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The Vlasov-Poisson system

The Vlasov-Poisson system is a classical model used to
describe the evolution of plasmas.

In its most common form, f (t , x , v) represents the distribution
function for the electrons, while ions are assumed to be at rest,
and to act as a fixed background.

The VP equation on the torus Td is given by

(VPE)


∂t f + v · ∇x f + E(t , x) · ∇v f = 0,

E = −∇xU, ρ(t , x) =
∫

f (t , x , v) dv
−∆U = ρ− 1

f |t=0 = f0 ≥ 0,
∫
Td×Rd f0 dx dv = 1.
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The massless electrons case

There are several variants of this equation.

For instance, from the point of view of ions, one can assume
that electrons have zero mass and they reach their local
thermodynamic equilibrium quasi-instantaneously.

Then, the density of electrons follows the Maxwell-Boltzmann
law, and the Poisson equation takes the form

−∆U = ρ− eU .
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Debye length

The Debye length λD can be interpreted as the typical length
below which charge separation occurs.

In plasmas, typical values go from 10−3 m to 10−8 m. Hence, in
dimensionless variables, the Poisson equation reads

−ε2∆U = ρ− eU ,

where ε ≈ λD.

The quasineutral limit consists in considering the limit ε→ 0.
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Some results on quasineutral limit

Brenier 1989, 2000 well prepared monokinetic data (i.e.
cold electrons)
Grenier 1995,1996,1999 convergence for analytic initial
data
Masmoudi 2001 general monokinetic data
Golse - Saint-Raimond 2003 well prepared data with
magnetic field
Han-Kwan - Hauray 2014 stability-instability issue
Han-Kwan - Rousset 2016 convergence for some
Sobolev perturbations
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The massless electron model

The Vlasov-Poisson system with massless electrons reads as
follows:

(VPME) :=


∂t f + v · ∂x f + E · ∂v f = 0,

E = −U ′,
U ′′ = eU − ρ,

f |t=0 = f0 ≥ 0,
∫

f0 dx dv = 1.

(1)

Because of the additional semilinear term in the Poisson
equation, this system is more complicated with respect to the
classical Vlasov-Poisson system.
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The quasineutral limit leads to the study of the limit as ε→ 0 of
the scaled system

(VPME)ε :=


∂t fε + v · ∂x fε + Eε · ∂v fε = 0,

Eε = −U ′ε,
ε2U ′′ε = eUε − ρε,

fε|t=0 = f0,ε ≥ 0,
∫

f0,ε dx dv = 1.

(2)

Formal limit taking ε = 0: the kinetic isothermal Euler system.

(KIE) :=


∂t f + v · ∂x f + E · ∂v f = 0,

E = −U ′,
U = log ρ,

f0 ≥ 0,
∫

f0 dx dv = 1.

(3)
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The justification of this convergence is highly nontrivial: this
was proved by Grenier under the assumptions that the initial
data are bounded in the analytic norm

‖g‖Bδ :=
∑
k∈Z
|ĝ(k)|δ|k |, δ > 1.

On the other hand, the stability can be false if one controls only
finitely many derivates of the initial data.
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Main result

Theorem (Han-Kwan - I., 2015)

Consider non-negative initial data of the form

f0,ε = g0,ε + h0,ε,

where (g0,ε) is a sequence of continuous functions satisfying

sup
ε∈(0,1)

sup
v∈R

(1 + v2)‖g0,ε(·, v)‖Bδ0
≤ C,

sup
ε∈(0,1)

∥∥∥∥∫
R

g0,ε(·, v) dv − 1
∥∥∥∥

Bδ0

< η,

for some δ0 > 1, C, η > 0 with η small enough.
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Theorem (continued...)
Assume that h0,ε are very small in the 1-Wasserstein distance:

∀ε > 0, W1(h0,ε,0) . exp(−exp(C/ε2)).

Then there exists T > 0 such that any weak solution of
(VPME)ε starting from f0,ε converge to a solution of (KIE)
starting from g0 = limε→0 g0,ε on [0,T ].
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Comments

The smallness assumption on h0,ε is necessary.

Theorem (Grenier, 1999; Han-Kwan - Hauray, 2014.)

There exist smooth homogeneous equilibria µ(v) for (KIE) such
that the following holds. For any N > 0 and s > 0, there exists a
sequence of non-negative initial data (f0,ε) such that

‖fε,0 − µ‖W s,1
x,v
≤ εN ,

but, for α ∈ [0,1),

lim inf
ε→0

sup
t∈[0,εα]

W1(fε(t), µ) > 0.
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Strategy of the proof

(1) Prove quantitive weak-strong stability estimates for
(VPME)ε.

(2) Show that fε(t) remains close to gε(t), the solution of
(VPME)ε starting from g0,ε.

(3) Apply Grenier’s result to gε(t).

The key step is (1).
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Proof of (1): splitting

Decompose Eε as Ēε + Êε where

Ēε = −Ū ′ε, Êε = −Û ′ε,

and Ūε and Ûε solve respectively

ε2Ū ′′ε = 1− ρε, ε2Û ′′ε = eŪε+Ûε − 1.

Then

(VPME)ε :=



∂t fε + v · ∂x fε + (Ēε + Êε) · ∂v fε = 0,
Ēε = −Ū ′ε, Êε = −Û ′ε,

ε2Ū ′′ε = 1− ρε,
ε2Û ′′ε = eŪε+Ûε − 1,

fε(x , v ,0) ≥ 0,
∫

fε(x , v ,0) dx dv = 1.
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Proof of (1): scaling

Define

Fε(t , x , v) :=
1
ε

fε

(
εt , x ,

v
ε

)
.

Then

(VPME)ε,2 :=



∂tFε + v · ∂xFε + (Ēε + Êε) · ∂vFε = 0,
Ēε = −Ū ′ε, Êε = −Û ′ε,

Ū ′′ε = 1− %ε,
Û ′′ε = e(Ūε+Ûε)/ε2 − 1,

Fε(x , v ,0) ≥ 0,
∫
Fε(x , v ,0) dx dv = 1,

where
%ε(t , x) :=

∫
Fε(t , x , v) dv .
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Remark: Ūε is just the classical Vlasov-Poisson potential, so

Ēε(t , x) = −
∫
T

W ′(x − y)%ε(t , y) dy ,

where

W (x) :=
x2 − |x |

2
(we are identifying T with [−1/2,1/2] with periodic boundary
conditions).

In particular, Ūε is 1-Lipschitz and |Ūε| ≤ 1.
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Proof of (1): Estimates for Û .

Using arguments from the calculus of variations, we show the
following:

Lemma

There exists a unique solution of

Û ′′ = e(Ū+Û)/ε2 − 1 on T.

Also
‖Û‖∞ ≤ 3, ‖Û ′‖∞ ≤ 2, ‖Û ′′‖∞ ≤

3
ε2 .
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Idea of the proof.

We show that Û is the unique minimizer of the functional

h 7→ E [h] :=

∫
T

(
1
2

(h′)2 + ε2e(Ū+h)/ε2 − h
)

dx

among all periodic functions h : [−1/2,1/2]→ R.

Then, using the Euler-Lagrange equations and the
boundedness of the energy, we show the desired bounds.
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Proof of (1): A Lagrangian approach

Consider Z0 = (X0,V0) : [0,1]→ R2 a random variable with law
F(0), that is

(Z0)#ds = F(0, x , v) dx dv .

Let Zt = (Xt ,Vt ) evolve as

Ẋt = Vt ,

V̇t = Ē(Xt ) + Ê(Xt ),

Ē = −Ū ′, Ê = −Û ′,
Ū ′′ = 1− %,

Û ′′ = e(Ū+Û)/ε2 − 1,
%(t) = (Xt )#ds.

Then the law F(t) of Zt solves (VPME)ε,2.
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W1 vs. L1 distance

Recall:

W1(µ, ν) = min
X#ds=µ,Y#ds=ν

∫ 1

0
|X (s)− Y (s)|ds.

Let F1,F2 be two solutions of (VPME)ε,2, and choose Z 1
0 , Z 2

0
with law F1(0),F2(0) such that

W1(F1(0),F2(0)) =

∫ 1

0
|Z 1

0 (s)− Z 2
0 (s)|ds.

Then, since W1(F1(t),F2(t)) ≤
∫ 1

0 |Z
1
t (s)− Z 2

t (s)|ds, it is
enough to estimate ∫ 1

0
|Z 1

t (s)− Z 2
t (s)|ds.
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We compute
d
dt

∫ 1

0
|Z 1

t (s)− Z 2
t (s)|ds.

Difficult terms: ∫ 1

0
|Ē1

t (X 1
t )− Ē2

t (X 2
t )|ds

and ∫ 1

0
|Ê1

t (X 1
t )− Ê2

t (X 2
t )|ds.

The first term can be controlled using the explicit form of Ē
(Hauray, 2012):∫ 1

0
|Ē1

t (X 1
t )− Ē2

t (X 2
t )|ds ≤ 8‖%1(t)‖∞

∫ 1

0
|Z 1

t (s)− Z 2
t (s)|ds.
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For the second term we need to carefully use the equation for Û
and its regularity properties to control

∫ 1
0 |Ê

1
t − Ê2

t | in terms of∫ 1
0 |Z

1
t − Z 2

t |.

In the end, we prove

d
dt

∫ 1

0
|Z 1

t − Z 2
t |ds ≤(

1 + 8‖%1(t)‖∞ +
3
ε2 +

1
ε2 e15/(2ε2)‖%1(t)‖∞

)∫ 1

0
|Z 1

t − Z 2
t |ds,

that yields

W1(F1(t),F2(t)) ≤

e(1+3/ε2)t+(8+ 1
ε2 e15/(2ε2))

∫ t
0 ‖%

1(τ)‖∞ dτW1(F1(0),F2(0)).
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Proof of (1): an anisotropic W1 distance

To go back to the original system, we need to relate
W1(F1(t),F2(t)) to W1(f 1(t), f 2(t)).

We prove that

εW1(f 1(εt), f 2(εt)) ≤W1(F1(t),F2(t)) ≤W1(f 1(εt), f 2(εt)),

and we conclude

W1(f 1(t), f 2(t))

≤ 1
ε

e
1
ε

[
(1+3/ε2)t+(8+ 1

ε2 e15/(2ε2))
∫ t

0 ‖ρ
1(τ)‖∞ dτ

]
W1(f 1(0), f 2(0)).
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Remark: For the classical Vlasov-Poisson system, our
argument shows that

W1(f 1(t), f 2(t)) ≤ 1
ε

e
1
ε [t+8

∫ t
0 ‖ρ

1(τ)‖∞ dτ]W1(f 1(0), f 2(0)).
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Quasineutral limit in higher dimensions

The higher dimensional case is more complicated because of
worse estimates for the Poisson equation.

In this case we consider the classical Vlasov-Poisson equation

(VP)ε :=


∂t fε + v · ∇x fε + Eε · ∇v fε = 0,

Eε = −∇xUε,

−ε2∆xUε = ρε − 1,
fε|t=0 = f0,ε ≥ 0,

∫
Td×Rd f0,ε dx dv = 1,
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The energy of this system:

E(fε(t)) :=
1
2

∫
Td×Rd

fε|v |2 dv dx +
ε2

2

∫
Td
|∇xUε|2 dx .

Its formal limit:
∂t f + v · ∇x f + E · ∇v f = 0,

E = −∇xU,
ρ = 1,

f |t=0 = f0 ≥ 0,
∫
Td×Rd f0 dx dv = 1.
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Main result

Theorem (Han-Kwan - I., 2015)
Let d = 2,3. The convergence holds as in the 1D case
provided, in addition, there exist C0, γ > 0 such that:

(uniform estimates)

‖f0,ε‖∞ ≤ C0, E(f0,ε) ≤ C0.

(compact support in velocity)

f0,ε(x , v) = 0 if |v | > 1
εγ
.

We add some correctors taking care of the “plasma
oscillations”.
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Strategy of the proof

(1) We show quantitive strong-strong stability estimates à la
Loeper for (VP)ε.
More precisely, up to suitable correctors, we control
W2(fε(t),gε(t)) in terms of W2(fε(0),gε(0)) and the L∞

norm of
∫

fε dv and
∫

gε dv .
(2) To bound the L∞ norm of

∫
fε dv , we control the growth of

the support in velocity of fε.
(3) We conclude as in the 1D case, by applying Grenier’s

result.
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THAT’S ALL!!
Thanks for your attention!
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