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Abstract

Low-dimensional attractive manifolds with flows prescribing the evolution of state variables are commonly used to capture
the lawful behavior of behavioral and cognitive variables. Neural network dynamics underlie many of the mechanistic
explanations of function and demonstrate the existence of such low-dimensional attractive manifolds. In this study, we
focus on exploring the network mechanisms due to asymmetric couplings giving rise to the emergence of arbitrary flows in
low dimensional spaces. Here we use a spiking neural network model, specifically the theta neuron model and simple
synaptic dynamics, to show how a qualitatively identical set of basic behaviors arises from different combinations of
couplings with broken symmetry, in fluctuations of both firing rate and spike timing. We further demonstrate how such
network dynamics can be combined to create more complex processes. These results suggest that 1) asymmetric coupling
is not always a variance to be averaged over, 2) different networks may produce the same dynamics by different dynamical
routes and 3) complex dynamics may be formed by simpler dynamics through a combination of couplings.
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Introduction

The mechanistic explanations employed in behavioral, cognitive

and neural sciences often take the form of network models and

their dynamics. Various signatures of nonlinear dynamical

phenomena are ubiquitous in these disciplines, e.g. phase

transitions, pattern formation and time-scale separation. Yet, in

the literature, one does not find a systematic account of the

relationship between the emergence of the dynamics of behavioral

and cognitive processes and the dynamics of the underlying neural

networks and their structural properties. We argue here that such

an account of the structure-function relationship begins by

understanding the different ways the structure of a neural network

leads to its collective dynamics. In particular, we focus on the

contributions of network connectivity as a means to control the

emergence of arbitrary low-dimensional dynamics.

The nonlinear nature of human perception and action

dynamics is well documented, with the early example of the

Necker cube. In general, hysteresis and autonomous switching in

cases of perceptual ambiguity have been modeled in terms of a

bistable system [1]. Elsewhere, critical fluctuations and entropy

increase have been measured in the performance of cognitive tasks

[2]. Flows of state variables have been reconstructed systematically

for movements in various task paradigms [3–6]. These flows are

typically defined in two- or three dimensional spaces and comprise

invariant elements including stable fixed points, saddle points,

limit cycles, stable manifolds and separatrices. It has been shown

that functional relevance can be attributed to the various flow

features. For instance, a separatrix in state space may act as a

threshold element and can be measured through perturbation

studies [7]. As task demands change, for instance through changes

of task difficulty [6], then the flow of the behavioral dynamics

changes as a whole and undergoes bifurcations. These findings

demonstrate that the entire flow of the emergent collective

dynamics plays a functionally relevant role and a description of

only some of its components (such as fixed points) offers only a

partial understanding.

Recent examples from neuroscience are available on the

temporally extended neural processes underlying such behaviors.

For examples, Graziano and colleagues stimulate a local (v1 mm)

part of neural tissue. Only long (w200 ms) durations can trigger

temporally extended movement trajectories by inciting spreading

and sustained activation of motor networks [8,9]. Related work by

[10] shows that spiking activity of certain neurons in the motor

cortex is better predicted by movement trajectory rather than

position. Studies employing tasks with more behavioral structure

find, for example, that supplementary motor area blood flow is

linked to stability of rhythmic coordination [11], and reorganiza-

tion of electroencephalogram activity is linked to transitions in

rhythmic coordination [12]. It has also been shown that rhythmic

neural activity in the delta and beta bands of human local field

potentials may track task structure and completion [13], and

motor neurons show spike correlations in anticipation of stimulus

presentation [14]. Such evidence suggests a strong tendency of

neural activity to organize in temporally extended, neurally

distributed processes relevant to behavioral function.

Previous modeling work has studied neural network dynamics

and interpreted such models in the context of behavior. Prominent

examples are found in the domain of decision making [15,16] and

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e64339



movement coordination [17]. General theoretical results exist on

manipulations of network parameters, typically resulting in some

form of symmetry breaking in its widest sense, but almost

exclusively focus on the (de-)stabilization of a chosen attractor

such as a fixed point or the synchronization of coupled oscillators.

Kuramoto studied the synchronization of weakly coupled oscilla-

tors and dispersed eigenfrequencies in his seminal work [18].

Multistability and synchronized assemblies may arise from

homogeneously coupled networks as a consequence of their

interaction function for strong couplings [19] and weak couplings

[20]. The use of phase response curves allows analytical insights

into the stability of coherent network activity [21,22]. Even in

absence of all coupling, a set of oscillators with a common

stochastic drive may display synchronized clusters depending on

the form of their individual oscillator dynamics (more precisely the

asymmetry of the flow in state space as expressed by the

nonlinearity) [23]. In these examples the symmetry breaking does

account for emergent dynamics, generating different modes of

activity across the network through the asymmetry of individual

oscillator parameters. Recent work by Rabinovich and colleagues

[24] have begun to demonstrate the extent to which asymmetries

in the connectivity may reshape the emergent dynamics of a

network of three neurons. These authors considered specifically

the change from a multistable attractor to a limit cycle. In the

current work, we wish to advance this view by showing how

arbitrary flows in state space recur where symmetries in coupling

are broken in general spiking neural network models, as illustrated

in Fig. 1. We will examine the formation of manifolds and phase

flows in the dynamics of firing rate and spike timing. Such

principles also predict that in more complex behaviors, where low

dimensional attractors are only transiently stabilized by dynamics

on slower timescales, that transitions between fundamental

spatiotemporal patterns will be found by examining changes in

the effective or ‘working’ subspace of the network’s entire state

space.

Results

In the following we will discuss results from firing rate and spike

timing representations of networks in various degrees of complex-

ity to elucidate the principles of functional emergence from

structural motifs. Specifically, we study the dynamics of a spiking

neural network comprising the theta neuron model and synaptic

couplings as shown below (see the methods section for details):

_hhi~(viz
Xn

j

gijvjzIi(t))sin hiz1 ð1Þ

tv _vvi~{vizkdz(hi) ð2Þ

where the state variables h and v correspond to spiking and rate

variables, i and j index the post- and pre-synaptic neuron, gij is the

coupling value from neuron j to i, and Ii(t) is the non-autonomous

input to neuron i. tv and k are the timescale of v dynamics and

the strength of the effect of a spike on v, where the values are

typically set to 20 ms and 2p, respectively.

In the following we shall first consider the slow dynamics of the

firing rate in Equation 2, followed by an examination of its spike

timing dynamics.

Firing rate
Mode formation. One of the first questions that can be

posed about the relation among components in a system is

whether they coordinate. Given the reduction of network

dynamics to its firing rate tv _vvi~{viz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(

Pn
j gijvjzIj)

2
q

of our neural network, as developed in the methods section, we

study the effect of the symmetries gij?g0 and Ii?I0, which give

_vvi~{viz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ g0

Xn

j

vjzI0

 !2
vuut

Figure 1. Phase flows and manifolds generated by high dimensional systems. Diagrammed on the left and right are cases of a fully
symmetric system and one with asymmetries. On both sides, the top is a cartoon of the dynamics and the bottom shows a diagram of a network and
its connections. A In the symmetric system, where all connections are the same, the phase space contains an attractive manifold (the cyan surface),
and all trajectories collapse to fixed points on the manifold (blue lines). B In the asymmetric system, when the system is away from the manifold, the
dynamics are dominated by symmetries, and the trajectories collapse toward the manifold, but as they approach, the asymmetries in the network
begin to be expressed, producing slow flows on the manifold. Here, the manifold has a limit cycle on one side of a separatrix, and a single fixed point
on the other side.
doi:10.1371/journal.pone.0064339.g001
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where the timescale factor of tv has been dropped for simplicity,

vi(t~?)~vj(t~?)~ . . .

where all nodes have the same steady state dynamics, coupled to

the mean field. They thus all have the same nullcline equation and

must all be equal, satisfying the equation

v0~
{g0nI0+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0n2{I2
0 z1

q
g2

0n2z1

where we consider the positive solution only. To determine the

stability, the eigenvalues of the corresponding Jacobian are

computed: there are n{1 eigenvalues of {1 and a single unique

eigenvalue determining stability

l~{1{g0

I0zg0n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0n2{I2
0 z1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{I2

0 zn2g2
0(1zI2

0 ){2g0I0n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0n2{I2
0 z1

qr

We show the stability of the fixed point in Fig. 2 where the mode is

more stable as the coupling value increases: l becomes more

strongly negative in both directions away from zero coupling, and

in simulations of global homogeneous coupling with normally

distributed constant inputs Ii, the standard deviation of the steady

state values of vi decreases away from zero coupling, demon-

strating that strong and homogeneous coupling values lead to the

formation of modes in firing rate dynamics under condition of

inhomogeneous input.

The above result of symmetric coupling is interpreted simulta-

neously as generating a single fixed point attractor in the phase

space of the network but also as generating a corresponding

functional mode. The latter functional mode r(x,t) can be

decomposed as a function of time and space via the relation

r(x,t)~s(x)A(t) where s(x) describes the spatial pattern and A(t)
describes the time dependent amplitude of the mode. We note that

the formation of such modes results from symmetry in coupling

and intrinsic dynamics of the system.

Phase flows. Where symmetries generate the functional

modes in a network, resulting in fast contracting dynamics

towards attractors in the phase space, the symmetry may be

broken as well in the coupling or component dynamics. Where

multiple modes exist in the same system, symmetry breaking

generates slow dynamics in the phase space spanned by these

modes, what we refer to as a phase flow. In the following, we will

start by examining the phase flows generated by symmetry

breaking in two mode networks by examining two neuron

networks, and we will afterward consider phase flows of three

modes. We refer to the set of phase flows that are seen below as

Excitator dynamics, on which we elaborate in the methods section.

Throughout, we wish it be understood that while we shall

demonstrate the phase flows in terms of networks with a few

neurons, the phase flows can be equally generated by networks,

which possess several stable modes.

For illustration, we consider a network of two nodes, where the

connectivity matrices of generating the phase flows are shown in

Fig. 3. Each matrix is considered both in terms of the coupling

values themselves and a decomposition

G~
g11 g12

g21 g22

� �
~

ga(1zma) gx(1zmx)

gx(1{mx) ga(1{ma)

� �
<G�~

gx ga

mx ma

� �

where gx, ga, mx and ma are the connectivity strength between

neurons, strength of self-coupling, difference in strength between

neurons and difference between self-coupling, respectively. Each

connectivity matrix is thus decomposed into its symmetric and

asymmetric or antisymmetric components. In the table 1, we

summarize the connectivity matrices generating each of the phase

Figure 2. Rate mode formation. In blue is plotted values of the eigenvalue determining the stability of a mode in rate dynamics under the
assumption of no input and homogeneous coupling, where the green line shows the standard deviation of vi steady state values for simulations
with given global coupling values.
doi:10.1371/journal.pone.0064339.g002
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flows in the panels of Fig. 3. The phase flows of Fig. 3 (see the two

left columns) nicely demonstrate the emergent topological features

as expected from the Excitator dynamics. The nonlinearities in

these systems are strong as can be appreciated from the shapes of

the nullclines in Fig. 3. In principle it is possible to fit polynomial

expressions to these flows and hence derive the differential

equations in the more familiar form of polynomial couplings.

We demonstrate this and the polynomial representation as proof of

concept in the right column of Fig. 3, where we overlay

polynomial approximations of the nullclines of the dynamics (red

curves) with the real nullclines (black curves) located in the part of

the phase space with the topological features we are interested in.

It is evident that both representations show the same topological

features and therefore result in phase flows that are qualitatively

identical.

In networks of three neurons or neural modes, we first consider

one three-way asymmetry in a fully coupled network, as described

by the connectivity matrix

G~(gij)~

g gzm g{m

g{m g gzm

gzm g{m g

0
B@

1
CA

where g is again the strength and m is the degree of asymmetry.

Such a network is the most basic example of a heteroclinic cycle

[24], and the activity can be cyclic if m is high enough. In order to

identify the parameter regime producing cycle behavior, we drop

the square root in Eq 15 and set Ii~0Vi~1 . . . N to obtain

tv _vvi~{viz1{(
Xn

j

gijvj)
2 ð3Þ

in order to simplify the analytics that follow, yet in the relevant

parameter regime, this system produces the same qualitative

dynamics. We reduce this network with the above asymmetries

_rr1~ r3 mzgð Þzr2 g{mð Þð Þ2{r1{1

_rr2~ r1 mzgð Þzr3 g{mð Þð Þ2{r2{1

_rr3~ r2 mzgð Þzr1 g{mð Þð Þ2{r3{1

to a phase equation to show the bifurcation from multistability to

limit cycle. We obtain the necessary projection by using the right

singular vectors of the asymmetry matrix,

0 1 {1

{1 0 1

1 {1 0

0
B@

1
CA?

x

y

n

0
B@

1
CA~

ffiffiffi
2
pffiffiffi

3
p {

1ffiffiffi
2
p ffiffiffi

3
p {

1ffiffiffi
2
p ffiffiffi

3
p

0
1ffiffiffi
2
p {

1ffiffiffi
2
p

{
1ffiffiffi
3
p {

1ffiffiffi
3
p {

1ffiffiffi
3
p

0
BBBBBBB@

1
CCCCCCCA

as the normal, x and y components of the vector field, and then

using a polar transform of (x,y) to (h,r), we obtain

_hh~

ffiffiffi
3
p

m2 sin 3hð Þrffiffiffi
2
p {

g2 sin 3hð Þrffiffiffi
2
p ffiffiffi

3
p z

ffiffiffi
2
p

gm cos 3hð Þr{4gmn

_rr~
ffiffiffi
2
p

gm sin 3hð Þr rj j{
ffiffiffi
3
p

m2 cos 3hð Þr rj jffiffiffi
2
p

z
g2 cos 3hð Þr rj jffiffiffi

2
p ffiffiffi

3
p z

4g2n rj jffiffiffi
3
p { rj j

_nn~{
ffiffiffi
3
p

m2r2{
g2r2ffiffiffi

3
p {

4g2n2ffiffiffi
3
p {nz4

ffiffiffi
3
p

where we then average the radius and normal dynamics over

phase to find n~

ffiffiffi
3
p

4g2
and r~

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8g2{1
p

ffiffiffi
2
p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2zg2

p . Substituting these

into the phase equation, we have

Figure 3. 2D network rate dynamics. Demonstrated here are four
kinds of dynamics generated by a two neuron network. In the left two
columns, the vector field is shown in blue, and the dark blue lines show
the nullclines. Trajectories from simulations of rate equations are shown
in black while trajectories from simulation of the corresponding spiking
network are shown in grey. A fixed point, B limit cycle, C bistability, and
D monostability. In the right column, a subset of the phase space is
shown as structured by the nullclines of the rate dynamics in black, with
polynomial approximations of those nullclines overlayed in red.
doi:10.1371/journal.pone.0064339.g003

Table 1. Coupling used in the two dimensional networks.

Attractor type G~
ga(1zma) gx(1zmx)

gx(1{mx) ga(1{ma)

� �
G�~

gx ga

mx ma

� �
Fixed point 1 1

1 1

� �
1 1

0: 0:

� �

Limit cycle 0:2 {5:8
{0:7 {0:7

� �
{3:3 {0:3

0:8 {1:71

� �

Bistability 0 {1:4
{1:4 0

� �
0 {1:4
0 0

� �

Monostability 0:5 {5:8
{0:7 {1:1

� �
{3:3 {0:3

0:8 {2:5

� �

We give examples here of coupling matrices sufficient to produce the varied
dynamics shown in Figure 3.
doi:10.1371/journal.pone.0064339.t001
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_hh~
1{12m2
� �

sin 3hð Þz4
ffiffiffi
3
p

m cos 3hð Þz4
ffiffiffi
3
p

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12m2z1

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12m2z1

p ð4Þ

where we have used g~{1=2 as an example to simplify this

equation. We note that this equation assumes that the system stays

near the manifold corresponding to the average radius and normal

dynamics. In Fig. 4 we show how solutions vary with asymmetry.

We introduce a further asymmetry in the matrix used above

G~(gij)~

g gz(1{a)m g{m

g{(1{a)m g gzm

gzm g{m g

0
B@

1
CA

and apply the same projection, average normal and radius

dynamics and obtain a phase equation
_hh~
Pn

i ai sin ihzbi cos ihzc where ai, bi and c are sixth order

polynomials in terms of g, a and m. The full equation is too

complex to be of use without further simplifications or reductions,

but in Fig. 4, the phase portrait of the system is shown for different

sets of asymmetries.

While the above results were obtained with a modified reduced

network equation, the results remain useful for understanding the

full spiking network. In Fig. S1, we show simulations of the full

spiking neuron network using the parameters found by the above

analysis, and we find the same set of Excitator dynamics in the

spiking network as predicted by the phase reduction of the rate

equations.

Spike timing
Synchronization. The network model being considered was

also motivated by a desire to study, in the same model, the

presence of dynamics of spike timing. We thus employ and analyze

a phase reduction of the model in section

_hhi~(viz
Xn

j

gijd
z(hj)) sin hiz1 ð5Þ

where we have assumed that the averaged firing rate has been

absorbed into the intrinsic firing rate term vi, and that the pulses

from presynaptic neurons can be idealized as Dirac delta functions

(we have used dz(h)~d(t{ts) where ts is the time of a spike

defined by h~+p).

In a network of phase oscillators, we approach synchronization,

i.e. the formation of synchronous modes, by considering the Eq 5

with symmetric frequencies vi?v and coupling strengths

gij?g=m, with m being the number of oscillators, and introducing

a complex mean field z~1=m
Pm

k eihk ~�rrei�ww, also known as the

Kuramoto [25] order parameter,

_hhi~ vzg�rrdz(�ww)
� �

sin hiz1 ð6Þ

For the purposes of deriving the stability of a mode, we assume

that the steady state is one in which all oscillators are

synchronized, i.e. hi~hjVi,j~1 . . . N , and we can, using Eq 17

write the general condition

Qi½n�~1{Qj ½n{1�zf (�ww½n{1�) ð7Þ

which after perturbation and subtraction of the corresponding

steady state becomes

DQi½n�~{Qj ½n{1�z
Xm

k

DQk½n{1�f 0k ð8Þ

The only necessity to solve this linear system is that we have n

equations, so without loss of generality, we let j~iz1 mod m, and

then the matrix form is

DQ1½n�

DQ2½n�

..

.

DQm½n�

0
BBBBBB@

1
CCCCCCA

~

f
0

1 f
0

2{1 f
0

3 � � � f
0

m

f
0

1 f
0

2 f
0

3 {1 � � � f
0

m

..

. ..
. ..

.
P

..

.

f
0

m{1 f
0

2 f
0

3 � � � f
0

m

0
BBBBBBB@

1
CCCCCCCA

DQ1½n{1�

DQ2½n{1�

..

.

DQm½n{1�

0
BBBBBB@

1
CCCCCCA

ð9Þ

Figure 4. 3D network analysis. A The fixed points of the derived
phase equation (blue) as a function of asymmetry strength m. Above

certain values, no fixed point exists, system bifurcates to limit cycle. B _hh
as a function of h. Different degrees of asymmetry in the network
connectivity yield different phase flows. In green, connectivity is
symmetric, and the system has three multistable fixed points. As m
increases to 1 (red), a bifurcation to limit cycle occurs. A further
asymmetry is introduced by a (blue) which produces a monostable
dynamics with one fixed point and a nearby separatrix.
doi:10.1371/journal.pone.0064339.g004
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which has n{1 neutral eigenvalues and a single unique eigenvalue

l~
Xm

k

f
0
k{1 ð10Þ

The synchronous mode is thus stable if lk kv1. Because the phase

equation, and thus f (:), was formulated with a mean field, all fk

are identical, and we have

l~mf
0
{1

which is shown as a function of coupling strength in Fig. 5, as

applied to Eq 18, the phase response curve f (:) derived for this

theta oscillator.

As in the case of dynamics of firing rate, mode formation in

spike timing corresponds to fixed points in the relation between

spike timing, yet breaking the symmetry between neurons in the

network can lead to a time scale separation through which a slow

dynamics is generated.

Relative phase dynamics. Such phase flows for spike timing

dynamics take the form of flows in the relative phase of the

oscillators, which depend on the asymmetries between neuron or

modes in the network. In Fig. 6, we demonstrate the existence of

Excitator style dynamics in the spike timing of a two neuron

network. When the neural responses are identical and the

synchronous solution is stable, the relative phase between the

two neurons converges to zero. When the synchronous solution

becomes unstable due to slight symmetry breaking in the coupling,

no fixed value is observed for the relative phase, but rather an

oscillation of the relative phase emerges on a slow timescale. The

third case we show is that of monostability, which arises also from

asymmetries between the neurons: there exists one fixed point with

a separatrix nearby such that small perturbations do not disrupt

the antiphase firing pattern while a strong enough perturbation

produces a transient synchronization. Not shown here are

simulations demonstrating multistability; such dynamics are

observed as multistable configurations of firing order, requiring

at least three dimensions, and have been investigated previously by

[26]. The dynamics of such relative phase organization are also

reflected in the mean field of the networks.

Composition of dynamics via composition of
connectivity

While the results above show how the most basic classes of

behaviors arise in network dynamics, we set out to show that

complex nonlinear processes can be composed of more basic ones.

First, the dynamics shown above are demonstrations in networks

with two or three neurons, yet in the case of pattern formation,

such dynamics is distributed across a network. Second, complex

processes involve temporal composition, in which a set of basic

elements are given a sequential structure. To better understand

how such aspects would play out in more complex scenarios, we

constructed a larger network, composed of four neural modes,

which combines three of the phase flows show in Fig. S1, namely

bistability, monostability and limit cycle, using the following

connectivity skeleton

G~(gij)~{3 �

0 1 0 1

1 0 1 0

1 0 0 0

0 0 1 0

0
BBB@

1
CCCA

which is then distributed across twenty five spiking neurons.

Modes 1 and 2 produce bistability; 1, 2 and 3 produce

monostability, and 1, 3, and 4 produce a limit cycle. As shown

in Fig. 7, we simulate the effect of a longer timescale control signals

by using per mode input patterns are used to inhibit those modes

that do not produce a particular phase flow, thus reshaping

dynamically the effective phase space: first, a limit cycle flow is

chosen, then, at 500 ms, the input inhibition pattern selects the

Figure 5. Phase mode stability with respect to phase and coupling strength in a symmetric network. A The phase response curve for
three values of coupling strength which are indicated by stars in B where the stability of the mode is plotted with respect to coupling strength. In
order for the mode to be stable, lk kv1 must be satisfied, so here we note that as coupling strength crosses zero to positive, the mode becomes
stable C, D, E From top to bottom, time series of the mean field z tð Þk k of simulated networks are shown, corresponding to the coupling values
starred in the left, bottom panel. C the order parameter approaches one, due to a positive coupling value, and in D, where no coupling g~0 is
present, the field exhibits oscillations in its mean field. In E, where coupling is negative, the phases become evenly dispersed.
doi:10.1371/journal.pone.0064339.g005
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bistable phase flow. During the production of bistability, we

perturb the network with additional input to switch the

dominating mode first at 700 ms, and again at 1000 ms. At

1100 ms, the network is switched to a monostable pattern, which

appears first as a fixed point, until a perturbation induces a large

transient activation.

In the figure, we have shown in the top panel a raster plot of the

spiking activity of the network. The spatial patterns corresponding

to the modal distribution in the network are clearest during the

bistable and monostable flows but can be discerned during the

limit cycle as well. In the middle row in blue, we have shown the

mean field activity of the first mode, which participates in all three

phase flows; this time series is identical to that of the first

component from a principal component analysis of the synaptic

currents induced by the spiking activity (as approximated by ~vv).

We then attempted to estimate the transitions in phase flow by

performing a sliding window principal component analysis, using a

window length of 8tv and an overlap of 5tv, corresponding to 160

and 100 ms, respectively, resulting in a series of principal

eigenvector sets, VT
1 ,VT

2 , . . ., each of which characterizes the

phase space in terms of principal variance. In order to capture how

the active subset of the network’s phase space changed over time,

for every pair of set of eigenvectors (VT
i ,VT

iz1), we computed the

similarity as the sum squared difference between VT
i
:VT

iz1 and the

identity matrix, for the first ten principal eigenvectors. This

measure is plotted over time in green, and rises as the network goes

through phase transitions and falls between them. Critically, this

suggests that transition in the dynamics of modes can be detected

by examining the effective subspace of the network’s phase space.

In the bottom panel, we have plotted the input patterns applied to

the network modes, as function of time.

Discussion

Our goal is to demonstrate how arbitrary low-dimensional flows

may systematically emerge from networks due to the breaking of

symmetry in couplings. A broader scheme would consider

symmetry breaking in a wider sense and incorporate also

asymmetry in the intrinsic neuron dynamics. The key concept to

our approach is that these patterns code for dynamical processes

(structured flows on manifolds (SFM)), which themselves can be

dynamically complex, nonlinear, multistable and display all the

features of behavior known from cognitive sciences. Perdikis and

colleagues proposed such SFMs as building blocks for cognitive

architectures [27,28]. The dichotomy of rate versus spike coding

(c.f. Christof Koch [29] for a discussion of this subject) does not

exist here, since the time series of the spiking neurons follow a

systematic but not necessarily stationary behavior, and it is their

ensemble dynamics (as opposed to ensemble state) that is the true

carrier of the representation of the lower-dimensional functional

process. The metrics applied to the time series as firing rates or

spike timings can offer only an impoverished view by construction.

These metrics often, nevertheless, make sense for certain functions,

neural subsystems or even task conditions. For instance, Riehle et

al. in [14] demonstrated that synchronization of individual spike

discharges and its rate modulation can be involved differentially in

certain motor cortical functions. In other motor task conditions

Hatsopoulos [30] showed the appearance of non-stationary

synchronization waves with precisely timed spiking in MI at a

characteristic latency. The exact timing of this response varies

depending on its relationship with ensemble activity as measured

by the phase of the ongoing beta band oscillation. These findings

clearly indicate that there is a role for both rate and spike code, but

neither of them is necessarily independent. Furthermore, no

Figure 6. Spike timing flows. Presented here are different possible dynamics of spike timing in a two dimensional network. The top, middle and
bottom rows correspond to fixed point dynamics, or synchrony, limit cycle or asynchrony, and monostability, where there is a weakly stable fixed
point, which can be perturbed to produced transient trajectories (red dashes). A: phase response curves of the two neurons in the network,
normalized by the magnitude of coupling strength. B: time series of the spiking dynamics hi(t) C: The mean field z tð Þk k is shown in gray and the
relative spike timing modulo the period is shown by the dashed line. Both indicators of phase organization show the distinct qualitative differences in
dynamics between the three phase flows.
doi:10.1371/journal.pone.0064339.g006
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relation to the behavioral time courses of the end effectors has

been made. It is at this point where the notion of structured flows

on manifolds, as developed here, will be able to conceptualize

these findings within a common theoretical framework. Even

though it may still be too early to delineate the detailed relations

between spike timings, rate modulations and behavior for specific

tasks, the principled behaviors of SFM-based functional architec-

tures are nevertheless clear and predict timescale hierarchies, non-

stationary but systematic dependencies between spike timings and

spike rate, as well as systematic spiking behaviors of single neurons

even for smaller firing rates. In the case of a rate-coding scheme,

trajectories in the phase space of neuronal firing rates will

inevitably traverse the lines or planes corresponding to integer

ratios of firing rates, and a synchronous attractor will stabilize as

the integer ratio is approached and destabilize as the firing rate

ratio diverges from the integer value, thus producing observable

transient synchronizations. This form of activity is important

because it allows for neurally significant events to rise out of the

mean field activity and more successfully signal downstream

structures. It is thus expected that such transient synchronizations

should track the structure of task dynamics, as well as coinciding

with fluctuations in firing rate.

Two important forms of degeneracy are present in the network

models in this work: First, for any given process a network may

generate, the mapping of the generating dynamical mechanism

onto a connectivity matrix may be achieved by many different

structural configurations. This degeneracy is systematic and

reflected mathematically by the adjoint mapping of j to q.

Second, there is an additional degeneracy with respect to the

dynamical generating mechanism. We take for example the

monostability displayed by the two and three dimensional rate

flow networks and spike timing: all three networks could fulfill the

same functional role, while the mathematical details of their

implementation vary greatly as well as the underlying network

structure. Such forms of degeneracy are ubiquitous in biological

systems [31] and are though to contribute significantly to their

adaptive functionality.

To account for the structure of more complex behaviors, it

becomes necessary to understand how basic processes or primitives

may be constituents of complex behaviors. In nonlinear or non-

modular systems, compositionality is a nontrivial problem. The

presupposition of timescale hierarchy allows for the decomposition

of complex dynamics into simpler dynamics on multiple temporal

scales. Such decomposition may either occur in parallel, which will

give rise to two mutually coupled subsystems forming a hierarchy;

Figure 7. Multifunctional circuit. Here shown are characteristic time series of a multifunctional neural circuit, which in time, is switched from a
limit cycle flow, to bistability, where perturbations flip the active mode back and then forth, and lastly monostability, where a perturbation induces a
transient. A: Raster plot of spike times of the network. B: Time series of the first principal component of ~vv, corresponding to the network which takes
part in each of the phase flows, shown in blue. In green is shown a sliding measure of subspace similarity (see text for details), which takes its greatest
values when the phase flow produced by the network switches. C: Time series of the input pattern applied to the network, including perturbations,
simulating the effect of control signal signals on a longer timescale.
doi:10.1371/journal.pone.0064339.g007
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alternatively the decomposition may occur sequentially (such as in

the coexistence of slow and fast manifolds in the system dynamics),

which will give rise to serial behaviors on different timescales (fast-

slow). We showed the effectiveness of the former in the last

simulation where control signals on a slow timescale reshape the

effective phase space of the network; this reshaping produces

produces transitions in the qualitative dynamics produced by the

network that can then be identified by examining the changes in

principal components over time. When applied in combination

with sequential dynamics, phase space reshaping of SFMs may

rapidly yield complex articulated processes, suggestive of how such

processses may be structured in behavior.

Recent work [5,27,28] has used this notion of functional

decomposition and presented a way of treating the dynamical

phenomenology of human function as the fundamental object of

study, employing hierarchical nonlinear dynamical systems as toy

models and deducing necessary principles from them. The critical

insight of these researchers has been that SFMs can be regarded as

patterns of behavior. In other words, an SFM can be mathemat-

ically characterized as a pattern or mode, and as a consequence, a

highly complex system can be decomposed into the set of

behaviors, since the generating system dynamics can be decom-

posed into the set of corresponding SFMs. This approach has

shown, in novel ways, how behavior in general may not only self-

organize but self-adapt and self-compose via phase transitions and

time scale hierarchies. Critically, in a dynamical model of

handwriting [28] Perdikis et al show how phase flows may be

systematically composed for the construction of complex function,

by using certain dynamics to parametrize others, an example of

which we have seen in this work, Fig. 7 where the phase space is

dynamically reshaped.

Another formulation of how behavioral dynamics are embed-

ded in neural networks has been extensively developed by Schöner

and colleagues [32], within a framework termed Dynamic Field

Theory. Said framework provides an interpretation of various

formulations of Amari’s neural fields [33], which, in the numerous

applications from movement to psychophysics, have significant

explanatory power by colocating representation of movement

information and preparation in a dynamic neural field. The

implication is that parameters of movement are defined in a

continuous space, and that evolution of such parameters occurs

continuously in time. It is important to note that such neural fields

support a limited set of dynamics, mostly relying on the bistability

of the equilibrium state and a local excitation, as well as variations

thereof. Because the representation of task information rests in the

activation of nonlinear dynamics of the neural field, Schöner et al

suggest, in contrast to symbolic theories of cognition, that such

representation, instead of being operated upon, performs its own

operations. We note however that more complex autonomous

dynamical structures, such as sequential dynamics, that require

breaking assumptions of the Amari field model, e.g. homogeneity

in the connectivity kernel, cannot be described without introduc-

ing a hierarchy of fields whereas in the current work, we have

shown how a richer repertoire of dynamics may be accomplished

with relatively simple network configurations.

The more general framework of liquid state computing, recently

outlined in [34], presents another theory of how behavior may

emerge from neural networks. A particular point which resonates

with the present results is the dependence of emergent dynamics

on the state of the network: we showed how the input pattern,

which in the context of a larger model may consist of afferents

from a higher order area, sculpts the dynamics of the network. We

wish to draw a slight distinction between the results presented here

and the theories of liquid state computing with respect to the

emergence of function from neural structure. In our results,

neurons’ representational content may be specific to the phase

flows in whose production they participate, while the theory of

liquid state computing posits and indeed is founded upon the

randomness of the network, in which function emerges through

the projection of a high dimensional space onto a low dimensional

space. Our results suggest a definite association between the

subnetwork of neurons and the different function they may

coordinate transiently in order to produce.

This has been clearly identified in the work of [14], where

spiking events coincide in a statistically significant way, not

necessarily in response to, but in anticipation of, behaviorally

relevant events. The authors draw a distinction between purely

internal events, such as anticipation of a stimulus, and external

events such as the presentation of a stimulus requiring a motor

response, and they suggest that, in their task, firing rate

modulation occurs only for behaviorally external events, while

internal events may be coordinated in terms of a temporal code.

Such differences indicate that the brain may use different forms of

coordination to accomplish different tasks. We wish to point out

that basic forms of coordination such as bistability or monostability

may emerge in both coding schemes, yet in both cases shall appear

in forms of transient synchronization. In the case of a temporally

coded phase flow, like those shown in Fig. 6, the emergent

dynamics of, for example, monostability are such that synchroni-

zation does not occur until the system is triggered, resulting in a

rapid synchronization followed by a rapid desynchronization.

At the macroscopic level of the brain, lines of research have

developed that coincide theoretically with the results presented

here. In particular, the theory of neurocognitive networks [35–37]

argues that cognitive function arises out of the dynamical

interaction among the sets of relations between brain regions,

and this approach is receiving more and more support [38]. When

humans and primates are engaged in a cognitive or behavioral

task, and the resulting neural signals are analyzed with measures of

causal interaction, the result shows that different functions recruit

different networks of brain regions, but that these functions often

share one or more active regions. The contribution of a particular

region thus depends on the activity of the other active regions with

which it is connected. The simulation presented in this study in

Fig. 7 highlights exactly this capacity of networks to generate

different forms of dynamics. It also suggests that a finer grained

mapping of behavioral processes to cortical regions would be

possible by looking for the transitions between subspaces of

network dynamics, as we have shown could be the case for

behavioral or cognitive processes that involve sequences of

dynamics.

Methods

Excitator dynamics
As an illustrative example of a functionally meaningful process

in behavioral neuroscience, we examine the production of simple

movements, where it has been suggested that multistability, limit

cycle and monostability form a fundamental set of classes of

behaviors [5,39,40]. Jirsa and Kelso developed a model of the

phenomenology of discrete or monostable (the ‘‘active transient

mode’’ in [41]) movements in [39]. They developed the model

called the Excitator on the principle that 1. there exists at least one

stable fixed point in phase space, which represents the equilibrium

state of the end effector and 2. a separatrix exists near the fixed

point such that large excursions may occur if the system moves far

enough away. Such a phenomenology was confirmed in the case of

‘‘false starts’’ by [7]. From [39] Eq 7, we restate a basic two
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dimensional system satisfying such constraints, illustrated in Fig.

S2,

_xx~fx(x,y)~xzy{g1(x)

_yy~fy(x,y)

where x is the position of the end effector and y is its velocity.

Phase planar models such as the Excitator are common in

neuroscience modeling and include for instance the FitzHugh-

Nagumo [42,43] neuron model, which also belongs to the class of

excitable systems. In the following, we will show how such

excitable dynamics may arise in neural networks. We note that

both the effector system (muscles, skeletons, etc.) and the neural

networks underlying the production of such excitable dynamics are

high-dimensional, while the produced behavioral dynamics are

low-dimensional. It is in this general context that the following

methods are developed, i.e. to capture the emergence of multiple

timescales of dynamical processes from spiking neuron networks.

Neuron dynamics
We derive different possible implementations of the basic

dynamics discussed above in terms of the firing rate and spike

timing patterns, and connectivity. We begin with a spiking state

variable {pvhvp, in the style of previous phase oscillators [44–

46]

_hh~(vzI(t)) sin hz1 ð11Þ

where h increases as the neuron depolarizes, and at a value of p,

we consider a spike has been generated and the phase is reset to

{p, and _hh signifies
d

dt
h; v is a parameter prescribing the intrinsic

frequency of the oscillator, and I(t) is the non-autonomous

external input to this oscillator. The period of oscillation is,

determined by integrating Eq 11 from {p to p, 2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{v2
p

.

When the radicand is negative, we adopt the convention that the

value of the square root be zero, such that the period is infinite and

the frequency zero.

Such phase models are obtained using standard techniques in

nonlinear oscillator theory [47]. To obtain Eq 11, we use a simple

form of excitable dynamics given by

_xx~x{x3=3zy

_yy~a{x

and project to polar coordinates to obtain an averaged radius of

r?~{
p(r{2)(rz2) rk k

4

using only the positive finite solution, we obtain the following

phase equation

_hh~
a cos h{2

2

after dropping the higher order periodic terms. We let I.vzI(t)
and rotate the system by p=2 for mathematical convenience to

obtain Eq 11. We have assumed that both the input to the neuron

and v are small and change slowly. As such, the model no longer

exhibits a Hopf bifurcation or subthreshold oscillations. Roy et al

[48] have shown how such a reduction can be performed with a

careful treatment of the bifurcation structure.

In Fig. S3, we show the behavior of this model. We also

introduce a dynamics of the intrinsic frequency as a second

dimension of this model v, which is biophysically interpreted as a

synaptic current but will later serve as a proxy for firing rate

[49,50]:

tv _vv~{vzkdz(h) ð12Þ

where we define dz(h)~d(t{ts) where ts is the time of a spike

defined by h~+p and
Ð?
{? d(t)dt~1. Parameters tv and k

determine the rise and fall timescales.

Network connectivity
Putting the neuron in a network context, we introduce an

additional term in the coefficient of sin in Eq 11, a weighted sum

over the presynaptic neurons, and we add appropriate indices

_hhi~(viz
Xn

j

gijvjzIi(t)) sin hiz1 ð13Þ

tv _vvi~{vizkdz(hi) ð14Þ

where i and j index the post and presynaptic neurons. Each

neuron has one free time varying parameter, Ii(t), which in the

results we will consider as the non-autonomous neuronal input.

The network parameters consist of the connectivity matrix

G~(gij), which we will set by hand to achieve specific dynamical

attractor structures, and k and tv are timescale constants, which

separate the dynamics of a neuron’s spike and its rate, but in the

following, we typically set these values to 4p and 20 ms

respectively in order to simplify the equations and parameter

space.

Rate reduction
In order to analyze the rate dynamics of Eq 2, we will perform a

reduction of the full system to just rate. To this end, we assume

that the dynamics of v(t) evolves sufficiently slowly, i.e. much

slower than the dynamics of h(t), tv&1. This allows us to

approximate the effect of the incoming spike train in Eq 2 via its

mean firing rate as given by explicit integration of Eq 11, yielding

1

Thi

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(viz

Pn
j

gijvjzIi(t))
2

s

2p

The error of this approximation is shown in Fig. S4. The v
dynamics can now be written as

tv _vvi~{viz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

Xn

j

gijvjzIi(t)

 !2
vuut ð15Þ

with the following being rewritten for simplicity: k~2p and

gii?giiz1.
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Phase reduction
We will also consider a reduction of the network relevant to

short timescales based on the assumption _vv~0 and vi constant,

except for the perturbations due to presynaptic spikes which we

treat as delta functions, in Eq 11:

_hhi~(viz
Xn

j

gijd
z(hj)) sin hiz1 ð16Þ

The behavior of such networks can be further analyzed in terms of

their phase response curves (also called interaction functions) [51–

54], which track the change of phase of oscillation in response to

an input. The shape of such curves is important as it can directly

determine the stable and unstable attractors of the network, allow

one to derive or design a networks’ firing patterns, to a high

complexity [55]. Fig. S5, top panel, illustrates the phase response

of an oscillator.

Phase locked attractors. To derive the phase locking

attractors in a network, we use the set of conditions that for any

pair of neurons (i,j), tsi½n�~trj ½n{1�, where n is the index of the

spike. Using Q~(wzp)=2p, we rewrite these conditions as

TiQi½n�~Tj(1{Qj ½n{1�zfj(Qj ½n{1�)) ð17Þ

i[f1 . . . Ng, N such equations are necessary to uniquely determine

values of Qi as phase locked states. The stability of such states can

be determined by perturbing the steady state and linearizing the

map describing whether the perturbation grows or shrinks

exponentially, with the approximations Qi½n�&Qi½?�zDQi½n�
and fi(Qi½n�)&fi(Qi½?�)zDQi½n�f

0
i (Qi½?�) where f

0
i ~LQi

fi. As an

example of using this general formulation to derive phase locking

attractors, we consider two reciprocally coupled neurons with

equal coupling strengths and periods: the two relevant conditions

are

T1Q1½n�~T2(1{Q2½n{1�zf2(Q2½n{1�))

where T2Q2½n� can be obtained by swapping indices. We then

introduce the perturbation and subtract the steady state

DQ1½n�~{
T2

T1
(f
0

2{1)DQ2½n{1�

where again the expression for DQ2½n� is again found by swapping

indices; we then substitute to obtain

DQ1½n�~(f
0

2 {1)(f
0

1{1)DQ1½n{2�

where a fixed point is stable if the eigenvalue l~(f
0

2{1)(f
0
1{1)

satisfies lk kv1, a result general with respect to the nature of fi(:)
that has been derived before [53].

In general, the existence conditions yield simple stability results

whose structure does not depend on the details of the phase

response curve. In order to apply such results to Eq 16, we need to

obtain its phase response. We note that while the variables h and Q
refer to the phase of oscillation, h is nonlinear in time, and

increases from {p to p, while Q, by definition, is linear in time,

increasing from 0 to 1.

In order to obtain a phase response curve, we start with the

definition of the perturbed period T1~T0(1zf (Q)), and thus

f (Q)~
T1

T0
{1, where T1 is obtained as a sum of ts and tr, defined

by integration of the phase equation

T1~tsztr~

ðw

{p

dt

dh
z

ðp

wzg sin w

dt

dh

where w is the value of h when a presynaptic spike occurs, and

g sin w is the instantaneous change in h due to the presynaptic

spike. Computing the integrals yields ts~V 2A(w){p½ �,
tr~{V 2A(wzg sin w)zp½ �, T1~2V A(w){A(wzg sin w){p½ �,
and

f ~
1

p
A(wzg sin w){A(w)½ � ð18Þ

where V~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{v2
p

v2{1
and A(w)~arctan V

sin wzv cos wzv

cos wz1

� �
(A and V are arbitrary expressions, not amplitude and frequency).

Together with specific existence and stability conditions, these

expression allow one to determine spike timing patterns produced

by Eq 16, and under the adiabatic elimination assumption, those

predictions will apply as well to Eq 2, where the period of oscillator

is dynamic.

Supporting Information

Figure S1 3D network dynamics: Analogously with Figure 3,

the four main Excitator phase flows are generated by a three

dimensional network. In each quadrant of this figure, the upper

left panel shows a projection of 3D phase space and three

simulations, the lower left panel shows the connectivity matrix and

the set of three panels on the right show time series corresponding

to the three simulations shown in the phase space projection. Black

or colored lines are the simulations of the rate equations while the

gray jagged lines are from the full spiking network. The paramers

for connectivity for the different regimes shown here are taken

directly from those used in the bottom panel of 4. A fixed point, B
limit cycle, C bistability, and D monostability.

(TIFF)

Figure S2 Excitator flows: The behavior of an Excitator

system is shown here for bistable, limit cycle and monostable

dynamics (A, B, C) in the phase space (top) and the time series

(bottom). Red lines in the phase space are the nullclines of the

system, while black lines show how the phase flows with time on

example trajectories.

(TIFF)

Figure S3 Theta neuron dynamics: A Firing rate as a

function of input for the theta neuron described in the text. Two

circles give the input and rate for the two sample simulations

shown on the right. B, C Time series from simulations of h
(dashed) and v (solid) with two different values of I .

(TIFF)

Figure S4 Rate reduction approximation The assumption

of the rate reduction in the text is that the mean firing rate

captures the relevant information in a spike train. Here we show in

A and B, respectively, cases of low and high firing rates. Upper

panels show in blue, red and green curves the omega dynamics

time series under a mean firing rate, equal interspike interval (ISI)

spike train and Poissonian spike train. Bottom plots show the log

sum squared error of the mean firing rate time series with respect

to that of equal ISI and Poissonian spike trains in green and blue.

(TIFF)
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Figure S5 Phase response curves: A The phase response

curve is found by perturbing the post synaptic neuron with a single

presynaptic spike which produces a jump in the phase of the post

synaptic oscillator. The black traces show the pre and post synaptic

neurons h(t) while the gray trace shows the behavior of post

synaptic oscillator in the absence of the pre synaptic spike. Phase

response curves f as a function of Q are shown here in B and C
corresponding to positive and negative coupling values, respec-

tively. Both are bimodal, however for both the stronger knee

reflects the sign of coupling. The gray lines show the same

response curve assuming the phase is linear with time.

(TIFF)
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