{C}-8), 115.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.6 \mathrm{~Hz}, \mathrm{C}-12\right), 70.8(\mathrm{C}-9)$.
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=-113.5\left(\mathrm{tt},{ }^{3} \int_{\mathrm{HF}}=9.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HF}}=5.4 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$: 270.0925; found: 270.0924 .
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3177(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2891\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1651$ (vs, C=O), 1606 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1571 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1509 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1428 (w), 1222 (m, C-F), 1156 (w), 837 (m, sp² C-H), 755 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=194{ }^{\circ} \mathrm{C}$.

1.4.8 3-((4-Chlorophenyl)(hydroxy)methyl)-2-quinolone (rac-3h)

A 1.0 m solution of p-chlorophenylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 1-chloro-4-fluorobenzene ($574 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) in THF (3.0 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3h was obtained as an off-white solid ($277 \mathrm{mg}, 0.97 \mu \mathrm{~mol}, 81 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.16$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.10\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.50 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right.$), 7.34-7.27 (m, $1 \mathrm{H}, \mathrm{H}-8$), 7.31 (d, $\left.{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 7.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.93\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right)$.
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=163.4(\mathrm{C}-2), 143.1(\mathrm{C}-10), 139.0(\mathrm{C}-8 \mathrm{a}), 137.1$ (C-4), 136.6 (C-3), 134.2 (C-13), 131.4 (C-7), 129.8 (C-11), 129.3 (C-12), 129.3 (C-5), 123.9 (C-6), 121.3 (C-4a), 116.2 (C-8), 70.8 (C-9).

HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 286.0629; found: 286.0629.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3160(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2860\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1661$ (vs, C=O), 1572 (m, C=C), $1490(\mathrm{~m}), 1433(\mathrm{~m}), 1091(\mathrm{w})$, 1012 (m, C-Cl), 947 (w), 859 (w), 809 (m, sp^{2} C-H), 752 (s, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=188^{\circ} \mathrm{C}$.

1.4.9 3-(Hydroxy(3-(trifluoromethyl)phenyl)methyl)-2-quinolone(rac-3i)

A 1.0 m solution of 3-(trifluoromethyl)-phenylmagnesium bromide $(3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}$, 2.5 equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 3 bromobenzotrifluoride ($413 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.6 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3i was obtained as a white solid ($299 \mathrm{mg}, 936 \mu \mathrm{~mol}, 78 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.40$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=8.15\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.80\left(\mathrm{dq},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right)$, 7.76-7.63 (m, 2H, H-5, H-15), 7.58-7.46 (m, 3H, H-7, H-13, H-14), $7.32\left(\mathrm{dt}^{3}{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.25$ (ddd, $\left.{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.01\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{H}-9\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.4(\mathrm{C}-2), 145.9$ (C-10), 139.1 (C-8a), 137.2 (C-4), 136.4 (C-3), 131.8 ($\mathrm{d},{ }^{5} \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{C}-15$), 131.5 (C-7), 131.5 ($\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=31.9 \mathrm{~Hz}, \mathrm{C}-12$), $130.0(\mathrm{C}-14), 129.3(\mathrm{C}-5), 125.6$ ($\mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CF}}=271.4 \mathrm{~Hz}$, CF_{3}), 125.2 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{C}-13$), $124.7\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{C}-11\right), 123.9(\mathrm{C}-6), 121.3(\mathrm{C}-4 \mathrm{a}), 116.3(\mathrm{C}-8), 70.8(\mathrm{C}-9)$.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=-64.0(\mathrm{~s}, 1 \mathrm{~F})$.

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 320.0893$; found: 320.0894.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3363$ (bs, w, O-H), 1649 (vs, C=O), 1585 (m, C=C), 1569 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1327 (vs, C-F), 1164 (m), 1121 (vs), 1072 (m), 754 (m, sp $\left.{ }^{2} \mathrm{C}-\mathrm{H}\right), 702$ ($\mathrm{m} \mathrm{sp}{ }^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=168^{\circ} \mathrm{C}$.

1.4.10 3-(Hydroxy(p-tolyl)methyl)-6-methyl-2-quinolinone (rac-3j)

A 1.0 m solution of p-tolylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 4-bromotoluene ($369 \mu \mathrm{~L}$, $3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.6 mL) and was then added to a solution of aldehyde $\mathbf{S 3 f}$ $(225 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL). After purification by FCC the entitled benzylic alcohol rac-3j was obtained as a white solid ($308 \mathrm{mg}, 1.10 \mathrm{mmol}, 92 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.35$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.35\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-7$), $7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9)$, 2.41 (s, 3H, H-15), 2.30 (s, 3H, H-14).
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD-d ${ }_{4}$) $\delta[p p m]=163.5(\mathrm{C}-2), 141.0(\mathrm{C}-10), 138.3(\mathrm{C}-13), 136.9$ (2C, C-3, C-4), 136.8 (C-8a), 133.7 (C-6), 132.7 (C-7), 129.9 (C-12), 128.7 (C-5), 128.1 (C-11), 121.4 (C-4a), 116.1 (C-8), 71.4 (C-9), 21.2 (C-14), 20.9 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1331.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3392$ (bs, w, O-H), 2920 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1651 (vs, C=O), 1583 (m, C=C), 1502 (w), 1446 (w), 1224 (w), 1036 (w), 816 ($w, s p^{2}$ C-H), 758 ($m, s p^{2}$ C-H).
m.p. $=205^{\circ} \mathrm{C}$.

A 1.0 m solution of p-tolylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 4-bromotoluene ($369 \mu \mathrm{~L}$, $3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.6 mL) and was then added to a solution of aldehyde $\mathbf{5 3 g}$ ($225 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL). After purification by FCC the entitled benzylic alcohol rac-3k was obtained as a white solid ($263 \mathrm{mg}, 942 \mu \mathrm{~mol}, 79 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.21$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-11$), 7.15-7.11 (m, 3H, H-8, H-12), $7.10\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-15)$, 2.30 (s, 3H, H-14).
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=163.7(\mathrm{C}-2), 142.3(\mathrm{C}-7), 141.1$ (C-3), 139.1 (C-8a), 138.3 (C-13), 137.0 (C-4), 135.8 (C-10), 129.9 (C-12), 129.0 (C-5), 128.1 (C-11), 125.4 (C-6), 119.2 (C-4a), 116.1 (C-8), 71.4 (C-9), 21.8 (C-15), 21.2 (C-14).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1333.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3300(\mathrm{bs}, \mathrm{w}, \mathrm{O}-\mathrm{H}), 2920\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2855\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1656$ (vs, C=O), 1614 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1512 (m, C=C), 1484 (w), 1228 (w), 1149 (w), 1026 (w), 802 (m, sp² C-H), 791 (m, sp² C-H).
m.p. $=196^{\circ} \mathrm{C}$.

1.4.12 3-(Hydroxy(4-ethylphenyl)methyl)-2-quinolone (rac-3I)

A 1.0 m solution of p-ethylphenylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 1-bromo-4-ethylbenzene ($414 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.5$ equiv) in THF (2.6 mL) and was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv) in THF (3.0 mL) according to GP3. After purification by FCC the entitled benzylic alcohol rac-3I was obtained as a white solid ($314 \mathrm{mg}, 1.12 \mathrm{mmol}, 94 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.34$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9,{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-5\right), 7.50\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=8.4\right.$, $\left.7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 7.25\left(\mathrm{tt},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.16(\mathrm{~d}$, $\left.{ }^{3} J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 5.93\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.61\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14\right), 1.19\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6(\mathrm{C}-2), 144.9(\mathrm{C}-13), 141.2$ (C-10), 139.0 (C-8a), 137.0 (2C, C-3, C4), 131.3 (C-7), 129.2 (C-5), 128.7 (C-12), 128.2 (C-11), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 71.4 (C-9), 29.6 (C14), 16.3 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1334.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3391$ (bs, w, O-H), 2952 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), $2930\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right.$), 1651 (vs, C=O), 1586 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1570 (m, C=C), 1462 (w), 1428 (w), 1216 (w), 1030 (w), 831 (w, sp ${ }^{2} C-H$), 755 (m, sp ${ }^{2} C-H$).

```
m.p. = 157 }\mp@subsup{}{}{\circ}\textrm{C}
```


1.4.13

 3-(Hydroxy(4-isopropylphenyl)methyl)-2-quinolone (rac-3m)

A 1.0 m solution of p-cumylmagnesium bromide ($3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.5$ equiv) was prepared from Mg turnings ($72.9 \mathrm{mg}, 3.00 \mathrm{mmol}, 2.5$ equiv) and 1-bromo-4-fluorobenzene ($464 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.5$ equiv) and was added to a solution of aldehyde S3a (208 mg , 1.20 mmol, 1.0 equiv) in THF and the experiment was conducted as described in GP3. After purification by FCC the entitled benzylic alcohol rac-3m was obtained as a white solid (319 mg , $1.09 \mathrm{mmol}, 91 \%)$.
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.35$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.09\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.49 (ddd, ${ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right.$), $7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.22$ (ddd, $\left.{ }^{3} J=8.2,7.2 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.29 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 5.93\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.87$ (hept, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14\right), 1.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-15\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.6(\mathrm{C}-2), 149.4$ (C-13), 141.4 (C-10), 139.0 (C-8a), 137.0 (2C, C-3, C-4), 131.3 (C-7), 129.2 (C-5), 128.2 (C-11), 127.3 (C-12), 123.9 (C-6), 121.4 (C-4a), 116.2 (C-8), 71.4 (C-9), 35.2 (C-14), 24.5 (C-15), 24.4 (C-15').

HRMS (+ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 294.1489; found: 294.1491.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3390$ (bs, w, O-H), 2959 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2870 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1649 (vs, C=O), 1568 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1462 (w), 1427 (w), 1213 (w), 1017 (w), 830 (w, sp 2 C-H), 754 (m, sp² C-H).
m.p. $=180^{\circ} \mathrm{C}$.

1.5

$\mathrm{Et}_{3} \mathrm{SiH}$ (2.5 equiv) and TFA (32 equiv) were added sequentially to a suspension of alcohol rac-3 (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ affording a clear solution. The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min before the reaction was quenched by addition of saturated aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude material was subjected to FCC $(5 \% \rightarrow$ 20% acetone/n-pentane) to yield the entitled quinolone.

1.5.1 3-(4-Methylbenzyl)-2-quinolone (2a)

Following GP4 the entitled quinolone 2a was obtained from benzylic alcohol rac-3a (540 mg , $2.04 \mathrm{mmol}, 1.0$ equiv) as an off-white solid ($462 \mathrm{mg}, 1.85 \mathrm{mmol}, 91 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.33$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=9.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7), 7.39(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-4), 7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.17$ (m, 4H, H-6, H-8, H-12), 3.95 (s, 2H, H-9), 2.35 ($\mathrm{s}, 3 \mathrm{H}$, H-14).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=164.3(\mathrm{C}-2), 137.6(\mathrm{C}-8 \mathrm{a}), 137.5(\mathrm{C}-4), 136.1(\mathrm{C}-10), 136.0(\mathrm{C}-13), 133.8(\mathrm{C}-3)$, 129.6 (C-7), 129.5 (C-11), 129.4 (C-12), 127.4 (C-5), 122.5 (C-6), 120.3 (C-4a), 115.8 (C-8), 35.9 (C-9), 21.2 (C-14). HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 250.1226; found: 250.1227.

Spectral data matches those reported in the literature. ${ }^{[10]}$

1.5.2 3-(3-Methylbenzyl)-2-quinolone (2b)

Following GP4 the entitled quinolone 2b was obtained from benzylic alcohol rac-3b ($220 \mathrm{mg}, 829 \mu \mathrm{~mol}, 1.0$ equiv) as a white solid ($188 \mathrm{mg}, 754 \mu \mathrm{~mol}, 91 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.76$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.79(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.57$ (dd, $\left.{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}\right.$,
$1 \mathrm{H}, \mathrm{H}-8), 7.17\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14\right), 7.13\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.0,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11$, H-15), 7.03-6.97 (m, 1H, H-13), 3.78 (s, 2H, H-9), 2.26 (s, 3H, H-16).
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 161.8 (C-2), 139.6 (C-12), 137.9 (C-8a), 137.3 (C-3), 136.7 (C-4), 133.3 (C-10), 129.5 (C-7, C-13), 128.2 (C-14), 127.3 (C-5), 126.7 (C-11), 126.0 (C-15), 121.7 (C-6), 119.3 (C-4a), 114.8 (C-8), 35.4 (C-9), 21.1 (C-16).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 250.1226; found: 250.1228.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2819\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1657$ (vs, C=O), 1574 (m, C=C), 1435 (w), 1218 (w), 928 (m), 746 (vs, sp^{2} C-H), 691 (s, sp² C-H).
m.p. $=151^{\circ} \mathrm{C}$.

1.5.3 3-(2-Methylbenzyl)-quinolone (2c)

Following GP4 the entitled quinolone 2c was obtained from benzylic alcohol rac-3c (282 mg , $1.06 \mathrm{mmol}, 1.0$ equiv) as a white solid ($241 \mathrm{mg}, 967 \mu \mathrm{~mol}, 91 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.61$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.51\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5$), 7.43 (ddd, ${ }^{3} \mathrm{~J}=8.4,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.34-7.28(m,2H,H-4, H-8), 7.23-7.18(m,1H,H-12), 7.18-7.13 (m, 3H, H-13, H-14, H-15), 7.10 (ddd, $\left.{ }^{3} \mathrm{~J}=8.1,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.81\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right)$, $2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.9(\mathrm{C}-2), 137.8(\mathrm{C}-8 \mathrm{a}), 137.4$ (C-11), 136.3 (C-10), 136.0 (C-4), 132.6 (C-3), 130.1 (C-12), 129.6 (C-15), 129.4 (C-7), 127.3 (C-5), 126.5 (C-13), 126.0 (C-14), 121.7 (C-6), 119.2 (C-4a), 114.8 (C-8), 32.9 (C-9), 19.1 (C-16).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 250.1226; found: 250.1228.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2819\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1657$ (vs, C=O), 1574 (m, C=C), 1437 (w), 1267 (w), $948(\mathrm{~m}), 910(\mathrm{~m}), 746$ ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 729, ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 698 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=195^{\circ} \mathrm{C}$.
1.5.4 3-(3,4-Dimethylbenzyl)-2-quinolone (2d)

Following GP4 the entitled quinolone 2d was obtained from benzylic alcohol rac-3d (280 mg , $1.00 \mathrm{mmol}, 1.0$ equiv) as a white solid ($235 \mathrm{mg}, 0.89 \mathrm{mmol}, 89 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.73$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ [ppm] = 11.8 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.60 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.56 (dd, $\left.{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.42\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.3,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right.$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.12$
(ddd, $\left.{ }^{3} J=8.3,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-14), 6.99\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-15), 3.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-9), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16^{*}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17^{*}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.9(\mathrm{C}-2), 137.9$ (C-8a), 136.9 (C-12), 136.5 (C-4), 135.9 (C-3), 133.7 (C-13), 133.6 (C-10), 130.0 (C-11), 129.4 (C-7, C-14), 127.3 (C-5), 126.3 (C-15), 121.7 (C-6), 119.3 (C-4a), 114.7 (C-8), 35.1 (C-9), 19.4 (C-16*), 19.0 (C-17*).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383; found: 264.1384.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2851\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1656$ (vs, C=O), 1572 (m, C=C), 1501 (w), 1433 (w), $1230(\mathrm{w}), 916$ (m), 794 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 747 (vs, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=183^{\circ} \mathrm{C}$.
*assignment is interconvertible

1.5.5 3-Benzyl-2-quinolone (2e)

 $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.3,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11, \mathrm{H}-12)$, 7.19 (m, 1H, H-13), 7.12 (dt, $\left.{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.83(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.8(\mathrm{C}-2), 139.7(\mathrm{C}-10), 137.9$ (C-8a), 136.7 (C-4), 133.3 (C-3), 129.5 (C-7), 128.9 (C-12), 128.3 (C-11), 127.3 (C-5), 126.1 (C-13), 121.7 (C-6), 119.3 (C-4a), 114.8 (C-8), 35.5 (C-9).

HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 236.1070; found: 236.1070.
Spectral data matches those reported in the literature. ${ }^{[11]}$

1.5.6 3-(4-Methoxybenzyl)-2-quinolone (2f)

${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=163.8(\mathrm{C}-2), 158.3(\mathrm{C}-13), 137.4(2 \mathrm{C}, \mathrm{C}-4, \mathrm{C}-8 \mathrm{a}), 134.1(\mathrm{C}-3), 131.1(\mathrm{C}-10)$, 130.6 (C-11), 129.7 (C-7), 127.5 (C-5), 122.6 (C-6), 120.3 (C-4a), 115.5 (C-8), 114.1 (C-12), $55.4\left(\mathrm{OCH}_{3}\right), 35.4$ (C-9).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1176; found: 266.1175.
Spectral data matches those reported in the literature. ${ }^{[10]}$

1.5.7 3-(4-Fluorobenzyl)-2-quinolone (2g)

Following GP4 the entitled quinolone $\mathbf{2 g}$ was obtained from benzylic alcohol rac-3g(185 mg, $687 \mu \mathrm{~mol}, 1.0$ equiv) as an off-white solid ($165 \mathrm{mg}, 651 \mu \mathrm{~mol}, 95 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.57$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.57$ (dd, $\left.{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.33\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=5.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-11$), 7.29 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 7.12 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.11 (virt t, $\left.{ }^{3} J \approx^{3} J_{\mathrm{HF}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12\right), 3.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]=161.8(\mathrm{C}-2), 160.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=241.6 \mathrm{~Hz}, \mathrm{C}-13\right), 138.0(\mathrm{C}-8 \mathrm{a}), 136.8(\mathrm{C}-4)$, $135.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}, \mathrm{C}-10\right), 133.2(\mathrm{C}-3), 130.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=7.8 \mathrm{~Hz}, \mathrm{C}-11\right), 129.5(\mathrm{C}-7), 127.4(\mathrm{C}-5), 121.8(\mathrm{C}-6), 119.3$ (C-4a), $115.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.1 \mathrm{~Hz}, \mathrm{C}-12\right), 114.9(\mathrm{C}-8), 34.7(\mathrm{C}-9)$.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta[\mathrm{ppm}]=-117.2\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=9.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=5.5 \mathrm{~Hz}, 1 \mathrm{~F}\right)$
HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$: 254.0976; found: 254.0975 .
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2824$ ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1650 (vs, C=O), 1570 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1502 (vs, C=C), 1434 (m), 1212 (s, C-F), 1159 (m), 947 (w), 859 (w), 797 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 751 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=186^{\circ} \mathrm{C}$.

1.5.8 3-(4-Chlorobenzyl)-2-quinolone (2h)

Following GP4 the entitled quinolone $\mathbf{2 h}$ was obtained from benzylic alcohol rac-3h(157 mg, $549 \mu \mathrm{~mol}, 1.0$ equiv) as an off-white solid ($130 \mathrm{mg}, 515 \mu \mathrm{~mol}, 94 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.66$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.58$ (dd, $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.44\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right)$, $7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.14\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-6), 3.82 (s, 2H, H-9).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.7$ (C-2), 138.8 (C-10), 138.0 (C-8a), 137.0 (C-4), 132.8 (C-3), 130.7 (2C, C-11, C-13), 129.6 (C-7), 128.3 (C-12), 127.4 (C-5), 121.8 (C-6), 119.3 (C-4a), 114.8 (C-8), 34.9 (C-9).

HRMS (+ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 286.0629; found: 286.0629.
Spectral data matches those reported in the literature. ${ }^{[11]}$

1.5.9 3-(3-(Trifluoromethyl)benzyl)-2-quinolone (2i)

Following GP4 the entitled quinolone $\mathbf{2 i}$ was obtained from benzylic alcohol rac-3i (233 mg , $730 \mu \mathrm{~mol}, 1.0$ equiv) as a white solid ($185 \mathrm{mg}, 610 \mu \mathrm{~mol}, 84 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.71$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.68(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-11$), $7.65-7.49(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-13, \mathrm{H}-14, \mathrm{H}-15), 7.44\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-8), 7.15\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.94(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.8(\mathrm{C}-2), 141.3$ (C-10), 138.1 (C-8a), 137.3 (C-4), 133.0 (C-15), 132.4 (C-3), 129.7 (C-7), 129.3 (C-14), 129.9 ($q,{ }^{2}$ J = $31.3 \mathrm{~Hz}, \mathrm{C}-12$), 127.5 (C-5), 125.2 ($q,{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, \mathrm{C}-11$), 124.3 (q , ${ }^{1} \mathrm{~J}=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.9 ($\mathrm{q},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, \mathrm{C}-13$), 121.8 (C-6), 119.3 (C-4a), 114.8 (C-8), 35.4 (C-9).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ [ppm] $=-60.95(\mathrm{~s}, 1 \mathrm{~F})$

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{OF}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 304.0944; found: 304.0944.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2849\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1661$ (vs, C=O), 1573 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1437 (m), 1331 ($\mathrm{m}, \mathrm{C}-\mathrm{F}$), 1149 (m), 1113 (vs), 753 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 700 ($\mathrm{s} \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=171^{\circ} \mathrm{C}$.
1.5.10
 $\left.{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-12), 3.77$ (s, 2H, H-9), 2.31 (s, 3H, H-15), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-14$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=161.7$ (C-2), 136.6 (C-10), 136.3 (2C, C-4, C-6), 135.9 (C-8a), 135.0 (C-13), 133.4 (C-3), 130.6 (C-7), 128.9 (C-12), 128.8 (C-11), 126.8 (C-5), 119.3 (C-4a), 114.6 (C-8), 35.1 (C-9), 20.7 (C-14), 20.4 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383; found: 264.1382.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2922\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2852\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1658(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1578(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1479(\mathrm{~m}), 897\left(\mathrm{~m}, \mathrm{sp}^{2}\right.$ C-H), 810 (vs, sp ${ }^{2}$ C-H), 749 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=200^{\circ} \mathrm{C}$.

Following GP4 the entitled quinolone $\mathbf{2 k}$ was obtained from benzylic alcohol rac-3k ($231 \mathrm{mg}, 827 \mu \mathrm{~mol}, 1.0$ equiv) as a white solid ($187 \mathrm{mg}, 710 \mu \mathrm{~mol}, 86 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.46$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.43$ (d, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 7.07(\mathrm{~d}$, $\left.{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 6.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-9), 2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-15), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 14).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[p p m]=162.4(\mathrm{C}-2), 139.8(\mathrm{C}-7), 138.5(\mathrm{C}-8 \mathrm{a}), 137.1$ (C-10), 136.8 (C-4), 135.4 (C-13), 132.8 (C-3), 129.4 (C-12), 129.2 (C-11), 127.6 (C-5), 123.6 (C-6), 117.6 (C-4a), 114.9 (C-8), 35.5 (C-9), 21.8 (C-15), 21.1 (C-14).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383; found: 264.1382.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2915\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2843\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1650$ (vs, C=O), 1570 (m, C=C), 1513 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1220 (m), 902 (m), 811 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 773 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=223^{\circ} \mathrm{C}$.

1.5.12 3-(4-Ethylbenzyl)-2-quinolone (21)

 $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.28(\mathrm{dd}$, $\left.{ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.16-7.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-12), 3.78(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-9), 2.55$ ($\mathrm{q},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$), $1.15\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta[\mathrm{ppm}]=161.9$ (C-2), 141.4 (C-13), 137.9 (C-8a), 136.9 (C-10), 136.6 (C-4), 133.5 (C-3), 129.4 (C-7), 128.8 (C-11), 127.7 (C-12), 127.3 (C-5), 121.7 (C-6), 119.3 (C-4a), 114.7 (C-8), 35.1 (C-9), 27.8 (C-14), 15.7 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383; found: 264.1385.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2961\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2854\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1650(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1571(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1511(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1433(\mathrm{~m})$, 1218 (w), 895 (m), 756 (vs, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=172^{\circ} \mathrm{C}$.

1.5.13 3-(4-Isopropylbenzyl)-2-quinolone (2m)

Following GP4 the entitled quinolone 2m was obtained from benzylic alcohol rac-3m (232 mg , $791 \mu \mathrm{~mol}, 1.0$ equiv) as a white solid ($211 \mathrm{mg}, 761 \mu \mathrm{~mol}, 96 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 0.79 . $\left.{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-8$), $7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right.$), $7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right.$), $7.13\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6), 3.78$ (s, 2H, H-9), 2.83 (hept, ${ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 1.17 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-15$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ [ppm] = 161.9 (C-2), 146.0 (C-13), 137.9 (C-8a), 137.1 (C-10), 136.6 (C-4), 133.4 (C-3), 129.4 (C-7), 128.7 (C-11), 127.3 (C-5), 126.2 (C-12), 121.7 (C-6), 119.3 (C-4a), 114.7 (C-8), 35.1 (C-9), 33.1 (C-14), 24.0 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 278.1539; found: 278.1542.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2960\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2860\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1652$ (vs, C=O), 1573 (m, C=C), 1434 (m), 1425 (m), 1217 (w), 895 (m), 751 (vs, sp² C-H).
m.p. $=168^{\circ} \mathrm{C}$.

The required commercially available Grignard solution (3.0 equiv) was added to a suspension of the corresponding 2-quinolone-3-carbaldehyde S3 (1.0 equiv) in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature and was stirred at $23^{\circ} \mathrm{C}$ until TLC indicated complete consumption of the starting material (typically $<3 \mathrm{~h}$). The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after removal of all volatiles in vacuo the crude material was purified by FCC on silica gel $\left(1 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+0.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield the entitled alcohol rac-7.

1.6.1 3-(1-Hydroxyethyl)-2-quinolinone (rac-7a)

Following GP5 a commercially available solution of $\operatorname{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 3.00 \mathrm{~mL}, 9.00 \mathrm{mmol}$, 3.0 equiv) was added to a solution of aldehyde S3a ($520 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv) in THF $(15 \mathrm{~mL})$. After purification by FCC the entitled alcohol rac-7a was obtained as a white solid ($260 \mathrm{mg}, 2.67 \mathrm{mmol}, 89 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.14$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.89\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right.$, ${ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.44 (ddd, ${ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.29 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 7.16 (ddd, $\left.{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$), 4.84-4.74(m,1H,H-9),1.31(d, $\left.{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 161.1 (C-2), 138.7 (C-3), 137.7 (C-8a), 133.0 (C-4), 129.4 (C-7), 127.7 (C-5), 121.8 (C-6), 119.3 (C-4a), 114.7 (C-8), 63.5 (C-9), 23.4 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 190.0863$; found: 190.0862 .
Spectral data matches those reported in the literature. ${ }^{[12]}$

Following GP5 a commercially available solution of $\mathrm{EtMgBr}\left(2.0 \mathrm{~m}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.80 \mathrm{~mL}$, $3.60 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mu \mathrm{~mol}, 1.0$ equiv) in THF (4.5 mL). After purification by FCC the entitled alcohol rac-7b was obtained as a white solid ($210 \mathrm{mg}, 1.03 \mathrm{mmol}, 86 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.40$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.97\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.50 (ddd, ${ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.24$ (ddd, ${ }^{3} \mathrm{~J}=8.2$, $\left.7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.82\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.7,4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 1.91\left(\mathrm{dqd},{ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.5,4.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-10), 1.72-1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 1.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-11\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=163.8(\mathrm{C}-2), 138.8$ (C-8a), 137.4 (C-3), 136.7 (C-4), 131.2 (C-7), 129.0 (C-5), 123.8 (C-6), 121.4 (C-4a), 116.2 (C-8), 70.7 (C-9), 30.6 (C-10), 10.3 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1019.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3436(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2962\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2874\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2850\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1657(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1564$ (s, $C=C), 1427$ (m), 1214 (w), 1046 (w), 900 (m), 749 ($\left.s, s p^{2} C-H\right), 704(m)$.
m.p. $=168^{\circ} \mathrm{C}$.

1.6.3 3-(1-Hydroxybutyl)-2-quinolinone (rac-7c)

 obtained as a white solid ($135 \mathrm{mg}, 0.62 \mathrm{mmol}, 52 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.41$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50(\mathrm{ddd}$, ${ }^{3} J=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.25\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 4.90-4.87 (m, $1 \mathrm{H}, \mathrm{H}-9$), 1.83 ($\mathrm{dddd},^{2} \mathrm{~J}=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.9,6.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 1.69-1.38 (m, 3H, H-10', H-11, $\left.\mathrm{H}-11^{\prime}\right), 0.97\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.8(\mathrm{C}-2), 138.8(\mathrm{C}-8 \mathrm{a}), 137.8(\mathrm{C}-3), 136.5$ (C-4), 131.1 (C-7), 129.0 (C-5), 123.8 (C-6), 121.5 (C-4a), 116.2 (C-8), 69.3 (C-9), 40.1 (C-10), 20.1 (C-11), 14.4 (C-12).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 218.1176; found: 218.1175.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3422(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2955\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2926\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2869\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1644(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1565(\mathrm{~s}$, $\mathrm{C}=\mathrm{C}$), 1424 (m), 1212 (m), 1061 (m), 900 (s$)$, 762 (vs, $\left.\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 705$ (m).
m.p. $=185^{\circ} \mathrm{C}$.

1.6.4 3-(1-Hydroxy-3-methylbutyl)-2-quinolone (rac-7d)

 $3.60 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mu \mathrm{~mol}$, 1.0 equiv) in THF (4.4 mL). After purification by FCC the entitled alcohol rac-7d was obtained as a yellowish solid ($207 \mathrm{mg}, 0.90 \mathrm{mmol}, 75 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.38$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.49\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.3\right.$, $\left.7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6), 4.96$ (ddd, ${ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 1.92 ($\mathrm{dpd},{ }^{3} \mathrm{~J}=9.0,6.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 1.63 (ddd, $\left.{ }^{4} J=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 1.51\left(\mathrm{ddd},{ }^{4} \mathrm{~J}=13.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 1.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-12$), 0.97 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12^{\prime}$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) δ [ppm] = 163.8 (C-2), 138.8 (C-8a), 138.3 (C-3), 136.3 (C-4), 131.1 (C-7), 128.9 (C-5), 123.8 (C-7), 121.5 (C-4a), 116.2 (C-8), 67.8 (C-9), 47.3 (C-11), 26.1 (C-10), 24.1 (C-12), 22.0 (C-12').

HRMS (+ESI): calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 232.1332; found: 232.1332.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3313(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2952\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2868\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1658$ (vs, C=O), 1572 ($\left.\mathrm{s}, \mathrm{C}=\mathrm{C}\right), 1424$ (m), 1217 (m), 946 (s), 748 (vs, sp ${ }^{2}$ C-H), 736 (m), 708 (m).
m.p. $=174^{\circ} \mathrm{C}$.

1.6.5 3-(1-Hydroxy-2-methylpropyl)-2-quinolone (rac-7e)

Following GP5 a commercially available solution of ${ }^{i} \mathrm{PrMgBr}(0.75 \mathrm{~m}$ in $\mathrm{THF}, 4.00 \mathrm{~mL}$, $3.00 \mathrm{mmol}, 3.0$ equiv) was added to a suspension of aldehyde S3a ($173 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1.0 equiv) in THF (2 mL). After purification by FCC the entitled alcohol rac-7e was obtained as a white solid ($93.0 \mathrm{mg}, 0.43 \mathrm{mmol}, 43 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.39$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, MeOD- d_{4}) $\delta[\mathrm{ppm}]=7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50$ (ddd, $\left.{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.42-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.25\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.70$ $\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.11\left(\mathrm{pd},{ }^{3} \mathrm{~J}=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 1.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-11\right), 0.90(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-11^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=164.0(\mathrm{C}-2), 138.8$ (C-8a), 137.7 (C-4), 136.6 (C-3), 131.2 (C-7), 129.0 (C-5), 123.8 (C-6), 121.4 (C-4a), 116.2 (C-8), 74.1 (C-9), 33.9 (C-10), 20.0 (C-11), 16.9 (C-11').

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 218.1176; found: 218.1175.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3409(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2960\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2867$ ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1651 (vs, C=O), 1560 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1416 (w), 1214 (w), 1008 (w), 916 (w), 747 (vs, sp² C-H).

```
m.p. = 185 ' C.
```

1.6.6 3-(1-Hydroxyethyl)-6-methyl-2-quinolone (rac-7f)

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.20 \mathrm{~mL}$, $3.60 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3f(224 mg, 1.20 mmol , 1.0 equiv) in THF (6.0 mL). After purification by FCC the entitled alcohol rac-7f was obtained as a white solid ($236 \mathrm{mg}, 1.16 \mathrm{mmol}, 97 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.32$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.47\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.35\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 5.00\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11)$, 1.45 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}\right) \delta[\mathrm{ppm}]=163.7(\mathrm{C}-2), 138.4$ (C-3), 136.8 (C-8a), 135.7 (C-4), 133.7 (C-6), 132.5 (C-7), 128.5 (C-5), 121.5 (C-4a), 116.1 (C-8), 65.8 (C-9), 23.3 (C-10), 20.9 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1020.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3312(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2972\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2924\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2853\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1622(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1576$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) , 1423 (m), 1068 (w), 814 (m, $\mathrm{sp}^{2} C-H$).
m.p. $=215^{\circ} \mathrm{C}$.

1.6.7 3-(1-Hydroxyethyl)-7-methyl-2-quinolone (rac-7g)

 as a white solid ($260 \mathrm{mg}, 1.28 \mathrm{mmol}, 85 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.38$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.09$ (dd, $\left.{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.99\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11) 1.45\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-10)$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}^{2} d_{4}\right) \delta[\mathrm{ppm}]=163.9(\mathrm{C}-2), 142.1(\mathrm{C}-7), 139.0(\mathrm{C}-8 \mathrm{a}), 137.3$ (C-3), 135.8 (C-4), 128.8 (C-5), 125.4 (C-6), 119.4 (C-4a), 116.0 (C-8), 65.8 (C-9), 23.3 (C-10), 21.9 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1020.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3301(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2971\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2927\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2857\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1648(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1568$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1448 (m), 1280 (w) 1075 (w), 807 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=238^{\circ} \mathrm{C}$.

1.6.8 3-(1-Hydroxyethyl)-6,7-dimethyl-2-quinolone (rac-7h)

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.50 \mathrm{~mL}$, $4.50 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3h ($302 \mathrm{mg}, 1.50 \mathrm{mmol}$, 1.0 equiv) in THF (7.5 mL). After purification by FCC the entitled alcohol rac-7h was obtained as a white solid ($313 \mathrm{mg}, 1.44 \mathrm{mmol}, 96 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.39$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD-d $\left.\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 4.99\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}\right.$, 1H, H-9), 2.37 (s, 3H, H-12), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), 1.45 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}^{2}-d_{4}\right) \delta[\mathrm{ppm}]=163.7(\mathrm{C}-2), 141.4(\mathrm{C}-7), 137.3(\mathrm{C}-3), 137.2(\mathrm{C}-8 \mathrm{a}), 135.6$ (C-4), 133.0 (C-6), 128.9 (C-5), 119.8 (C-4a), 116.6 (C-8), 65.8 (C-9), 23.4 (C-10), 20.3 (C-12), 19.4 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 218.1176; found: 218.1176.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3308(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2973\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2920\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2846\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1659$ (vs, C=O), 1566 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) , 1440 (w), 1070 (w), 870 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=238^{\circ} \mathrm{C}$.

1.6.9 3-(1-Hydroxyethyl)-6-methoxy-2-quinolone (rac-7i)

OH Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.50 \mathrm{~mL}$, $4.50 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3i ($305 \mathrm{mg}, 1.50 \mathrm{mmol}$, 1.0 equiv) in THF (7.5 mL). After purification by FCC the entitled alcohol rac-7i was obtained as a white solid ($316 \mathrm{mg}, 1.44 \mathrm{mmol}, 96 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.39$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.18\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5), 7.15\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 5.01\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{OCH}_{3}\right), 1.46$ ($d,{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}\right) \delta[\mathrm{ppm}]=163.3(\mathrm{C}-2), 156.9(\mathrm{C}-6), 138.8(\mathrm{C}-3), 135.6$ (C-4), 133.2 (C-8a), 122.2 (C-4a), 120.8 (C-7), 117.5 (C-8), 109.9 (C-5), $65.8(\mathrm{C}-9), 56.1\left(\mathrm{OCH}_{3}\right), 23.4$ (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 220.0968$; found: 220.0969.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3304(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2971\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2930\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2839\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1655(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1622$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1504 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1421 (m), 1236 ($\mathrm{m}, \mathrm{C}-\mathrm{O}$) 1075 (w), 821 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=208^{\circ} \mathrm{C}$.

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.50 \mathrm{~mL}$, $4.50 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde $\mathbf{S} 3 \mathrm{j}$ ($305 \mathrm{mg}, 1.50 \mathrm{mmol}$, 1.0 equiv) in THF (7.5 mL). After purification by FCC the entitled alcohol rac-7j was obtained as a white solid ($298 \mathrm{mg}, 1.36 \mathrm{mmol}, 91 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.41$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.92\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.86$ (dd, $\left.{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.83\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.98\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 3.87(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=164.1(\mathrm{C}-2), 163.1(\mathrm{C}-7), 140.5$ (C-8a), 135.9 (C-4), 135.0 (C-3), 130.4 (C-5), 115.7 (C-4a), 113.2 (C-6), 98.7 (C-8), 65.7 (C-9), $56.0\left(\mathrm{OCH}_{3}\right), 23.3$ (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 220.0968; found: 220.0969.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3294(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2970\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2933\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2849\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1647(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1568$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) , 1511 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1407 (w), 1229 ($\mathrm{m}, \mathrm{C}-\mathrm{O}$) 1075 (w), 825 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=225^{\circ} \mathrm{C}$.

1.6.11 7-Chloro-3-(1-hydroxyethyl)-2-quinolone (rac-7k)

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 636 \mu \mathrm{~L}$, $1.91 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3k ($132 \mathrm{mg}, 637 \mu \mathrm{~mol}$, 1.0 equiv) in THF (3.2 mL). After purification by FCC the entitled alcohol rac-7k was obtained as a white solid ($116 \mathrm{mg}, 519 \mu \mathrm{~mol}, 82 \%$) including 12% of an unknown isomer that was inseparable by FCC.
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.43$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.36\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-8), 7.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.98\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 1.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, H-10).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=163.6$ (C-2), 139.7 (C-8a), 139.1 (C-3), 136.8 (C-7), 135.1 (C-4), 130.5 (C-5), 124.1 (C-6), 120.1 (C-4a), 115.7 (C-8), 65.6 (C-9), 23.2 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 224.0473; found: 224.0473.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3233(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2969\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2929\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2841\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1638(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1565$ (m, C=C), 1374 (m), 1297 (w), 1212 (w), 1080 (vs, C-Cl) 943 (m), 787 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 731 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=253^{\circ} \mathrm{C}$.

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.50 \mathrm{~mL}$, $4.50 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde $\mathbf{S 3 I}$ ($287 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0$ equiv) in THF (7.5 mL). After purification by FCC the entitled alcohol rac-71 was obtained as a white solid (309 mg, $1.49 \mathrm{mmol}, 99 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.50$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.98\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.70\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $7.05\left(\mathrm{dd},{ }^{3} J_{\mathrm{HF}}=9.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.01\left(\right.$ virt td, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HF}}=8.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.98\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}\right.$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 1.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=165.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248.0 \mathrm{~Hz}, \mathrm{C}-7\right), 163.8(\mathrm{C}-2), 140.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=12.1 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right)$, 137.7 ($\mathrm{s}, \mathrm{C}-3$), $135.4(\mathrm{C}-4), 131.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=10.4 \mathrm{~Hz}, \mathrm{C}-5\right), 118.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.0 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{a}\right), 112.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=23.9 \mathrm{~Hz}, \mathrm{C}-8\right)$, $102.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=26.0 \mathrm{~Hz}, \mathrm{C}-6\right), 65.6(\mathrm{C}-9), 23.3(\mathrm{C}-10)$.
${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[p p m]=-111.2\left(\mathrm{td},{ }^{3} \int_{\mathrm{HF}}=9.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HF}}=5.9 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$: 208.0768; found: 208.0769.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3305(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2976\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2928\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2858\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1652(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1580$ (m, C=C), 1513 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1227 (m, C-F), 1147 (w), 930 (w), 850 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 822 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=226^{\circ} \mathrm{C}$.

1.6.13 3-(1-Hydroxyethyl)-7-ethyl-2-quinolone (rac-7m)

Following GP5 a commercially available solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5 \mathrm{~mL}$, $4.5 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde $\mathbf{S 3 m}$ ($302 \mathrm{mg}, 1.50 \mathrm{mmol}$, 1.0 equiv) in THF (7.5 mL). After purification by FCC the entitled alcohol rac-7m was obtained as a white solid ($260 \mathrm{mg}, 1.20 \mathrm{mmol}, 80 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.41$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.18\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-8), 7.12\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.00\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 2.75\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-11), 1.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right), 1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}_{-d_{4}}\right) \delta[\mathrm{ppm}]=163.9(\mathrm{C}-2), 148.5$ (C-7), 139.0 (C-3), 137.4 (C-8a), 135.8 (C-4), 129.0 (C-5), 124.3 (C-6), 119.6 (C-4a), 114.8 (C-8), 65.7 (C-9), 30.0 (C-11), 23.3 (C-10), 15.9 (C-12).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 218.1176; found: 218.1177.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3432(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2967\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2931\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2871\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1652(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1563$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) , 1409 (m), 1281 (w) 1067 (w), 898 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 823 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=206^{\circ} \mathrm{C}$.

1.6.14 3-(1-Hydroxy-3-phenylpropyl)-2-quinolone (rac-70)

Following GP5 a commercially available solution of phenethylmagnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 3.60 \mathrm{~mL}, 3.60 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aldehyde S3a ($208 \mathrm{mg}, 1.20 \mu \mathrm{~mol}, 1.0$ equiv) in THF (2.6 mL). After purification by FCC the entitled alcohol rac-7o was obtained as a white solid ($242 \mathrm{mg}, 0.87 \mathrm{mmol}, 72 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.39$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50$ (ddd, $\left.{ }^{3} J=8.5,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.25\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 7.23-7.20 (m, 4H, H-13, H-14), 7.13-7.09 (m, 1H, H-15), 4.91 (ddd, ${ }^{3} \mathrm{~J}=8.2,3.7,{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.84 (ddd, $\left.{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.76\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 2.23-$ $2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 1.89$ (dddd, $\left.{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.4,8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=163.8(\mathrm{C}-2), 143.5(\mathrm{C}-12)$, 138.9 (C-8a), 137.4 (C-3), 136.7 (C-4), 131.2 (C-7), 129.5 (C-14), 129.3 (C-13), 129.0 (C-5), 126.7 (C-15), 123.9 (C-6), 121.5 (C-4a), 116.2 (C-8), 69.2 (C-9), 39.7 (C-10), 33.2 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1332.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3435(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2943\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2910\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1652$ (vs, C=O), 1568 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1428 (m), 1215 (w), 1067 (m), 882 (w), 750 (s, sp² C-H), 730 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 701 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=190^{\circ} \mathrm{C}$.

1.7 General procedure 6 (GP6): Synthesis of 3-alkyl-2-quinolones 6

$\mathrm{Et}_{3} \mathrm{SiH}$ (10 equiv) and TFA (32 equiv) were added sequentially to a suspension of the corresponding alcohol (1.0 equiv) in DCE (0.2 M) affording a clear solution. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 16 h before the reaction was carefully quenched by addition of saturated aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude material was subjected to $\mathrm{FCC}\left(5 \% \rightarrow 20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield the entitled quinolone 6.

1.7.1
 3-Ethyl-2-quinoilone (6a)

Following GP6 the entitled quinolone 6a was obtained from alcohol 7 a ($284 \mathrm{mg}, 1.50 \mathrm{mmol}$, 1.0 equiv) as a white solid ($242 \mathrm{mg}, 1.40 \mathrm{mmol}, 93 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.41.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.71\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}\right.$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.42$ (ddd, ${ }^{3} \mathrm{~J}=8.4,7.1,{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2,{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right.$), 7.14 (ddd, $\left.{ }^{3} J=8.2,7.3^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.50\left(\mathrm{dq},{ }^{3} \mathrm{~J}=7.4,{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.16\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=162.0(\mathrm{C}-2), 137.7(\mathrm{C}-8 \mathrm{a}), 135.3(\mathrm{C}-3), 134.7$ (C-4), 129.1 (C-7), 127.2 (C5), 121.6 (C-6), 119.5 (C-4a), 114.7 (C-8), 22.9 (C-9), 12.7 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}: 174.0913$; found: 174.0914.
Spectral data matches those reported in the literature. ${ }^{[13]}$

1.7.2 3-Propyl-2-quinolone (6b)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=11.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.63\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5$), 7.46 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right.$), 7.21 (ddd, ${ }^{3} J=8.1,7.2 \mathrm{~Hz}$, ${ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.66 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=7.7,6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9$), $1.73\left(\mathrm{~h},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10\right.$), 1.03 (t, $\left.{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-11\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 163.8 (C-2), 137.2 (C-8a), 137.1 (C-4), 134.1 (C-3), 129.6 (C-7), 127.3 (C-5), 122.8 (C-6), 120.6 (C-4a), 115.6 (C-8), 32.4 (C-9), 21.7 (C-10), 14.1 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 188.1070; found: 188.1070.
Spectral data matches those reported in the literature. ${ }^{[14]}$

1.7.3 3-Butyl-2-quinolone (6c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=12.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.45 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.19\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.0,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6), 2.81-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9), 1.77-1.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10), 1.46\left(\mathrm{~h},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, H-12).
${ }^{13}{ }^{2}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=164.5(\mathrm{C}-2), 137.5$ (C-8a), 136.7 (C-4), 134.5 (C-3), 129.4 (C-7), 127.1 (C-5), 122.5 (C-6), 120.5 (C-4a), 115.7 (C-8), 30.7 (C-10), 30.1 (C-9), 22.7 (C-11), 14.2 (C-12).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 202.1226; found: 202.1227.
Spectral data matches those reported in the literature. ${ }^{[15]}$

1.7.4
 3-Isopentyl-2-quinolone (6d)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.72\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.41\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.27\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 7.13 ($\mathrm{ddd}^{3}{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 2.49-2.45 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-9$), $1.57\left(\mathrm{dp},{ }^{3} \mathrm{~J}=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right.$), 1.501.41 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-10$), $0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-12\right)$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 162.1 (C-2), 137.7 (C-8a), 135.5 (C-4), 134.2 (C-3), 129.1 (C-7), 127.1 (C-5), 121.6 (C-8), 119.5 (C-4a), 114.7 (C-6), 37.2 (C-10), 27.7 (C-9), 27.5 (C-11), 22.5 (C-12).

HRMS (+ESI): calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 216.1383; found: 216.1384.
Spectral data matches those reported in the literature. ${ }^{[16]}$

Following GP6 the entitled quinolone $\mathbf{6 e}$ was obtained from alcohol $7 \mathbf{e}(93.0 \mathrm{mg}, 428 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($83.0 \mathrm{mg}, 412 \mu \mathrm{~mol}, 96 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.65.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=11.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.45 (ddd, ${ }^{3} \mathrm{~J}=8.4,7.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.19$ (ddd, ${ }^{3} \mathrm{~J}=8.0,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 2.56\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 2.14\left(\mathrm{dp},{ }^{3} \mathrm{~J}=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$, H-11).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 164.6 (C-2), 137.8 (C-4), 137.7 (C-8a), 133.3 (C-3), 129.5 (C-7), 127.2 (C-5), 122.5 (C-6), 120.4 (C-4a), 115.7 (C-8), 39.8 (C-9), 27.6 (C-10), 22.7 (C-11).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 202.1226; found: found: 202.1227.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2951\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2900\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2864$ ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1655 (vs, C=O), 1575 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1435 (m), 1214 (w), 1089 (w), 917 (w), 756 (m, sp $^{2} C-H$).
m.p. $=188^{\circ} \mathrm{C}$.

1.7.6 3-Ethyl-6-methyl-2-quinolone (6f)

${ }^{11}$ Following GP6 the entitled quinolone 6f was obtained from alcohol 7 f ($152 \mathrm{mg}, 750 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($126 \mathrm{mg}, 673 \mu \mathrm{~mol}, 90 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20\% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.49.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=11.6(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.62\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.44-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $7.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 2.47\left(\mathrm{qd}^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right)$, $2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 1.15\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ [ppm] = 161.9 (C-2), 135.7 (C-8a), 135.2 (C-3), 134.5 (C-4), 130.5 (C-6), 130.3 (C-7), 126.7 (C-5), 119.4 (C-4a), 114.6 (C-8), 23.0 (C-9), 20.5 (C-11), 12.8 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 180.1070; found: 180.1071.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2957\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2920\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2850\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1652(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1578(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1410(\mathrm{~m})$, 1257 (w) 911 (m), 814 (m, sp² C-H), 675 (m).
m.p. $=177^{\circ} \mathrm{C}$.

1.7.7 3-Ethyl-7-methyl-2-quinolone (6g)

Following GP6 the entitled quinolone $\mathbf{6 g}$ was obtained from alcohol $\mathbf{7 g}(152 \mathrm{mg}, 750 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($123 \mathrm{mg}, 657 \mu \mathrm{~mol}, 88 \%$).
$\boldsymbol{R}_{\mathbf{f}}$ (20% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.57.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=11.7(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.17(\mathrm{~d}$, ${ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.01\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.72\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11)$, $1.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=164.5$ (C-2), 140.0 (C-7), 137.5 (C-8a), 135.6 (C-4), 134.4 (C-3), 127.0 (C-5), 124.1 (C-6), 118.3 (C-4a), 115.6 (C-8), 23.3 (C-9), 21.8 (C-11), 12.9 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 180.1070$; found: 180.1071.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2957\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2923\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2852\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1650(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1568(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1451(\mathrm{w})$, 1225 (m) 914 (m), 801 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=172{ }^{\circ} \mathrm{C}$.

1.7.8 3-Ethyl-6,7-dimethyl-2-quinolone (6h)

Following GP6 the entitled quinolone 6h was obtained from alcohol 7h (199 mg, $916 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($167 \mathrm{mg}, 830 \mu \mathrm{~mol}, 90 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.46.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=11.4(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 2.70$ ($\left.\mathrm{q},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-12), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=164.2(\mathrm{C}-2), 139.2(\mathrm{C}-7), 135.8$ (C-8a), 135.4 (C-4), 134.4 (C-3), 131.3 (C-6), 127.3 (C-5), 118.7 (C-4a), 116.0 (C-8), 23.4 (C-9), 20.3 (C-12), 19.5 (C-11), 12.9 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 202.1226; found: 202.1228.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2960\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2920\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2851\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1649$ (vs, C=O), 1571 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1448 (w), 1237 (m), 916 (m) 894 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=195^{\circ} \mathrm{C}$.
1.7.9 3-Ethyl-6-methoxy-2-quinolone (6i)

MeO Following GP6 the entitled quinolone $6 \mathbf{i}$ was obtained from alcohol $7 \mathbf{i}(164 \mathrm{mg}, 750 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($140 \mathrm{mg}, 689 \mu \mathrm{~mol}, 92 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.36.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.09(\mathrm{dd}$, $\left.{ }^{3} J=8.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 6.96\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.72\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.30$ ($\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 163.8 (C-2), 155.2 (C-6), 136.2 (C-3), 135.3 (C-4), 132.1 (C-8a), 121.1 (C-4a), 118.8 (C-7), 116.9 (C-8), 108.6 (C-5), $55.8\left(\mathrm{OCH}_{3}\right), 23.5$ (C-9), 12.9 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1020.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924$ ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2851 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1653 (vs, C=O), 1626 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 15042 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1464 (m), 1240 (m, C-O) 1043 (m), 901 (m), 831 (m, sp² C-H).
m.p. $=185^{\circ} \mathrm{C}$.

1.7.10
 3-Ethyl-7-methoxy-2-quinolone (6j)

Following GP6 the entitled quinolone 6j was obtained from alcohol $7 \mathbf{j}$ ($164 \mathrm{mg}, 750 \mu \mathrm{~mol}$, 1.0 equiv) as a white solid ($132 \mathrm{mg}, 649 \mu \mathrm{~mol}, 87 \%$).
$\boldsymbol{R}_{\mathrm{f}}$ (20\% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.41.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.82(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 6.79\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.68\left(q d,{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-9), 1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=164.7(\mathrm{C}-2), 160.9(\mathrm{C}-7), 139.1$ (C-8a), 135.8 (C-4), 132.3 (C-3), 128.5 (C-5), 114.7 (C-4a), 112.0 (C-6), 98.1 (C-8), $55.7\left(\mathrm{OCH}_{3}\right), 23.3$ (C-9), 13.0 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1020.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2964\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2921\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2852\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1654$ (vs, C=O), 1573 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1510 (m , $\mathrm{C}=\mathrm{C}$), 1229 (m, C-O) 1032 (m), 913 (m), 812 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=190^{\circ} \mathrm{C}$.

1.7.11 3-Ethyl-7-chloro-2-quinolone (6k)

$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.72$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=12.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.39(\mathrm{~d}$, $\left.{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.72\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.31\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=164.3(\mathrm{C}-2), 138.1$ (C-8a), 135.9 (C-3) 135.4 (C-4), 135.3 (C-7), 128.4 (C-5), 123.2 (C-6), 119.0 (C-4a), 115.4 (C-8), 23.4 (C-9), 12.7 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{1} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$: 208.0524; found: 208.0525 .

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2970\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2937\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2846\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1739(\mathrm{~m}) 1659(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1571(\mathrm{~m}, \mathrm{C}=\mathrm{C})$, 1376 (m), 1217 (m), 1083 (m, C-Cl) 908 (m), 800 ($\left.w, s p^{2} C-H\right), 751$ ($\left.w, s p^{2} C-H\right)$.
m.p. $=205^{\circ} \mathrm{C}$.

1.7.12 3-Ethyl-7-fluoro-2-quinolone (6I)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=12.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.59\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HF}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.10\left(\mathrm{dd},{ }^{3} J_{\mathrm{HF}}=9.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right.$), 6.93 (virt
$\left.\mathrm{td},{ }^{3} J \approx^{3} J_{\mathrm{HF}}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.70\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=164.8(\mathrm{C}-2), 163.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=248.9 \mathrm{~Hz}, \mathrm{C}-7\right), 138.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=12.0 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right)$, 135.4 (C-4), $134.6(\mathrm{C}-3), 129.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=10.1 \mathrm{~Hz}, \mathrm{C}-5\right), 117.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.0 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{a}\right), 111.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=23.3 \mathrm{~Hz}, \mathrm{C}-6\right)$, $102.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=25.2 \mathrm{~Hz}, \mathrm{C}-8\right), 23.3(\mathrm{C}-9), 12.8(\mathrm{C}-10)$.
${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl $\left.{ }_{3}\right) \delta[\mathrm{ppm}]=-109.8\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=9.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HF}}=5.8 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
HRMS (+ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OFN}[\mathrm{M}+\mathrm{H}]^{+}: 192.0819$; found: 192.0820.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2927\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2855\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1673$ (vs, C=O), 1582 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1514 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1226 ($\left.\mathrm{s}, \mathrm{C}-\mathrm{F}\right)$, 1165 (w), 905 (w), 853 (m, sp ${ }^{2}$ C-H), 822 (m, sp² C-H), 747 ($w, s p^{2} C-H$).
m.p. $=199^{\circ} \mathrm{C}$.

1.7.13 3-Ethyl-7-ethyl-2-quinolone (6m)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=11.3(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.14(\mathrm{~d}$, ${ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.81-2.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-11), 1.38-1.22(\mathrm{~m}, 6 \mathrm{H}$, H-10, H-12).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=164.6(\mathrm{C}-2), 146.3(\mathrm{C}-7), 137.7(\mathrm{C}-8 \mathrm{a}), 135.7(\mathrm{C}-4), 134.5(\mathrm{C}-3), 127.0(\mathrm{C}-5)$, 122.9 (C-6), 118.6 (C-4a), 114.5 (C-8), 29.2 (C-11), 23.4 (C-9), 15.6 (C-12), 12.9 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 202.1226; found: 202.1228.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2965\left(\mathrm{~m}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2932\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2870\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1650(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1568(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1410$ (m), 1222 (w), 1060 (w), 911 (s$), 817$ ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 739 ($\mathrm{m}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).

```
m.p. = 153 ' C.
```

1.7.14 3-(3-Phenylpropyl)-2-quinolone (60)

Following GP6 the entitled quinolone 60 was obtained from alcohol 70 (210 mg , $750 \mu \mathrm{~mol}, 1.0$ equiv) as a white solid ($167 \mathrm{mg}, 634 \mu \mathrm{~mol}, 85 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.69$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=11.3(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5), 7.46$ (ddd, ${ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-14), 7.27-$ 7.16 (m, 4H, H-6, H-13, H-15), 2.80-2.70 (m, 4H, H-9, H-11), 2.10-2.00 (m, 2H, H-10).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=163.9(\mathrm{C}-2), 142.3$ (C-12), 137.3 (C-8a), 137.1 (C-4), 133.8 (C-3), 129.7 (C-7), 128.6 (C-13), 128.5 (C-14), 127.3 (C-5), 125.9 (C-15), 122.8 (C-6), 120.5 (C-4a), 115.6 (C-8), 35.8 (C-11), 30.2 (C-9), 30.1 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383; found: 264.1384.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2931\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2890\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2850\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1659$ (vs, C=O), 1574 (m, C=C), 1424 (m), 1217 (w), 1027 (m), 898 (m), 749 ($\left.\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 737$ (m, sp ${ }^{2}$ C-H), 693 (m, sp^{2} C-H).
m.p. $=149{ }^{\circ} \mathrm{C}$.

1.8 Single procedures

1.8.1

$\mathrm{MnO}_{2}(1.27 \mathrm{~g}, 14.6 \mathrm{mmol}, 15$ equiv) was added in one portion to a solution of 3 a ($258 \mathrm{mg}, 972 \mu \mathrm{~mol}, 1.0$ equiv) and the resulting black suspension was stirred for 19 h at $23^{\circ} \mathrm{C}$. Excess MnO_{2} was removed via filtration over celite and the filtrate was concentrated under reduced pressure. The residual crude material was purified by FCC $\left(2 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) to yield the entitled ketone 4 a as an off-white fluffy solid ($102 \mathrm{mg}, 387 \mu \mathrm{~mol}, 40 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.43$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta[\mathrm{ppm}]=12.1(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}\right.$, $\mathrm{H}-5), 7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.60\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$, $7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 7.24\left(\mathrm{dt},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14)$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta[p p m]=193.6$ (C-9), 159.9 (C-2), 144.1 (C-13), 140.3 (C-4), 139.6 (C-8a), 134.2 (C-10), 132.2 (C-3), 131.8 (C-7), 129.5 (C-11), 129.2 (C-12), 129.0 (C-5), 122.3 (C-6), 118.4 (C-4a), 115.3 (C-8), 21.3 (C-14).

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1019; found: 264.1020.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2949\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1662(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1607(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1562(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1432(\mathrm{w}), 1254(\mathrm{w}), 1102(\mathrm{w})$, 921 (m), 838 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 755 (vs, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=304^{\circ} \mathrm{C}$.

1.8.2

$\mathrm{NaH}(60 \%$ on mineral oil, $15.6 \mathrm{mg}, 390 \mu \mathrm{~mol}, 1.3$ equiv) and $\mathrm{Mel}(2.80 \mu \mathrm{~L}, 450 \mu \mathrm{~mol}, 1.5$ equiv) were added sequentially to a solution of $\mathbf{6 a}(52.0 \mathrm{mg}, 300 \mu \mathrm{~mol}, 1.0$ equiv) in DMF (1.2 mL) and the resulting grey suspension was stirred for 5 h at $23^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (2x), brine (2x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after removal of all solvents in vacuo the crude product was subjected to FCC ($1 \% \rightarrow 3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield the entitled quinolone 9 as a white solid ($44.0 \mathrm{mg}, 235 \mu \mathrm{~mol}, 78 \%$).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.50$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.57-7.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-7), 7.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$, $7.22\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.68\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=\right.$ 7.4 Hz, 3H, H-10).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=162.7$ (C-2), 139.0 (C-8a), 135.6 (C-3), 134.0 (C-4), 129.4 (C-7), 128.1 (C-5), 122.1 (C-6), 120.9 (C-4a), 114.0 (C-8), 29.8 (NCH_{3}), 24.2 (C-9), 12.7 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$: 188.1070; found: 188.1070.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2966\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2914\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2877\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1642$ (vs, C=O), 1622 (s$), 1593$ (s), 1456 (m), 1224 (m), 1092 (w), 908 (m), 750 (vs, sp² C-H), 717 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).
m.p. $=55^{\circ} \mathrm{C}$.

Mel ($93.0 \mu \mathrm{~mol}, 1.50 \mathrm{mmol}, 1.5$ equiv) was added to a grey suspension of aldehyde S3a ($173 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1.0 equiv) and NaH (60% on mineral oil, $52.0 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.3$ equiv) in DMF (4.0 mL) and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and EtOAc (20 mL) and the organic layer was separated. The aqueous layer was extracted twice with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($2 \times 50 \mathrm{~mL}$), brine ($2 \times 50 \mathrm{~mL}$) and eventually dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of all volatiles in vacuo the crude N -methylated aldehyde was used without further purification for the next step (209 mg).
$\mathrm{MeMgBr}\left(3.0 \mathrm{~m}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 500 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$ was added to a suspension of the crude aldehyde (112 mg) in THF $(3.0 \mathrm{~mL})$ and the resulting orange solution was heated to $80^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (10 mL) and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of all volatiles in vacuo the crude material was subjected to FCC to yield the entitled N-methylated alcohol rac-9 as a light brown gum ($19.1 \mathrm{mg}, 94.0 \mu \mathrm{~mol}, 18 \%$ over 2 steps).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.75$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.97$ (br s, $1 \mathrm{H}, \mathrm{H}-4$), 7.71 (dd, ${ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.63 (ddd, $\left.{ }^{3} J=8.6,7.1 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.57\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.31\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.0,7.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6), 5.01\left(\mathrm{qd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}\right) \delta[\mathrm{ppm}]=162.9(\mathrm{C}-2), 140.1$ (C-8a), $138.0(\mathrm{C}-3), 134.8$ (C-4), 131.5 (C-7), 129.9 (C-5), 123.8 (C-6), 122.0 (C-4a) 115.5 (C-8), 66.2 (C-9), $30.0\left(\mathrm{NCH}_{3}\right), 23.2$ (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 204.1019; found: 204.1019.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3408$ ($\mathrm{w}, \mathrm{O}-\mathrm{H}$) 2972 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2929 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1641 (vs, C=O), 1589 (s), 1572 (s$), 1453$ (m), 1219 (m), 1080 (w), 908 (m), 787 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$) 752 (vs, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 740 ($\left.\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right)$.

$\mathrm{Mel}\left(16.3 \mu \mathrm{~mol}, 262 \mu \mathrm{~mol}, 5.0\right.$ equiv) was added to a suspension of $\mathbf{2 h}\left(15.0 \mathrm{mg}, 52.5 \mu \mathrm{~mol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10.9 mg , 1.5 equiv) in DMF ($500 \mu \mathrm{~L}$) and the reaction mixture was stirred for 15 h at $23^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($2 \times 20 \mathrm{~mL}$) and brine ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after removal of all volatiles in vacuo the crude material was subjected to $\mathrm{FCC}\left(1 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield the entitled N-methylalcohol 5 as white foam ($15.1 \mathrm{mg}, 50.4 \mu \mathrm{~mol}, 96 \%$). Colorless crystals with suitable quality for x -ray crystallography were obtained by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$.
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.77$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=8.10\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 7.62 (ddd, ${ }^{3} J=8.6,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-11$), 7.31 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.6,7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right), 5.93\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right)$, $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=162.7(\mathrm{C}-2), 143.1(\mathrm{C}-10), 140.3(\mathrm{C}-8 \mathrm{a}), 136.0(\mathrm{C}-4), 134.2(\mathrm{C}-3), 131.8$ (C-7), 130.2 (C-5), 129.9 (C-11), 129.3 (C-12), 123.9 (C-6), 121.9 (C-4a), 115.6 (C-8), 71.4 (C-9), $30.1\left(\mathrm{NCH}_{3}\right)$.

HRMS (+ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}: 300.0786$; found: 300.0786.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3379(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2926\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1644$ (vs, C=O), 1489 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1489 (m), 1461 (m), 1089 (w), 1014 (w, C-Cl), 949 (w), 840 (w), 753 (s, sp² C-H).
m.p. $=172^{\circ} \mathrm{C}$.

2 Oxygenation of quinolones

2.1 General procedure 7 (GP7): Racemic oxygenation of 3-substituted quinolones

A solution of Mn (TPFPP) $\mathrm{Cl}^{[2]}$ (6.0 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mu \mathrm{~L}, 0.90 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) was added to a suspension of the corresponding quinolone ($180 \mu \mathrm{~mol}$, 3.0 equiv) and $\mathrm{PhIO}\left(60.0 \mu \mathrm{~mol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL}$) affording a deep brown suspension, which was stirred at ambient temperature for 24 h . The solvent was removed in vacuo and the crude material purified by automated flash column chromatography (method B).

2.1.1 3-(4-(1-Hydroxyethyl)benzyl)-2-quinolone (2n)

Following GP7 the entitled alcohol $2 n$ was obtained as a white solid ($4.60 \mathrm{mg}, 16.4 \mu \mathrm{~mol}, 27 \%$) and quinolone 21 was recovered as a white solid ($41.5 \mathrm{mg}, 158 \mu \mathrm{~mol}, 2.6$ equiv).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.27$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD- d_{4}) $\delta[\mathrm{ppm}]=7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5$), 7.47 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.4,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.34-7.29$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-12$), 7.27 (d, ${ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11$), 7.19 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $4.81\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14\right), 3.90(\mathrm{~d}$, $\left.{ }^{4} J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=164.7(\mathrm{C}-2), 145.6(\mathrm{C}-13), 139.4$ (C-10), 139.2 (C-4), 138.8 (C-8a), 134.5 (C-3), 130.9 (C-7), 130.1 (C-11), 128.6 (C-5), 126.8 (C-12), 123.7 (C-6), 121.6 (C-4a), 116.2 (C-8), 70.7 (C-14), 36.6 (C-9), 25.5 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1332.
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3300$ (bs, w, O-H), 2968 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2926 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2856 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1649 (vs, C=O), 1573 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1427 (w), 1219 (w), 1087 (w), 815 ($\mathrm{w}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 754 (m, $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).

2.1.2 3-(4-(2-Hydroxypropan-2-yl)benzyl)-2-quinolone (20)

Following GP7 the entitled alcohol 2 o was obtained as a white solid ($3.60 \mathrm{mg}, 12.3 \mu \mathrm{~mol}, 20 \%$) and quinolone $\mathbf{2 m}$ was recovered as a white solid ($42.3 \mathrm{mg}, 152 \mu \mathrm{~mol}, 2.5$ equiv).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.29$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=7.60\left(\mathrm{q},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.46$ (ddd, ${ }^{3} \mathrm{~J}=8.6,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $7.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-12$), $7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 7.19$ (ddd, ${ }^{3} \mathrm{~J}=8.1,7.2 \mathrm{~Hz}$, $\left.{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.90\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.52(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-15)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) δ [ppm] = 164.7 (C-2), 148.9 (C-13), 139.2 (C-4), 138.8 (C-8a), 138.5 (C-10), 134.5 (C-3), 130.9 (C-7), 129.8 (C-11), 128.6 (C-5), 125.8 (C-12), 123.7 (C-6), 121.6 (C-4a), 116.2 (C-8), 72.9 (C-14), 36.5 (C-9), 31.9 (C-15).

HRMS (+ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 294.1489; found: 294.1489.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3386$ (bs, w, O-H), 2973 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2926 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 2856 ($\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1649 (vs, C=O), 1573 (m, C=C), 1464 (w), 1427 (w), 1220 (w), 1020 (w), 810 (w, sp² C-H), 755 (m, sp² C-H).

2.1.3 3-Ethyl-7-(1-hydroxyethyl)-2-quinolone (rac-6n)

Following GP7 the entitled alcohol rac-6n was obtained as a white solid (2.60 mg , $12.0 \mu \mathrm{~mol}, 20 \%$) and quinolone $\mathbf{6 m}$ was recovered as a white solid ($31.4 \mathrm{mg}, 156 \mu \mathrm{~mol}$, 2.6 equiv).
$\boldsymbol{R}_{\mathrm{f}}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.25$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.76\left(\mathrm{q},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.36(\mathrm{~d}$, $\left.{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 7.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.90\left(\mathrm{q}^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right), 2.62\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right.$, $\left.{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9\right), 1.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12\right), 1.26\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}\right) \delta[\mathrm{ppm}]=165.1(\mathrm{C}-2), 150.0(\mathrm{C}-7), 138.7$ (C-8a), 137.3 (C-4), 135.8 (C-3), 128.5 (C-5), 121.4 (C-6), 120.9 (C-4a), 112.7 (C-12), 70.5 (C-11), 25.6 (C-12), 24.3 (C-9), 13.2 (C-10).

HRMS (+ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 218.1176; found: 218.1176.

IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3299(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2969\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2928\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2874\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1647$ (vs, C=O), 1567 (m, C=C), 1408 (m), 1285 (w), 1073 (w), 895 (m, sp² C-H), 819 (m, sp² C-H).

2.1.4 3-(3-hydroxy-3-phenylpropyl)-2-quinolone (rac-6p)

Following GP7 the entitled alcohol rac-6p was obtained as a white solid $(3.50 \mathrm{mg}$, $12.5 \mu \mathrm{~mol}, 21 \%$) and quinolone 60 was recovered as a white solid (40.8 mg , $155 \mu \mathrm{~mol}, 2.6$ equiv).
$\boldsymbol{R}_{\mathrm{f}}\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.32$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$) $\delta[\mathrm{ppm}]=7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.46$ (ddd, $\left.{ }^{3} \mathrm{~J}=8.5,7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-14), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$, $\mathrm{H}-15), 4.68\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.69-2.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9^{\prime}\right), 2.06\left(\mathrm{td},{ }^{3} \mathrm{~J}=8.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H-10).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta[\mathrm{ppm}]=164.9(\mathrm{C}-2), 146.3(\mathrm{C}-12), 138.8(\mathrm{C}-8 \mathrm{a}), 138.7(\mathrm{C}-4), 134.4$ (C-3), 130.8 (C-7), 129.3 (C-14), 128.5 (C-15), 128.3 (C-5), 127.1 (C-13), 123.7 (C-6), 121.7 (C-4a), 116.1 (C-8) , 74.6 (C-11), 38.9 (C-10), 28.1 (C-9).

HRMS (+ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1332; found: 280.1332 .
IR (ATR) $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3312(\mathrm{w}, \mathrm{O}-\mathrm{H}), 2920\left(\mathrm{~m}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 2852\left(\mathrm{w}, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1649$ (vs, C=O), 1572 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1494 (w), 1428 (m), 1059 (w), 754 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 701 ($\mathrm{s}, \mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$).

2.2 General procedure 8 (GP8): Enantioselective oxygenation of 3-benzylquinolones 2

A solution of the chiral manganese porphyrin catalyst 1 (4.5 mm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mu \mathrm{~L}, 0.90 \mu \mathrm{~mol} 1.5 \mathrm{~mol} \%$) was added to a solution of the corresponding benzylquinolone $\mathbf{2}$ ($180 \mu \mathrm{~mol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.8 mL) affording a deep green solution, which was cooled to $0^{\circ} \mathrm{C}$. PhIO was added in three portion (first $6.60 \mathrm{mg}, 0.5$ equiv, then $3.30 \mathrm{mg}, 0.25$ equiv after 60 and 90 min respectively) and the reaction mixture was stirred for 4 h (i.e. 2.5 h after addition of the last portion of PhIO) at $0^{\circ} \mathrm{C}$. After removal of all volatiles in vacuo the crude material was purified by automated flash column chromatography (method A).

2.2.1 (S)-3-(Hydroxy(p-tolyl)methyl)-2-quinolone (3a)

Following GP8 the entitled benzylic alcohol 3a was obtained as a white solid (9.50 mg , $35.8 \mu \mathrm{~mol}, 60 \%$) and quinolone 2 a was recovered as a white solid ($33.7 \mathrm{mg}, 135 \mu \mathrm{~mol}$, 2.26 equiv, 75% recovery yield).

Specific rotation: $[a]_{D}^{25}=+4.0(\mathrm{c}=1.0, \mathrm{MeOH}, 96 \% e e)$.
Chiral HPLC: 96% ee [${ }^{\top} \mathrm{CHIRALPAK} \mathrm{AS-H}, 20^{\circ} \mathrm{C}, 50 \%{ }^{\circ} \mathrm{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=7.61 \mathrm{~min}$ (minor), 10.7 min (major)].

The entitled compound 3a was synthesized in a preliminary experiment (Scheme 1) using the following conditions: A solution of the chiral manganese porphyrin catalyst $1\left(6.0 \mathrm{~mm}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mu \mathrm{~L}, 1.20 \mu \mathrm{~mol}$ $2.0 \mathrm{~mol} \%$) was added to a stirring suspension of quinolone $\mathbf{2 a}(15.0 \mathrm{mg}, 60.0 \mu \mathrm{~mol}, 1.0$ equiv) and $\mathrm{PhIO}(26.4 \mathrm{mg}$, $120 \mu \mathrm{~mol}$, 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 16 h affording a green solution. The reaction mixture was filtered over celite and the solvent was removed in vacuo. The crude material was subjected to $\mathrm{FCC}\left(5 \% \rightarrow 25 \%\right.$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}+0.1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the alcohol 3 a as white solid (4.80 mg , $18.1 \mu \mathrm{~mol}, 30 \%, 95 \% \mathrm{ee})$.

2.2.2 (S)-3-(Hydroxy(m-tolyl)methyl)-2-quinolone (3b)

Following GP8 the entitled benzylic alcohol 3b was obtained as a white solid 19.30 mg , $35.1 \mu \mathrm{~mol}, 58 \%$) and quinolone 2b was recovered as a white solid ($34.2 \mathrm{mg}, 137 \mu \mathrm{~mol}$, 2.28 equiv, 76% recovery yield).

Specific rotation: $[a]_{D}^{25}=+6.4(\mathrm{c}=2.5, \mathrm{MeOH}, 99 \% e e)$.

Chiral HPLC: 99% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.6 \mathrm{~min}$ (major), 12.7 min (minor)].

2.2.3 (S)-3-(Hydroxy(o-tolyl)methyl)-2-quinolone (3c)

Following GP8 the entitled benzylic alcohol 3c was obtained as a white solid (10.2 mg , $38.5 \mu \mathrm{~mol}, 64 \%$) and quinolone $\mathbf{2 c}$ was recovered as a white solid ($34.4 \mathrm{mg}, 138 \mu \mathrm{~mol}$, 2.29 equiv, 76% recovery yield).

Specific rotation: $[a]_{D}^{25}=+20.8(c=2.5, \mathrm{MeOH}, 97 \% ~ e e)$.
Chiral HPLC: 97% ee [${ }^{\top} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.9 \mathrm{~min}$ (major), $16.0 \mathrm{~min}($ minor $)$].

2.2.4 (S)-3-((3,4-Dimethylphenyl)(hydroxy)methyl)-2-quinolone (3d)

Following GP8 the entitled benzylic alcohol 3d was obtained as a white solid (9.90 mg , $35.4 \mu \mathrm{~mol}, 59 \%$) and quinolone 2d was recovered as a white solid ($33.8 \mathrm{mg}, 128 \mu \mathrm{~mol}$, 2.14 equiv, 71% recovery yield).

Specific rotation: $[a]_{D}^{25}=+2.0(\mathrm{c}=2.0, \mathrm{MeOH}, 92 \% e e)$.
Chiral HPLC: 92% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.96 \mathrm{~min}$ (minor), 15.9 min (major)].
2.2.5 (S)-3-(Hydroxy(phenyl)methyl)-2-quinolone (3e)

Following GP8 the entitled benzylic alcohol $3 \mathbf{e}$ was obtained as a white solid (9.20 mg , $38.6 \mu \mathrm{~mol}, 61 \%$) and quinolone $\mathbf{2 e}$ was recovered as a white solid ($31.6 \mathrm{mg}, 134 \mu \mathrm{~mol}$, 2.23 equiv, 74% recovery yield).

Specific rotation: $[a]_{D}^{25}=+3.2(\mathrm{c}=2.5, \mathrm{MeOH}, 95 \% e e)$.
Chiral HPLC: 95% ee ${ }^{\circ}{ }^{\circ} \mathrm{CHIRALPAK} \mathrm{AS-H}, 20^{\circ} \mathrm{C}, 30 \%{ }^{\circ} \mathrm{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=11.7 \mathrm{~min}$ (minor), 23.1 min (major)].
2.2.6 (S)-3-(Hydroxy(4-methoxyphenyl)methyl)-2-quinolone (3f)

Following GP8 the entitled benzylic alcohol 3 f was obtained as a white solid (9.00 mg , $32.0 \mu \mathrm{~mol}, 53 \%$) and quinolone 2 f was recovered as a white solid ($36.4 \mathrm{mg}, 137 \mu \mathrm{~mol}$, 2.28 equiv, 76% recovery yield).

Specific rotation: $[a]_{D}^{25}=+24.0(\mathrm{c}=1.0, \mathrm{MeOH}, 93 \%$ ee $)$.

Chiral HPLC: 93% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AS-H, $20^{\circ} \mathrm{C}, 50 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=11.0 \mathrm{~min}$ (minor), 13.7 min (major)].

2.2.7 (S)-3-((4-Fluorophenyl)(hydroxy)methyl)-2-quinolone (3g)

Following GP8 the entitled benzylic alcohol 3 g was obtained as a white solid (8.50 mg , $31.6 \mu \mathrm{~mol}, 53 \%$) and quinolone $\mathbf{2 g}$ was recovered as a white solid ($32.1 \mathrm{mg}, 127 \mu \mathrm{~mol}$, 2.11 equiv, 70% recovery yield).

Specific rotation: $[a]_{D}^{25}=+12.0(\mathrm{c}=2.0, \mathrm{MeOH}, 91 \% \mathrm{ee})$.
Chiral HPLC: 91% ee $\left[{ }^{\top} \mathrm{CHIRALPAK} \mathrm{AS-H} ,20{ }^{\circ} \mathrm{C}, 50 \%{ }^{\circ} \operatorname{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=7.33 \mathrm{~min}\right.$ (minor), 10.4 min (major)].

2.2.8 (S)-3-((4-Chlorophenyl)(hydroxy)methyl)-2-quinolone (3h)

Following GP8 the entitled benzylic alcohol 3 h was obtained as a white solid (3.00 mg , $10.5 \mu \mathrm{~mol}, 18 \%$) and quinolone $\mathbf{2 h}$ was recovered as a white solid ($44.0 \mathrm{mg}, 163 \mu \mathrm{~mol}$, 2.72 equiv, 91% recovery yield).

Specific rotation: $[a]_{D}^{25}=+2.7(\mathrm{c}=1.5, \mathrm{MeOH}, 98 \%$ ee $)$.
Chiral HPLC: 98\% ee [${ }^{\top} \mathrm{CHIRALPAK} \mathrm{AS-H} ,20{ }^{\circ} \mathrm{C}, 20 \%{ }^{\circ} \mathrm{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=16.0 \mathrm{~min}$ (minor), 14.2 min (major)].

2.2.9 (S)-3-(Hydroxy(3-(trifluoromethyl)phenyl)methyl)-2-quinolone (3i)

Following GP8 the entitled benzylic alcohol 3i was obtained as a white solid (5.00 mg , $15.7 \mu \mathrm{~mol}, 26 \%$) and quinolone $\mathbf{2 i}$ was recovered as a white solid ($45.9 \mathrm{mg}, 151 \mu \mathrm{~mol}$, 2.52 equiv, 84% recovery yield).

Specific rotation: $[a]_{D}^{25}=+3.0(c=2.0, \mathrm{MeOH}, 92 \% e e)$.

Chiral HPLC: 92\% ee [${ }^{\circledR} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=6.85 \mathrm{~min}$ (major), 8.77 min (minor)]
2.2.10 (S)-3-(Hydroxy(p-tolyl)methyl)-6-methyl-2-quinolone (3j)
 Following GP8 the entitled benzylic alcohol $3 \mathbf{j}$ was obtained as a white solid (10.0 mg , $35.8 \mu \mathrm{~mol}, 60 \%$) and quinolone $\mathbf{2 j}$ was recovered as a white solid ($34.0 \mathrm{mg}, 129 \mu \mathrm{~mol}$, 2.15 equiv, 72% recovery yield).

Specific rotation: $[a]_{D}^{25}=+34.0(c=1.0, \mathrm{MeOH}, 98 \% \mathrm{ee})$.

Chiral HPLC: 98\% ee [${ }^{\circ} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 30 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.2 \mathrm{~min}$ (minor), 14.3 min (major)]

2.2.11 (S)-3-(Hydroxy(p-tolyl)methyl)-7-methyl-2-quinolone (3k)

Following GP8 the entitled benzylic alcohol 3k was obtained as a white solid (8.80. mg, $31.5 \mu \mathrm{~mol}, 53 \%$) and quinolone $\mathbf{2 k}$ was recovered as a white solid ($34.4 \mathrm{mg}, 131 \mu \mathrm{~mol}$, 2.18 equiv, 73% recovery yield).

Specific rotation: $[a]_{D}^{25}=+4.0(c=1.0, \mathrm{MeOH}, 96 \% \mathrm{ee})$
Chiral HPLC: 96% ee ${ }^{\top}{ }^{\circ} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.8 \mathrm{~min}$ (minor), 15.0 min (major)].

2.2.12 (S)-3-((4-Ethylphenyl)(hydroxy)methyl)-2-quinolone (31)

Following GP8 the entitled benzylic alcohol 31 was obtained as a white solid (9.60 mg , $34.4 \mu \mathrm{~mol}, 57 \%$) and quinolone 21 was recovered as a white solid ($34.9 \mathrm{mg}, 133 \mu \mathrm{~mol}$, 2.21 equiv, 74% recovery yield).

Specific rotation: $[a]_{D}^{25}=+10.7(c=1.5, \mathrm{MeOH}, 93 \%$ ee $)$.
Chiral HPLC: 93\% ee [${ }^{\top} \mathrm{CHIRALPAK} \mathrm{AS-H}, 20^{\circ} \mathrm{C}, 50 \%{ }^{i} \mathrm{PrOH} /{ }^{n} h e p t a n e, 1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=7.17 \mathrm{~min}$ (minor), 10.2 min (major)].

2.2.13 (S)-3-(Hydroxy(4-isopropylphenyl)methyl)-2-quinolone (3m)

Following GP8 the entitled benzylic alcohol 3 m was obtained as a white solid (8.80 mg , $30.0 \mu \mathrm{~mol}, 50 \%$) and quinolone 2 m was recovered as a white solid ($40.6 \mathrm{mg}, 146 \mu \mathrm{~mol}$, 2.44 equiv, 81% recovery yield).

Specific rotation: $[a]_{D}^{25}=+7.0(\mathrm{c}=2.0, \mathrm{MeOH}, 91 \% \mathrm{ee})$.
Chiral HPLC: 91% ee $\left[{ }^{\top} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=7.54 \mathrm{~min}$ (minor), $8.89 \min ($ major) $)$.

2.3 General procedure 9 (GP9): Enantioselective oxygenation of 3-alkylquinolones 6

A solution of the chiral manganese porphyrin catalyst 1 (6.0 mm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mu \mathrm{~L}, 0.90 \mu \mathrm{~mol} 2.0 \mathrm{~mol} \%$) was added to a solution of the corresponding quinolone 6 ($180 \mu \mathrm{~mol}$, 3.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.8 mL) affording a deep green solution, which was cooled to $0^{\circ} \mathrm{C}$. PhIO was added in three portion ($6.60 \mathrm{mg}, 0.5$ equiv and 3.30 mg , 0.25 equiv after 60 and 90 min respectively) and the reaction mixture was stirred for further 2.5 h at $0^{\circ} \mathrm{C}$ after the last PhIO addition. The solvent was removed in vacuo and the crude material was purified by automated flash column chromatography (method B).

2.3.1 (S)-3-(1-Hydroxyethyl)-2-quinolone (7a)

Following GP9 the entitled alcohol 7a was obtained as a white solid ($6.30 \mathrm{mg}, 33.5 \mu \mathrm{~mol}, 56 \%$) and quinolone 6a was recovered as a white solid ($24.8 \mathrm{mg}, 143 \mu \mathrm{~mol}, 2.38$ equiv, 79% recovery yield).

Specific rotation: $[a]_{D}^{25}=-51.5(c=0.66, \mathrm{THF}, 95 \% \mathrm{ee})$.
Chiral HPLC: 95\% ee [${ }^{\top} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 10 \%{ }^{i}$ PrOH/ ${ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min}$ (major), 21.6 min (minor)].

2.3.2 (S)-3-(1-Hydroxypropyl)-2-quinolone (7b)

Following GP9 the entitled alcohol 7b was obtained as a white solid ($6.50 \mathrm{mg}, 32.0 \mu \mathrm{~mol}, 53 \%$) and quinolone 6b was recovered as a white solid ($26.7 \mathrm{mg}, 142 \mu \mathrm{~mol}, 2.37$ equiv, 79% recovery yield).

Specific rotation: $[a]_{D}^{25}=-56(c=1.0, \mathrm{MeOH}, 88 \% e e)$.
Chiral HPLC: 88% ee $\left[{ }^{\top} \mathrm{CHIRALPAK} \mathrm{AD-H}, 20^{\circ} \mathrm{C}, 10 \%{ }^{i} \mathrm{PrOH} /{ }^{n}\right.$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.6 \mathrm{~min}$ (major), $23.9 \min ($ minor $)$].

2.3.3 (S)-3-(1-Hydroxybutyl)-2-quinolone (7c)

Following GP9 the entitled alcohol 7c was obtained as a white solid $\mathbf{(6 . 5 0 ~ \mathrm { mg } , 2 9 . 9 \mu \mathrm { mol } \text { , }}$ 50%) and quinolone $\mathbf{6 c}$ was recovered as a white solid ($27.3 \mathrm{mg}, 136 \mu \mathrm{~mol}, 2.27$ equiv, 76% recovery yield).

Specific rotation: $[a]_{D}^{25}=-60(c=1.0, \mathrm{MeOH}, 86 \% e e)$.
Chiral HPLC: 86% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}$ (major) $24.5 \mathrm{~min}($ minor $)$].
2.3.4 (S)-3-(1-Hydroxy-3-methylbutyl)-2-quinolone (7d)

Following GP9 the entitled alcohol 7d was obtained as a white solid ($6.70 \mathrm{mg}, 29.0 \mu \mathrm{~mol}$, 48%) and quinolone $6 \mathbf{d}$ was recovered as a white solid ($32.3 \mathrm{mg}, 150 \mu \mathrm{~mol}, 2.50$ equiv, 83% recovery yield).

Specific rotation: $[a]_{D}^{25}=-66(c=1.0, \mathrm{MeOH}, 88 \%$ ee $)$.
Chiral HPLC: 88% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=18.9 \mathrm{~min}$ (major), $27.2 \min (\operatorname{minor})]$.
2.3.5 (S)-3-(1-Hydroxy-2-methylpropyl)-2-quinolone (7e)

Following GP9 the entitled alcohol 7e was obtained as a white solid ($6.20 \mathrm{mg}, 28.5 \mu \mathrm{~mol}, 48 \%$) and quinolone $6 \mathbf{e}$ was recovered as a white solid ($29.8 \mathrm{mg}, 148 \mu \mathrm{~mol}, 2.47$ equiv, 82% recovery yield).

Specific rotation: $[a]_{D}^{25}=-66(c=1.0, \mathrm{MeOH}, 80 \% e e)$.
Chiral HPLC: 80% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AS-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.02 \mathrm{~min}$ (major), $14.9 \min ($ minor $)$].
2.3.6 (S)-3-(1-Hydroxyethyl)-6-methyl-2-quinolone (7f)

Following GP9 the entitled alcohol 7 f was obtained as a white solid ($6.20 \mathrm{mg}, 30.5 \mu \mathrm{~mol}, 51 \%$) and quinolone 6 f was recovered as a white solid ($27.6 \mathrm{mg}, 147 \mu \mathrm{~mol}, 2.45$ equiv, 82% recovery yield).

Specific rotation: $[a]_{D}^{25}=-52.0(c=1.0, \mathrm{MeOH}, 94 \% e e)$.
Chiral HPLC: 94% ee [${ }^{\circ} \mathrm{CHIRALPAK}$ AS-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.40 \mathrm{~min}$ (minor), $14.6 \min ($ major $)$].

2.3.7 (S)-3-(1-Hydroxyethyl)-7-methyl-2-quinolone (7g)

Following GP9 the entitled alcohol 7 g was obtained as a white solid ($7.10 \mathrm{mg}, 34.9 \mu \mathrm{~mol}, 58 \%$) and quinolone 6 g was recovered as a white solid $(26.7 \mathrm{mg}, 143 \mu \mathrm{~mol}, 2.38$ equiv, 79% recovery yield).

Specific rotation: $[a]_{D}^{25}=-54.0(c=1.0, \mathrm{MeOH}, 96 \% e e)$.
Chiral HPLC: 96% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.1 \mathrm{~min}$ (major), $28.5 \min ($ minor $)$].
2.3.8 (S)-3-(1-Hydroxyethyl)-6,7-dimethyl-2-quinolone (7h)

Specific rotation: $[a]_{D}^{25}=-44.0(c=1.0, \mathrm{MeOH}, 95 \% e e)$.
Chiral HPLC: 95\% ee [${ }^{\circ} \mathrm{CHIRALPAK}$ AD-H, $5{ }^{\circ} \mathrm{C}, 10 \%{ }^{\circ} \mathrm{PrOH} /{ }^{\mathrm{n}}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=16.1 \mathrm{~min}$ (major), $18.4 \min (\operatorname{minor})$].
2.3.9 (S)-3-(1-Hydroxyethyl)-6-methoxy-2-quinolone (7i)

Specific rotation: $[a]_{D}^{25}=-20.0(c=1.0, \mathrm{MeOH}, 96 \% e e)$.
Chiral HPLC: 96% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AS-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.0 \mathrm{~min}(\mathrm{minor})$, 25.5 min (major)].

2.3.10 (S)-3-(1-Hydroxyethyl)-7-methoxy-2-quinolone (7j)

Specific rotation: $[a]_{D}^{25}=-64.0(c=1.0, \mathrm{MeOH}, 95 \% ~ e e)$.
Chiral HPLC: 95\% ee [${ }^{\circ} \mathrm{CHIRALPAK}$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=24.8 \mathrm{~min}$ (major), 35.8 min (minor)].

2.3.11 (S)-7-Chloro-3-(1-hydroxyethyl)-2-quinolone (7k)

Following GP9 the entitled alcohol $7 \mathbf{k}$ was obtained as a white solid $(4.60 \mathrm{mg}, 20.6 \mu \mathrm{~mol}$, 34%) and quinolone $\mathbf{6 k}$ was recovered as a white solid ($32.9 \mathrm{mg}, 159 \mu \mathrm{~mol}, 2.64$ equiv, 88% recovery yield).

Specific rotation: $[a]_{D}^{25}=-54.0(c=1.0, \mathrm{MeOH}, 95 \% ~ e e)$.
Chiral HPLC: 95% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AS-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.88 \mathrm{~min}$ (major), $8.31 \mathrm{~min}($ minor $)$].

2.3.12 (S)-7-Fluoro-3-(1-hydroxyethyl)-2-quinolone (7I)

Specific rotation: $[a]_{D}^{25}=-48.0(c=1.0, \mathrm{MeOH}, 96 \% e e)$.
Chiral HPLC: 96% ee $\left[{ }^{\top} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{\circ}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=15.6 \mathrm{~min}$ (major), $21.0 \min (\operatorname{minor})]$.

2.3.13 (S)-3-(1-Hydroxyethyl)-7-ethyl-2-quinolone (7m)

Following GP9 the entitled alcohol 7m was obtained as a white solid ($7.80 \mathrm{mg}, 35.9 \mu \mathrm{~mol}$, 60%), the entitled isomer 6 n was obtained as a colorless solid ($1.10 \mathrm{mg}, 5.06 \mu \mathrm{~mol}, 8 \%$), and quinolone $\mathbf{6 m}$ was recovered as a white solid ($27.6 \mathrm{mg}, 137 \mu \mathrm{~mol}, 2.29$ equiv, 76% recovery yield).

Specific rotation: $[a]_{D}^{25}=-56.0(c=1.0, \mathrm{MeOH}, 98 \% e e)$.
Chiral HPLC: 98% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AS-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.51 \mathrm{~min}$ (major), $11.0 \mathrm{~min}(\operatorname{minor})$].

2.3.14 (S)-3-Ethyl-7-(1-hydroxyethyl)-2-quinolone (6n)

2.3.15 (S)-3-(1-Hydroxy-3-phenylpropyl)-2-quinolone (70)

Following GP9 the entitled alcohol 70 was obtained as a white solid $(7.60 \mathrm{mg}$, $27.2 \mu \mathrm{~mol}, 45 \%$) the entitled isomer $6 \mathbf{p}$ was obtained as a colorless solid (4.10 mg , $14.6 \mu \mathrm{~mol}, 24 \%$), and quinolone 60 was recovered as a white solid ($36.3 \mathrm{mg}, 138 \mu \mathrm{~mol}$, 2.30 equiv, 77% recovery yield).

Specific rotation: $[a]_{D}^{25}=-30.0(c=1.0, \mathrm{MeOH}, 84 \% e e)$.

Chiral HPLC: 84% ee $\left[{ }^{\circ} \mathrm{CHIRALPAK}\right.$ AD-H, $20^{\circ} \mathrm{C}, 10 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=18.9 \mathrm{~min}(\mathrm{minor})$, 27.2 min (major)].

2.3.16 3-(3-Hydroxy-3-phenylpropyl)-2-quinolone (6p)

Chiral HPLC: 16% ee [${ }^{\circ} \mathrm{CHIRALPAK}$ AD-H, $20^{\circ} \mathrm{C}, 30 \%{ }^{i} \mathrm{PrOH} /{ }^{n}$ heptane, $1 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.4 \mathrm{~min}$ (major), 14.6 min (minor)].

2.3.17 3-(1-Hydroxyethyl)-N-methyl-2-quinolone (10)

Chiral HPLC: racemic [${ }^{\circ} \mathrm{CHIRALPAK} \mathrm{AS-H}, 20^{\circ} \mathrm{C}, 50 \%{ }^{\mathrm{i}} \mathrm{PrOH} /{ }^{n}$ heptane, $\left.1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.84 \mathrm{~min}, 7.07 \mathrm{~min}\right]$.

3 Kinetic experiments

Individual stock solutions (5.000 mm) of the three components $\mathbf{2 a} \mathbf{a} \mathbf{3 a}$ and $\mathbf{4 a}$ were prepared and diluted to the following concentrations $1.500 \mathrm{~mm}(100 \%), 0.900 \mathrm{~mm}(60 \%), 0.450 \mathrm{~mm}(30 \%), 0.150 \mathrm{~mm}$ (10\%) and 0.075 mm (5%) each containing ${ }^{n}$ dodecane as the internal standard (1.50 mm). The samples were submitted to GLC analysis and the method for quantification of the compounds was calibrated according to the corresponding instrument response factors from the initial measurements. A correlation of $R^{2} \geq 0.999$ was obtained for each compound.
3.1 General procedure 10 (GP10): Rate profiling of the enantioselective oxygenation

A solution of the chiral manganese porphyrin catalyst $\mathbf{1}\left(3.0 \mathrm{~mm}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added to a suspension of $\mathbf{2 a}$, ${ }^{n}$ dodecane ($13.6 \mu \mathrm{~L}$, $60.0 \mu \mathrm{~mol}, 1.0$ equiv) and PhIO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (final concentration of internal standard $c=10 \mathrm{~mm}$) at $0{ }^{\circ} \mathrm{C}$ whereupon the reaction was initiated. At the indicated times, aliquots of $100 \mu \mathrm{~L}$ were transferred to a GLC vial containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ and a 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($500 \mu \mathrm{~L}$) affording a biphasic mixture. After vigorous mixing for approximately 30 sec the organic layer was separated via syringe filtration and submitted to GLC analysis.

3.1.1 Conditions: 1 ($2 \mathrm{~mol} \%$), $2 \boldsymbol{a}$ (1.0 equiv), $\mathrm{PhIO}(2.0$ equiv)

$t[\mathrm{~min}]$		0	15	30	45	60	90	120	180	240
$\mathbf{2 a}$	$[\%]$	87	61	58	57	57	56	56	54	53
	$[\mathrm{mM}]$	8.65	6.08	5.82	5.74	5.70	5.61	5.59	5.44	5.33
3a	$[\%]$	6	24	25	25	26	26	27	27	27
	$[\mathrm{mM}]$	0.60	2.40	2.54	2.55	2.59	2.63	2.71	2.68	2.74
$\mathbf{4 a}$	$[\%]$	1	7	8	8	9	9	10	11	12
	$[\mathrm{mM}]$	0.11	0.67	0.80	0.83	0.86	0.94	0.98	1.06	1.16
balance [\%]		95	94	91	92	91	91	92	93	92

3.1.2 Conditions: 1 ($2 \mathrm{~mol} \%$), $2 \boldsymbol{a}$ (1.0 equiv), PhIO (2.0 equiv)

$t[\mathrm{~h}]$		0	1	2	4	8	24	28	32	48
2a	[\%]	87	56	55	51	47	30	29	29	28
	[mM]	8.66	5.55	5.45	5.13	4.72	2.96	2.94	2.87	2.80
3a	[\%]	6	25	26	27	28	22	19	16	11
	[mM]	0.59	2.49	2.60	2.69	2.81	2.16	1.86	1.61	1.07
4a	[\%]	1	8	9	11	15	36	39	42	48
	[mM]	0.09	0.79	0.92	1.13	1.47	3.60	3.93	4.23	4.83
balance [\%]		95	93	88	90	89	90	87	87	87

3.1.3 Conditions: 1 (1 mol\%), 2a (1.0 equiv), PhIO (2.0 equiv) (Figure 3, dashed lines)

t [min]		0	5	10	15	30	60	120	180	240
2a	[\%]	96	85	80	78	78	77	76	75	74
	$[\mathrm{mM}]$	9.56	8.50	7.96	7.77	7.76	7.65	7.57	7.53	7.41
3a	$[\%]$	2	10	14	14	15	15	16	16	17
	$[\mathrm{mM}]$	0.22	1.01	1.40	1.42	1.47	1.53	1.60	1.61	1.67
$\mathbf{4 a}$	$[\%]$	0	2	3	3	3	3	4	4	4
	$[\mathrm{mM}]$	0.04	0.15	0.28	0.30	0.32	0.34	0.35	0.39	0.42
balance [\%]		98	97	97	96	95	95	95	95	95

3.1.4 Conditions: $\mathbf{1}$ (3 mol\%), $2 \boldsymbol{a}$ (1.0 equiv), PhIO (2.0 equiv)

$t[\mathrm{~min}]$		0	5	10	15	30	60	120	180	240
$\mathbf{2 a}$	$[\%]$	90	75	65	58	47	45	42	41	39
	$[\mathrm{mM}]$	8.98	7.54	6.53	5.76	4.69	4.50	4.23	4.07	3.87
$3 \mathbf{a}$	$[\%]$	5	17	23	26	31	31	31	32	32
	$[\mathrm{mM}]$	0.46	1.67	2.33	2.63	3.09	3.07	3.14	3.17	3.16
$\mathbf{4 a}$	$[\%]$	3	5	7	10	17	18	20	21	22
	$[\mathrm{mM}]$	0.30	0.48	0.70	0.98	1.69	1.80	1.96	2.11	2.21
balance [\%]		97	97	96	94	95	94	93	94	92

3.1.5 Conditions: 1 ($5 \mathrm{~mol} \%$), $2 \boldsymbol{a}$ (1.0 equiv), $\mathrm{PhIO}(2.0$ equiv)

$t[\mathrm{~min}]$		0	5	10	15	30	60	120	180	240
$\mathbf{2 a}$	$[\%]$	90	76	66	54	38	23	18	19	18
	$[\mathrm{mM}]$	8.97	7.57	6.55	5.45	3.78	2.26	1.84	1.86	1.81
$\mathbf{3 a}$	$[\%]$	4	14	21	28	32	30	27	27	26
	$[\mathrm{mM}]$	0.42	1.45	2.12	2.76	3.24	2.97	2.67	2.69	2.64
	$[\%]$	2	5	7	12	23	38	46	46	47
	$[\mathrm{mM}]$	0.18	0.46	0.67	1.16	2.26	3.82	4.56	4.63	4.69
balance [\%]		98	97	97	96	95	95	95	95	95

3.1.6 Conditions: $\mathbf{1}$ (1 mol\%), $\mathbf{2 a}$ (3.0 equiv), PhIO (1.0 equiv) (Figure 3, solid lines)

t [min]		0	5	10	15	30	60	120	180	240
$\mathbf{2 a}$	$[\%]$	298	292	282	276	261	244	233	238	235
	$[\mathrm{mM}]$	29.8	29.2	28.2	27.6	26.1	24.4	23.3	23.8	23.5
3a	$[\%]$	3	7	14	19	32	45	49	48	48
	$[\mathrm{mM}]$	0.27	0.72	1.40	1.94	3.24	4.49	4.92	4.78	4.83
$\mathbf{4 a}$	$[\%]$	1	1	2	2	5	8	10	10	10
	$[\mathrm{mM}]$	0.07	0.09	0.16	0.22	0.48	0.77	1.01	0.96	0.96
balance [\%]		302	302	300	298	298	298	297	292	295

3.1. \quad Conditions: 1 ($1 \mathrm{~mol} \%$), $2 a(2.0$ equiv), $\mathrm{PhIO}(1.0$ equiv)

t [min]		0	5	10	15	30	60	120	180	240
2a	[\%]	201	198	193	190	176	158	144	143	143
	[mM]	20.09	19.80	19.34	19.03	17.57	15.77	14.37	14.27	14.25
3a	[\%]	2	5	8	11	22	33	41	41	42
	[mM]	0.19	0.46	0.75	1.09	2.16	3.30	4.08	4.14	4.22
4a	[\%]	0	0	1	1	3	6	11	12	12
	[mM]	0.00	0.00	0.09	0.15	0.32	0.65	1.07	1.16	1.17
balance [\%]		203	203	202	203	200	197	195	196	196

3.1.8 Conditions: 1 (1 mol\%), 2a (3.0 equiv), PhIO (0.5 equiv $+2 \times 0.25$ equiv after $t=60,120 \mathrm{~min})$

t [min]		0	5	10	15	30	60	120	180	240
2a	[\%]	286	283	283	282	274	266	242	231	227
	[mM]	28.6	28.3	28.3	28.2	27.4	26.6	24.2	23.1	22.7
3a	[\%]	0	2	3	5	9	16	32	41	43
	[mM]	0.00	0.15	0.33	0.53	0.95	1.63	3.25	4.07	4.29
4a	[\%]	0	0	0	0	2	3	7	11	13
	[mM]	0.00	0.00	0.00	0.00	0.16	0.25	0.70	1.12	1.27
balance [\%]		286	284	287	287	285	285	282	283	282

3.1.9 Conditions: 1 ($0.5 \mathrm{~mol} \%$), $2 \boldsymbol{2 a}$ (3.0 equiv), PhIO (0.5 equiv $+2 \times 0.25$ equiv after $t=45,90 \mathrm{~min}$)

$t[\mathrm{~min}]$		5	10	15	30	45	60	120	180	240
$\mathbf{2 a}$	$[\%]$	311	312	303	297	291	285	267	264	263
	$[\mathrm{mM}]$	31.1	31.2	30.3	29.7	29.1	28.5	26.7	26.4	26.3
$\mathbf{3 a}$	$[\%]$	2	4	5	12	16	0	35	36	37
	$[\mathrm{mM}]$	0.15	0.35	0.54	1.20	1.64	0.04	3.49	3.65	3.69
$\mathbf{4 a}$	$[\%]$	0	0	1	3	3	4	8	8	9
	$[\mathrm{mM}]$	0.00	0.00	0.11	0.25	0.30	0.41	0.76	0.84	0.87
balance [\%]		312	316	309	312	310	289	310	309	308

3.1.10 Conditions: $\mathbf{1}(1.5 \mathrm{~mol} \%)$, $2 \boldsymbol{a}$ (3.0 equiv), PhIO (0.5 equiv $+2 \times 0.25$ equiv after $t=60,90 \mathrm{~min}$)

$t[\mathrm{~min}]$		5	10	15	30	45	60	120	180	240
2a	$[\%]$	306	302	300	286	279	276	242	226	224
	$[\mathrm{mM}]$	30.6	30.2	30.0	28.6	27.9	27.6	24.2	22.6	22.4
3 a	$[\%]$	2	5	7	14	20	23	47	57	56
	$[\mathrm{mM}]$	0.22	0.47	0.70	1.41	1.99	2.30	4.75	5.66	5.62
4 a	$[\%]$	2	2	2	3	4	5	13	17	17
	$[\mathrm{mM}]$	0.21	0.19	0.20	0.29	0.39	0.47	1.29	1.70	1.71
balance [\%]		310	309	309	303	303	304	302	299	297

3.2 Kinetic profiling using the "same excess" protocol

A: 1 (1 mol\%), 2a (1.0 equiv), PhIO (2.0 equiv) (Figure 5, solid line)

t [min]		3	6	9	12	15	30	45	60	63	66	69	72	75	90	105	120
2a	[\%]	93	91	88	85	82	72	71	70	70	70	70	70	70	70	69	68
	[mM]	9.29	9.12	8.83	8.52	8.23	7.16	7.12	7.03	7.04	7.03	7.05	7.04	6.97	6.97	6.95	6.82
3a	[\%]	1	3	5	7	9	16	16	17	17	17	17	18	18	18	18	18
	[mM]	0.13	0.29	0.50	0.70	0.92	1.57	1.61	1.67	1.72	1.68	1.71	1.75	1.76	1.79	1.79	1.81
4a	[\%]	0	0	1	2	2	5	5	5	6	6	6	6	6	6	6	6
	[mM]	0.00	0.00	0.10	0.16	0.22	0.45	0.52	0.55	0.55	0.57	0.59	0.58	0.61	0.59	0.63	0.63
balance [\%]		94	94	94	94	94	92	92	93	93	93	93	94	93	94	94	93

B: $\mathbf{1}$ ($1 \mathbf{~ m o l \%) , ~ 2 a ~ (~} 0.70$ equiv), 3a (0.17 equiv), $\mathbf{4 a}$ (0.07 equiv), PhIO (1.69 equiv)* (Figure 5 , dashed line)

t [min]		0	3	6	9	12	15	30	45	60
$\mathbf{2 a}$	$[\%]$	71	70	69	67	66	64	57	57	56
	$[\mathrm{mM}]$	7.10	7.00	6.89	6.72	6.58	6.36	5.72	5.67	5.64
$\mathbf{3 a}$	$[\%]$	15	16	17	19	20	21	24	25	25
	$[\mathrm{mM}]$	1.51	1.61	1.70	1.85	1.96	2.12	2.43	2.46	2.51
$\mathbf{4} \mathbf{4} \mathbf{a}$	$[\%]$	6	8	9	10	10	11	13	13	13
	$[\mathrm{mM}]$	0.63	0.80	0.86	0.96	0.97	1.07	1.27	1.32	1.34
balance [\%]		92	94	94	95	95	95	94	94	95

*In this specific case, the reaction was initiated by addition of the oxidant (PhIO) to a pre-cooled reaction mixture of all reactants $\mathbf{2 a}, \mathbf{3 a}, \mathbf{4 a}$ and the catalyst $\mathbf{1}$

C: $\mathbf{1}(1 \mathrm{~mol} \%), \mathbf{2 a}(1.0$ equiv), PhIO (2×2.0 equiv after $t=0,60 \mathrm{~min}$)

t [min]		3	6	9	12	15	30	45	60	63	66	69	72	75	90	105	120
2a	[\%]	96	93	90	86	84	79	79	78	78	78	78	78	78	77	78	77
	[mM]	9.56	9.25	9.00	8.64	8.38	7.86	7.88	7.84	7.84	7.83	7.79	7.77	7.82	7.75	7.75	7.70
3a	[\%]	3	4	7	9	11	14	14	15	16	15	15	15	16	16	16	16
	[mM]	0.25	0.44	0.69	0.93	1.13	1.39	1.44	1.50	1.56	1.52	1.54	1.53	1.58	1.57	1.62	1.64
4a	[\%]	0	1	2	2	3	4	4	5	5	5	5	5	5	5	5	5
	[mM]	0.00	0.10	0.16	0.22	0.30	0.40	0.44	0.46	0.47	0.49	0.49	0.51	0.50	0.50	0.53	0.53
balance [\%]		98	98	98	98	98	97	98	98	99	98	98	98	99	98	99	99

D: $\mathbf{1}$ ($2 \times 1 \mathrm{~mol} \%$ after $t=0,60 \mathrm{~min}$), $\mathbf{2 a}$ (1.0 equiv), $\mathrm{PhIO}(2.0$ equiv)

t [min]		3	6	9	12	15	30	45	60	63	66	69	72	75	90	105	120
2a	[\%]	90	89	86	83	80	76	75	75	69	64	60	59	58	58	57	56
	[mM]	8.95	8.91	8.62	8.28	8.01	7.64	7.47	7.46	6.90	6.36	6.03	5.89	5.83	5.78	5.71	5.59
3a	[\%]	2	3	6	8	10	13	13	13	17	21	22	23	23	23	24	24
	[mM]	0.16	0.31	0.59	0.80	1.00	1.28	1.26	1.32	1.70	2.05	2.21	2.27	2.29	2.31	2.41	2.43
4a	[\%]	0	0	1	2	3	3	4	4	6	8	9	10	10	10	12	12
	[mM]	0.00	0.00	0.07	0.16	0.25	0.34	0.39	0.40	0.60	0.76	0.90	0.96	1.02	1.05	1.18	1.15
balance [\%]		91	92	93	92	93	93	91	92	92	92	91	91	91	91	93	92

$\mathrm{E}: \mathbf{1}(1 \mathrm{~mol} \%), \mathbf{2 a}(1.0$ equiv), $\mathrm{PhIO}(2 \times 1.0$ equiv after $t=0,60 \mathrm{~min})$

t [min]		3	6	9	12	15	30	45	60	63	66	69	72	75	90	105	120
$\mathbf{2 a}$	$[\%]$	99	99	98	97	96	86	79	74	74	73	74	74	73	72	72	71
	$[\mathrm{mM}]$	9.92	9.94	9.84	9.68	9.57	8.61	7.94	7.42	7.38	7.32	7.36	7.39	7.27	7.23	7.22	7.14
$\mathbf{3 a}$	$[\%]$	0	1	2	3	4	10	15	18	18	19	18	18	19	19	19	20
	$[\mathrm{mM}]$	0.00	0.10	0.17	0.30	0.37	0.96	1.46	1.79	1.82	1.85	1.84	1.82	1.87	1.89	1.94	1.99
$\mathbf{4} \mathbf{4 a}$	$[\%]$	0	0	0	0	0	2	4	6	6	6	7	7	7	7	7	7
	$[\mathrm{mM}]$	0.00	0.00	0.00	0.00	0.00	0.20	0.39	0.55	0.61	0.61	0.66	0.72	0.65	0.69	0.72	0.74
balance[\%]		99	100	100	100	99	98	98	98	98	98	99	99	98	98	99	99

3.3 Kinetic resolution of 3-(hydroxy(p-tolyl)methyl)-2-quinolone (rac-3a)

A solution of the chiral manganese porphyrin catalyst $1\left(3.0 \mathrm{mM}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mu \mathrm{~L}, 0.60 \mu \mathrm{~mol}, 1.0 \mathrm{~mol} \%$) was added to a suspension of rac-3a ($15.9 \mathrm{mg}, 60 \mu \mathrm{~mol}, 1.0$ equiv), ${ }^{n}$ dodecane ($13.6 \mu \mathrm{~L}, 60.0 \mu \mathrm{~mol}, 1.0$ equiv) and PhIO ($13.2 \mathrm{mg}, 60.0 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.8 \mathrm{~mL})$ whereupon the reaction was initiated. At the indicated times, aliquots of $100 \mu \mathrm{~L}$ were transferred to a GLC vial containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ and a 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($500 \mu \mathrm{~L}$) affording a biphasic mixture. After vigorous mixing for approximately 30 sec the organic layer was separated via syringe filtration and submitted to GLC and HPLC analysis.

3.3.1 Numerical data (Figure 4)

$t[\mathrm{~min}]$		0	5	10	15	20	25	30	35	40	45
3 a	$[\%]$	44	43	43	41	39	37	35	33	32	32
	$[\mathrm{mM}]$	4.38	4.31	4.30	4.12	3.92	3.66	3.50	3.31	3.22	3.18
	$\%$ ee	3	6	11	20	28	41	51	64	66	71
ent-											
	$[\%]$	41	38	35	28	22	16	11	7	7	6
$4 \mathrm{ma}]$	4.09	3.81	3.47	2.77	2.21	1.55	1.12	0.73	0.65	0.55	
	$[\%]$	8	12	18	26	34	43	50	56	58	59
	$[\mathrm{mM}]$	0.75	1.23	1.79	2.60	3.44	4.33	4.96	5.57	5.77	5.89

3.3.2 Determination of the selectivity (s factor)

The selectivity factor s is defined by the ratio of the rate constant of the favoured (ent-3a $=(R)-3 a)$ over the unfavoured enantiomer ($\mathbf{3 a}=(S)-\mathbf{3 a}$):

$$
\begin{equation*}
s=\frac{\mathrm{k}_{R}}{\mathrm{k}_{S}} \tag{1}
\end{equation*}
$$

For a reaction that follows first order kinetics the following kinetic equations can be derived
(2) $\quad \frac{d[(R)-\mathbf{3 a]}}{d t}=-k_{R} \times[(R)-\mathbf{3 a}] \times f(x) \quad$ and $\quad \frac{d[(S)-\mathbf{3 a}]}{d t}=-k_{S} \times[(S)-\mathbf{3} \boldsymbol{a}] \times f(x)$
whereas $f(x)$ is the function of all other concentrations independent of (R)-3a and (S)-3a. Resolving equation (2) into k_{R} and k_{s} respectively and inserting the term of k_{R} and k_{s} into equation (1) results in the following expression:

$$
\begin{equation*}
S=\frac{\frac{d[(R)-\mathbf{3 a}]}{[(R)-\mathbf{3 a}]} \times \frac{1}{d t \times f(X)}}{\frac{d[(S)-\mathbf{3 a}]}{[(S)-\mathbf{3 a}]} \times \frac{1}{d t \times f(X)}}=\frac{\frac{d[(R)-\mathbf{3 a}]}{[(R)-\mathbf{3 a}]}}{\frac{d[(S)-\mathbf{3 a}]}{[(S)-\mathbf{3 a}]}} \tag{3}
\end{equation*}
$$

After reducing and integration equation (4) is obtained

$$
\begin{equation*}
\ln \left(\frac{[(R)-\mathbf{3 a}]_{t}}{[(R)-\mathbf{3 a}]_{0}}\right)=S \times \ln \left(\frac{[(S)-\mathbf{3 a}]_{t}}{[(S)-\mathbf{3}]_{0}}\right) \tag{4}
\end{equation*}
$$

Plotting $\ln \frac{[(R)-\mathbf{3 a}]_{t}}{[(R)-\mathbf{3 a}]_{0}}$ against $\ln \frac{[(S)-\mathbf{3 a}]_{t}}{[(S)-\mathbf{3 a}]_{0}}$ gives a linear function where the value of the s factor is equal to the slope of the line of best fit.

III. Analytical Data

$1 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of new compounds
1.1 2-Chloroquinoline-3-carbaldehydes S2
1.1.1 2-Chloro-6,7-dimethylquinoline-3-carbaldehyde (S2h)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1.1.2 2-Chloro-7-ethylquinoline-3-carbaldehyde (S2m)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.2 2-Quinolone-3-carbaldehydes S3

1.2.1 6,7-Dimethyl-2-quinolone-3-carbaldehyde (S3h)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.2.2 6-Methoxy-2-quinolone-3-carbaldehyde (S3i)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz , DMSO- d_{6})

${ }^{19}$ F NMR (471 MHz, DMSO- d_{6})

1.2.4 7-Ethyl-2-quinolone-3-carbaldehyde (S3m)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.3 3-(Hydroxy(aryl)methyl)-2-quinolones 3

1.3.1 3 -(Hydroxy(m-tolyl)methyl)-2-quinolone (3b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.2 3-(Hydroxy(o-tolyl)methyl)-2-quinolone (3c)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.3 3-((3,4-Dimethylphenyl)(hydroxy)methyl)-2-quinolone (3d)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.4 3-(Hydroxy(phenyl)methyl)-2-quinolone (3e)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.5 3-((4-Fluorophenyl)(hydroxy)methyl)-2-quinolone (3g)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

$50-100-50 \quad-100 \quad-150 \quad-200$
1.3.6 3-((4-Chlorophenyl)(hydroxy)methyl)-2-quinolone (3h)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.7 3-(Hydroxy(3-(trifluoromethyl)phenyl)methyl)-2-quinolone (3i)

${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD- d_{4})

${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD-d ${ }_{4}$)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

1.3.8 3-(Hydroxy(p-tolyl)methyl)-6-methyl-2-quinolinone (3j)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.9 3-(Hydroxy(p-tolyl)methyl)-7-methyl-2-quinolinone (3k)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.10 3-(Hydroxy(4-ethylphenyl)methyl)-2-quinolone (31)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.3.11 3-(Hydroxy(4-isopropylphenyl)methyl)-2-quinolone (3m)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.4 3-Benzyl-2-quinolones 2

1.4.1 3-(3-Methylbenzyl)-2-quinolone (2b)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.4.2 3-(2-Methylbenzyl)-quinolone (2c)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6})

1.4.3 3-(3,4-Dimethylbenzyl)-2-quinolone (2d)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.4.4 3-(4-Fluorobenzyl)-2-quinolone (2g)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

${ }^{19}$ F NMR (471 MHz , DMSO- d_{6})

1.4.5 3-(3-(Trifluoromethyl)benzyl)-2-quinolone (2i)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

${ }^{19}$ F NMR (376 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.4.7 7-Methyl-3-(4-methylbenzyl)-2-quinolone (2k)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.4.8 3-(4-Ethylbenzyl)-2-quinolone (2l)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$)

1.4.9 3-(4-Isopropylbenzyl)-2-quinolone (2m)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.4.10 3-(4-(1-Hydroxyethyl)benzyl)-2-quinolone (2n)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.4.11 3-(4-(2-Hydroxypropan-2-yl)benzyl)-2-quinolone (20)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR (126 MHz, MeOD- d_{4})

$1.5 \quad$ 3-(1-Hydroxyalkyl)-2-quinolones 7
1.5.1 3-(1-hydroxypropyl)-2-quinolinone (7b)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.2 3-(1-Hydroxybutyl)-2-quinolinone (7c)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.3 3-(1-Hydroxy-3-methylbutyl)-2-quinolone (7d)

${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD- d_{4})

${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD-d ${ }_{4}$)

1.5.4 3-(1-Hydroxy-2-methylpropyl)-2-quinolone (7e)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.5 3-(1-Hydroxyethyl)-6-methyl-2-quinolone (7f)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.6

 3-(1-Hydroxyethyl)-7-methyl-2-quinolone (7g)${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.7 3-(1-Hydroxyethyl)-6,7-dimethyl-2-quinolone (7h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.8 3-(1-Hydroxyethyl)-6-methoxy-2-quinolone (7i)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13}$ C NMR (126 MHz, MeOD- d_{4})

1.5.9 3-(1-Hydroxyethyl)-7-methoxy-2-quinolone (7j)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.10 7-Chloro-3-(1-hydroxyethyl)-2-quinolone (7k)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.11 7-Fluoro-3-(1-hydroxyethyl)-2-quinolone (7I)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

1.5.12 3-(1-Hydroxyethyl)-7-ethyl-2-quinolone (7m)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.5.13 3-(1-Hydroxy-3-phenylpropyl)-2-quinolone (70)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

	160	160	120	100	80	60	40	20	0

1.6 3-Alkyl-2-quinolones 6

1.6.1 3-Isobutyl-2-quinolone (6e)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.6.2 3-Ethyl-6-methyl-2-quinolone (6f)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.6.3 3-Ethyl-7-methyl-2-quinolone (6g)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

1.6.4 3-Ethyl-6,7-dimethyl-2-quinolone (6h)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.6.5 3-Ethyl-6-methoxy-2-quinolone (6i)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.6.7 3-Ethyl-7-chloro-2-quinolone (6k)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

0	-50	-100	-150	-200

1.6.9 3-Ethyl-7-ethyl-2-quinolone (6m)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.6.11 3-(3-Phenylpropyl)-2-quinolone (60)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.6.12 3-(3-Hydroxy-3-phenylpropyl)-2-quinolone (6p)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

1.7 Other compounds
1.7.1 3-(4-Methylbenzoyl)-2-quinolone (4a)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6})

1.7.2 (S)-3-((4-Chlorophenyl)(hydroxy)methyl)-N-methyl-2-quinolone (5)
${ }^{1} \mathrm{H}$ NMR (500 MHz , MeoD-d ${ }^{4}$)

${ }^{13}$ C NMR (126 MHz , MeoD- d^{\prime})

1.7.3 3-Ethyl-N-methy-2-Iquinolone (9)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1.7.4 3-(1-Hydroxyethyl)-N-methyl-2-quinolone (10)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$)

2 HPLC Traces

2.1 3-(Hydroxy(aryl)methyl)-2-quinolones 3

2.1.1 (S)-3-(Hydroxy(p-tolyl)methyl)-2-quinolinone (3a)

| No. | Ret.Time | Peak Name | Height
 min | | Area | | Rel.Area |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | Amount | Type |
| :---: |
| |
| 1 |

2.1.2 (S)-3-(Hydroxy(m-tolyl)methyl)-2-quinolone (3b)

No.	Ret.Time	Peak Name	Height min		Area mAU	RAU*min	Rel.Area $\%$
1	10,66	n.a.	571,678	188,561	50,06	n.a.	BMB
2	12,72	n.a.	466,483	188,112	49,94	n.a.	BMB
Total:				1038,162	376,674	100,00	0,000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	10,64	n.a.	415,410	137,053	99,26	n.a.	BMB *
2	12,68	n.a.	2,460	1,015	0,74	n.a.	BMB *
Total:			417,870	138,068	100,00	0,000	

2.1.3 (S)-3-(Hydroxy(o-tolyl)methyl)-2-quinolone (3c)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	10,90	n.a.	556,140	187,918	50,07	n.a.	BMB
2	15,97	n.a.	362,528	187,380	49,93	n.a.	BMB
Total:				918,668	375,299	100,00	0,000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	10,88	n.a.	490,946	163,762	98,44	n.a.	BMB* *
2	16,00	n.a.	5,088	2,589	1,56	n.a.	BMB *
Total:			496,033	166,351	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	10,07	n.a.	255,734	181,944	50,16	n.a.	BMB *
2	16,12	n.a.	161,104	180,804	49,84	n.a.	BMB *
Total:				416,838	362,748	100,00	0,000

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	9,96	n.a.		9,199	6,753	3,97	n.a.
BMB *							
2	15,87	n.a.	145,311	163,149	96,03	n.a.	BMB *
Total:				154,510	169,902	100,00	0,000

2.1.5 (S)-3-Hydroxy(phenyl)methyl)-2-quinolone (3e)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	12,04	n.a.	242,225	186,081	50,26	n.a.	BMB
2	24,88	n.a.	102,508	184,159	49,74	n.a.	BMB
Total:			344,733	370,240	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11,67	n.a.	3,345	2,503	2,47	n.a.	BMB*
2	23,14	n.a.	62,536	98,798	97,53	n.a.	BMB*
Total:			65,881	101,301	100,00	0,000	

2.1.6 (S)-3-(Hydroxy(4-methoxyphenyl)methyl)-2-quinolone (3f)

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11,17	n.a.		207,543	203,642	49,06	n.a.	BM *
2	13,98	n.a.		196,114	211,449	50,94	n.a.	MB*
Total:				403,657	415,091	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	10,99	n.a.	3,456	3,237	3,41	n.a.	BMB *
2	13,73	n.a.		91,379	91,555	96,59	n.a.
BMB *							
Total:				94,835	94,792	100,00	0,000

2.1.7 (S)-3-((4-Fluorophenyl)(hydroxy)methyl)-2-quinolone (3g)

No.	Ret.Time min		Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \text { mAU*min } \end{gathered}$	$\begin{gathered} \hline \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	7,36	n.a.		281,795	150,704	50,17	n.a.	BMB*
2	10,61	n.a.		184,463	149,698	49,83	n.a.	BMB*
Total:				466,258	300,402	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type	
1	16,12	n.a.	219,415	258,494	50,16	n.a.	BMB^{\star}	
2	24,83	n.a.	160,137	256,823	49,84	n.a.	BMB *	
Total:				379,552	515,317	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* $\boldsymbol{m i n}$	Rel.Area $\%$	Amount	Type
1	16,04	n.a.	2,092	2,315	0,94	n.a.	BMB *
2	24,23	n.a.	161,244	242,921	99,06	n.a.	BMB *
Total:				163,336	245,235	100,00	0,000

2.1.9 (S)-3-Hydroxy(3-(trifluoromethyl)phenyl)methyl)-2-quinolone (3i)

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	6,78	n.a.		896,011	174,787	50,14	n.a.	BMB
2	8,69	n.a.		653,165	173,812	49,86	n.a.	BMB
Total:				1549,176	348,599	100,00	0,000	

2.1.10 (S)-3-(Hydroxy(p-tolyl)methyl)-6-methyl-2-quinolone (3j)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*	Rel.Area	Amount	Type
1	11,26	n.a.	791,721	291,724	50,02	n.a.	BMB
2	14,41	n.a.		607,443	291,444	49,98	n.a.
BMB							
Total:				1399,165	583,168	100,00	0,000

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11,23	n.a.	4,946	1,683	1,22	n.a.	BMB*
2	14,33	n.a.	292,398	135,729	98,78	n.a.	BMB
Total:			297,344	137,412	100,00	0,000	

2.1.11 (S)-3-(Hydroxy(p-tolyl)methyl)-7-methyl-2-quinolone (3k)

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	12,83	n.a.		688,174	283,353	49,91	n.a.	BMB
2	15,08	n.a.		582,601	284,385	50,09	n.a.	BMB
Total:				1270,775	567,738	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	12,80	n.a.	7,930	3,168	1,88	n.a.	BMB *
2	15,03	n.a.	336,195	164,941	98,12	n.a.	BMB *
Total:			344,125	168,109	100,00	0,000	

2.1.12 (S)-3-((4-Ethylphenyl)(hydroxy)methyl)-2-quinolone (3I)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	7,07	n.a.	499,376	277,383	50,16	n.a.	BMB
2	10,08	n.a.	358,732	275,664	49,84	n.a.	BMB
Total:			858,108	553,047	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	7,17	n.a.	7,315	3,891	3,71	n.a.	BMB *
2	10,19	n.a.	133,069	100,837	96,29	n.a.	BMB *
Total:			140,384	104,727	100,00	0,000	

2.1.13 (S)-3-(Hydroxy(4-isopropylphenyl)methyl)-2-quinolone (3m)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* $\boldsymbol{m i n}$	Rel.Area $\%$	Amount	Type
1	7,57	n.a.	640,313	151,030	49,77	n.a.	BMB *
2	8,85	n.a.	543,656	152,442	50,23	n.a.	BMB
Total:				1183,969	303,471	100,00	0,000

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	7,54	n.a.	28,286	7,275	4,66	n.a.	BMB *
2	8,89	n.a.		482,670	148,834	95,34	n.a.
BMB							
Total:				510,955	156,109	100,00	0,000

2.2 3-(1-Hydroxyalkyl)-2-quinolones 7

2.2.1 (S)-3-(1-Hydroxyethyl)-2-quinolone (7a)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* $\boldsymbol{m i n}$	Rel.Area $\%$	Amount	Type
1	17,93	n.a.	372,715	242,437	50,05	n.a.	BMB
2	21,20	n.a.		340,259	241,980	49,95	n.a.
BMB							
Total:				712,973	484,417	100,00	0,000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	18,35	n.a.	515,158	315,793	97,40	n.a.	BMB *
2	21,64	n.a.	13,153	8,432	2,60	n.a.	BMB *
Total:			528,311	324,225	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	19,76	n.a.	597,167	377,030	49,92	n.a.	BMB
2	23,13	n.a.	525,919	378,278	50,08	n.a.	BMB
Total:			1123,086	755,309	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	20,60	n.a.	366,734	234,148	93,99	n.a.	BMB
2	23,94	n.a.	21,508	14,973	6,01	n.a.	BMB
Total:				388,242	249,121	100,00	0,000

2.2.3 (S)-3-(1-Hydroxybutyl)-2-quinolone (7c)

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	$\boldsymbol{\operatorname { m i n }}$		mAU	mAU*min	$\%$		
1	19,68	n.a.	321,066	184,427	49,55	n.a.	BMB
2	23,80	n.a.	264,624	187,814	50,45	n.a.	BMB
Total:			585,690	372,241	100,00	0,000	

No.	Ret.Time	Peak Name	Height min		Area	Rel.Area	Amount
mAU*min	Type						
	maU						
1	20,45	n.a.	720,344	423,776	92,95	n.a.	BMB
2	24,50	n.a.	46,896	32,155	7,05	n.a.	BMB
Total:			767,240	455,931	100,00	0,000	

2.2.4 (S)-3-(1-Hydroxy-3-methylbutyl)-2-quinolone (7d)

| No. | Ret.Time | Peak Name | Height
 min | Area
 mAU | RAU*min | Rel.Area
 $\%$ | Amount |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Type

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	18,93	n.a.	539,017	290,047	94,14	n.a.	BMB *
2	27,24	n.a.	24,211	18,044	5,86	n.a.	BMB
Total:			563,228	308,090	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	8,52	n.a.	287,056	170,860	49,71	n.a.	BMB
2	16,11	n.a.	161,534	172,823	50,29	n.a	BMB
Total:			448,590	343,682	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	8,02	n.a.	38,197	19,614	10,13	n.a.	BMB *
2	14,88	n.a.	186,434	173,963	89,87	n.a.	BMB *
Total:			224,632	193,577	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	\%		
1	8,97	n.a.	226,367	191,973	49,91	n.a.	BMB *
2	15,17	n.a.	213,332	192,649	50,09	n.a.	BMB *
Total:			439,699	384,622	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	8,94	n.a.	4,666	3,782	2,84	n.a.	BMB *
2	14,62	n.a.	152,950	129,290	97,16	n.a.	BMB *
Total:			157,617	133,071	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU} *$ min	$\begin{aligned} & \hline \text { Rel.Area } \\ & \% \end{aligned}$	Amount	Type
1	19,70	n.a.	152,513	96,464	49,93	n.a.	BMB*
2	28,16	n.a.	109,978	96,716	50,07	n.a.	BMB*
Total:			262,491	193,180	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	20,07	n.a.	106,686	65,154	98,19	n.a.	BMB*
2	28,53	n.a.	1,591	1,204	1,81	n.a.	BMB*
Total:			108,277	66,358	100,00	0,000	

No.	$\begin{gathered} \hline \text { Ret.Time } \\ \text { min } \end{gathered}$	Peak Name	Height mAU	Area $\mathrm{mAU} *$ min	Rel.Area \%	Amount	Type
1	15,53	n.a.	408,723	253,897	49,86	n.a.	BM *
2	17,68	n.a.	366,888	255,320	50,14	n.a.	MB*
Total:			775,611	509,217	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	16,08	n.a.	290,604	164,940	97,48	n.a.	BMB *
2	18,36	n.a.	6,874	4,271	2,52	n.a.	BMB *
Total:			297,478	169,210	100,00	0,000	

2.2.9 (S)-3-(1-Hydroxyethyl)-6-methoxy-2-quinolone (7i)

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	$\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$	Amount	Type
1	10,25	n.a.		447,278	335,739	49,98	n.a.	BMB*
2	26,51	n.a.		194,292	336,046	50,02	n.a.	BMB*
Total:				641,569	671,785	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	9,96	n.a.	5,786	3,695	2,15	n.a.	BMB *
2	25,46	n.a.	104,405	168,071	97,85	n.a.	BMB *
Total:			110,191	171,766	100,00	0,000	

No.	$\begin{gathered} \text { Ret.Time } \\ \text { min } \\ \hline \end{gathered}$	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	23,55	n.a.	234,023	196,772	49,82	n.a.	BMB*
2	34,31	n.a.	176,278	198,198	50,18	n.a.	BMB*
Total:			410,300	394,969	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	6,13	n.a.	785,833	274,225	50,04	n.a.	BM
2	8,15	n.a.	441,303	273,782	49,96	n.a.	MB
Total:			1227,136	548,007	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	5,88	n.a.	2434,867	862,050	97,31	n.a.	BMB *
2	8,30	n.a.	44,005	23,854	2,69	n.a.	BMB *
Total:				2478,872	885,903	100,00	0,000

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU} *$ min	Rel.Area \%	Amount	Type
1	15,05	n.a.	620,168	280,853	50,24	n.a.	BMB*
2	20,35	n.a.	457,563	278,214	49,76	n.a.	BMB*
Total:			1077,731	559,067	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	15,61	n.a.	393,482	171,642	98,08	n.a.	BMB
2	20,96	n.a.	5,675	3,361	1,92	n.a.	BMB *
Total:			399,156	175,003	100,00	0,000	

2.2.13 (S)--3-(1-Hydroxyethyl)-7-ethyl-2-quinolone (7m)

| No. | Ret.Time | Peak Name | Height
 min | Area
 mAU | RAU*min | Rel.Area
 $\%$ | Amount |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Type

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	8,51	n.a.	322,323	169,779	98,90	n.a.	BMb^{\star}
2	10,99	n.a.	2,723	1,886	1,10	n.a.	bMB^{\star}
Total:			325,046	171,665	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11,99	n.a.	197,426	73,266	49,81	n.a.	BMB*
2	14,57	n.a.	158,600	73,829	50,19	n.a.	BMB*
Total:			356,026	147,095	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type	
1	11,91	n.a.	541,070	200,013	44,91	n.a.	BM *	
2	14,50	n.a.		483,753	245,352	55,09	n.a.	BMB *
Total:				1024,823	445,365	100,00	0,000	

2.2.15 (S)-3-(1-Hydroxy-3-phenylpropyl)-2-quinolone (70)

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	$\boldsymbol{\operatorname { m i n }}$		$\mathbf{m A U}$	mAU*min	$\%$		
1	8,41	n.a.	220,730	115,085	50,10	n.a.	BMB *
2	18,35	n.a.	91,911	114,609	49,90	n.a.	BMB *
Total:			312,641	229,694	100,00	0,000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	8,14	n.a.	35,300	18,228	7,90	n.a.	BMB^{*}
2	17,56	n.a.	183,012	212,586	92,10	n.a.	BMB^{\star}
Total:			218,312	230,814	100,00	0,000	

2.2.16 3-(3-Hydroxy-3-phenylpropyl)-2-quinolone (6p)

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	$\boldsymbol{\operatorname { m i n }}$		$\mathbf{m A U}$	mAU*min	$\%$		
1	12,32	n.a.	151,616	60,391	50,38	n.a.	BMB
2	14,50	n.a.	129,877	59,479	49,62	n.a.	BMB
Total:			281,492	119,870	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	12,42	n.a.	878,257	344,286	57,64	n.a.	BMB
2	14,62	n.a.		543,961	253,059	42,36	n.a.
BM *							
Total:				1422,218	597,345	100,00	0,000

| No. | Ret.Time | Peak Name | Height
 min | | Area
 $\mathbf{m A U}$ | Rel.Area
 $\mathbf{m A U} \mathbf{m i n}$ | Amount |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: | Type

No.	Ret.Time $\boldsymbol{m i n}$	Peak Name	Height $\mathbf{m A U}$	Area $\mathbf{m A U} \boldsymbol{}$ min	Rel.Area $\%$	Amount	Type
1	4,84	n.a.	390,327	68,160	49,60	n.a.	BMB
2	7,07	n.a.	223,080	69,261	50,40	n.a.	BMB
Total:				613,407	137,421	100,00	0,000

3 X-ray crystallographic data

3.1 Crystal structure report for compound 5 (CCDC 1967795)

Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, кCMOS), a TXS rotating anode with MoK α_{α} radiation ($\lambda=0.71073 \AA$) and a Helios optic using the APEX3 software package. ${ }^{[17]}$ Measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT. ${ }^{[18]}$ Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS. ${ }^{[18]}$ Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. The structures were solved using SHELXT with the aid of successive difference Fourier maps, and were refined against all data using SHELXL in conjunction with SHELXLE. ${ }^{[19-21]}$ Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of $0.98 \AA$ and $U_{i s o(H)}=1.5 \cdot U_{\text {eq(C) }}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $0.95 \AA$, respectively, other C-H distances of $1.00 \AA$, all with $\mathrm{U}_{\text {iso(H) }}=1.2 \cdot \mathrm{U}_{\text {eq(C) }}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}$ with the SHELXL weighting scheme. ${ }^{[19]}$ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. ${ }^{[22]}$ Images of the crystal structures were generated with PLATON. ${ }^{[23]}$ CCDC 1967795 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Figure S1 ORTEP style representation of compound 5 (CCDC 1967795) showing the atom numbering scheme with ellipsoids at the 50\% probability level.

Diffractometer operator C. Jandl scanspeed 1-10 s per frame dx 50 mm 2350 frames measured in 10 data sets phi-scans with delta_phi $=0.5$ omega-scans with delta_omega $=0.5$ shutterless mode

Crystal data

$\mathrm{C}_{17} \underline{\mathrm{H}}_{14} \mathrm{ClNO}_{2}$
$M_{r}=\underline{299.74}$
Orthorhombic, $\underline{P 2_{1}} \underline{2}_{1} \underline{2}_{1}$
Hall symbol: P 2ac 2ab
$a=\underline{5.3182(4)} \AA$
$b=\underline{10.9400(7)} \AA$
$c=\underline{23.9705(16) ~} \AA$
$V=\underline{1394.63(17)} \AA^{3}$
$Z=\underline{4}$
$F(000)=\underline{624}$
$D_{\mathrm{x}}=\underline{1.428 \mathrm{mg} \mathrm{m}^{-3}}$
Melting point: ? K
Mo Ka radiation, $\lambda=\underline{0.71073} \AA$
Cell parameters from $\underline{9204}$ reflections
$\theta=\underline{2.6}-\underline{26.9^{\circ}}$
$\mu=\underline{0.28} \mathrm{~mm}^{-1}$
$T=\underline{123} \mathrm{~K}$
Fragment, colourless
$\underline{0.44} \times \underline{0.25} \times \underline{0.11} \mathrm{~mm}$

Data collection

Bruker Photon CMOS
diffractometer
$\underline{2851}$ independent reflections

Radiation source: TXS rotating anode $\underline{2821}$ reflections with $\underline{1>2 \sigma(I)}$
Helios optic monochromator $\quad R_{\text {int }}=\underline{0.019}$
Detector resolution: $\underline{16}$ pixels mm^{-1}
$\theta_{\text {max }}=\underline{26.4^{\circ}}, \theta_{\text {min }}=2.5^{\circ}$
phi- and ω-rotation scans
$h=\underline{-6} \quad \underline{6}$
Absorption correction: multi-scan
SADABS 2016/2, Bruker
$T_{\text {min }}=\underline{0.720}, T_{\text {max }}=\underline{0.745}$
$k=\underline{-13} \quad \underline{13}$

37764 measured reflections

Refinement

Refinement on $\underline{F^{2}}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=\underline{0.027}$
$w R\left(F^{2}\right)=\underline{0.074}$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{W}=1 /\left[\Sigma^{2}\left(F \mathrm{O}^{2}\right)+(0.0421 P)^{2}+0.4183 P\right]$ WHERE $P=$ $\left(F O^{2}+2 F C^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=\underline{0.001}$
$S=\underline{1.08}$
$\underline{2851}$ reflections
195 parameters
$\underline{0}$ restraints
$\underline{0}$ constraints

Primary atom site location: iterative
Secondary atom site location: difference Fourier map
$\Delta \rho_{\max }=\underline{0.19} \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=\underline{-0.35}$ e \AA^{-3}
Extinction correction: none
Extinction coefficient: =
Absolute structure: Flack (1983), Parsons (2013) ${ }^{[24,25]}$

Absolute structure parameter: $\underline{0.022 \text { (6) }}$

IV. Abbreviations

-	degree
Ac	acetyl
aqueous	aqueous
br	broad
Bu	butyl
C	Celsius
calc.	calculated
δ	chemical shift
DMF	N, N-dimethylformamide
DMSO	dimethylsulfoxide
ee	enantiomeric excess
El	Electron lonization
ESI	Electrospray Ionization
et. al.	et alii (and others)
Et	ethyl
equiv	equivalents
FCC	flash column chromatography
FTIR	fourier transformed infrared spectroscopy
g	gram
h	hour(s)
HPLC	high performance liquid chromatography
HR	high resolution
Hz	hertz
i	iso
IR	infrared
J	coupling constant
L	liter
μ	micro
m	milli, meter, multiplet
m	meta
M	molar
Me	methyl
min	minute(s)
MS	mass spectrometry
NMR	Nuclear Magnetic Resonance
o	ortho
p	para
Ph	phenyl
ppm	parts per million
Pr	propyl
py	pyridine
q	quartet
quant.	quantitative
$R_{\text {f }}$	retardation factor
S	singlet
saturated	saturated
t	triplet
t	tert

TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
virt	virtual
UV	ultra-violet

V. References

[1] H. Saltzman, J. Sharefkin, Org. Synth. 1963, 60-60.
[2] G. Li, et al., Angew. Chem. Int. Ed. 2018, 57, 1251-1255.
[3] G. E. Crisenza, et al., Angew. Chem. Int. Ed. 2015, 54, 14866-14870.
[4] A. Żądło-Dobrowolska, et al., Chem. Commun. 2018, 54, 3387-3390.
[5] O. Meth-Cohn, et al., J. Chem. Soc. Perkin Trans. 1 1981, 1520-1530.
[6] I. Sato, et al., Synthesis 2004, 2004, 1419-1428.
[7] F. Curreli, et al., Bioorg. Med. Chem. 2011, 19, 77-90.
[8] O. Meth-Cohn, et al., J. Chem. Soc. Perkin Trans. 1 1981, 2509-2517.
[9] N. Igoe, et al., J. Med. Chem. 2017, 60, 6998-7011.
[10] T. Hoeke, et al., Chem. Commun. 2013, 49, 8009-8011.
[11] C. G. Lee, et al., Tetrahedron 2005, 61, 1493-1499.
[12] P. Fackler, et al., J. Am. Chem. Soc. 2010, 132, 15911-15913.
[13] O. Martin, et al., Tetrahedron 1995, 51, 7547-7554.
[14] A. V. Aksenov, et al., Org. Biomol. Chem. 2014, 12, 9786-9788.
[15] J. Hou, et al., J. Am. Chem. Soc. 2018, 140, 5257-5263.
[16] A. Charoenpol, et al., Org. Biomol. Chem. 2018, 16, 7050-7054.
[17] APEX suite of crystallographic software, APEX 3 Version 2016-9.0, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
[18] SAINT, Version 8.38A and SADABS, Version 2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2016/2017.
[19] G. M. Sheldrick, Acta Crystallogr. Sec. A 2015, 71, 3-8.
[20] G. M. Sheldrick, Acta Crystallogr. Sec. C 2015, 71, 3-8.
[21] C. B. Hübschle, et al., J. Appl. Cryst. 2011, 44, 1281-1284.
[22] R. F. Bryan, International Tables for Crystallography, Vol. C, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
[23] A. L. Spek, Acta Crystallogr. Sec. D 2009, 65, 148-155.
[24] H. D. Flack, Acta Crystallogr. Sec. A 1983, 39, 876-881.
[25] S. Parsons, et al., Acta Crystallogr. Sec. B 2013, 69, 249-259.

