ON THE K_,-FUNCTORS

ERIK KJZAR PEDERSEN

0. STATEMENT OF RESULTS

The functors Ky and K; have well-known descriptions in terms of projectives and auto-
morphisms, respectively. The purpose of this paper is to give analogous descriptions of the
K_;-functors of Bass [1]. In fact given a ring R, we give two descriptions of K_;(R), ¢ > 0;
one as a Whitehead construction on a certain category of R-modules (elements represented
by automorphisms), and one as a Grothendieck construction on a related category of R-
modules (elements represented by objects). The categories in question are associated with
the category of Z‘-graded R-modules and bounded homomorphisms in the following sense:

0.1. Definition. Let R be a ring. A;(R) denotes the category of Zi-graded R-modules and
bounded homomorphisms. This means an object A is a direct sum € i A(jry...,7:) of

R-modules, and a morphism f : A — B is an R-module morphism, such that there exists
k = k(f) satisfying

F(AGL - 3)) € 6D (Bl +hus i+ ).

hs=—k
s=1,...,2

Remark. Ay(R) is just the category of R-modules.

We shall be more interested in the full subcategory of A;(R) with objects A satisfying
A(j1, - .., 7;) are finitely generated free R-modules. This category we denote C;(R). We shall
some times write A; and C; instead of A;(R) and C;(R) when it is clear from the context
which ring we are working with. Since Cy(R) is the category of finitely generated free R-
modules, it is helpful to think of C;(R) as the category of Z'-graded finitely generated free
R-modules and bounded homomorphisms.

In A; as well as C; we have an obvious notion of direct sum (degree-wise). We define a
sequence 0 — A — B — C to be ezact if it is split-exact, i. e. , it is equivalent (in the
category) to the sequence 0 — A — A® B — B — 0. We may now define K; of the category
Ci+1(R). That is the Abelian group generated by [A, a] where A is an object of C;11(R) and
« an automorphism of A, subject to the relations

(A, af] = [A, o] +[A, 7] alnd [B, ] = [A,a] + €]
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when there is a commutative diagram

0 A B C 0
ia iﬁ vy
0 A B 0

with exact rows. Note that this implies that [A, 1] = 0 and further that

{01}

A®B —— A® B,

where 1 : B — A any bounded morphism, represents 0. An isomorphism of this type we
shall call an elementary isomorphism.

0.2. Definition. K’ ,(R) = K1(Ci+1(R)).

Given a category 2 we define the category P2 as follows: An object is an idempotent in
2A,i.e. p: A — A with p?> = p, and a morphism ¢ : (A;,p1) — (A, p2) is a morphism
¢ Ay — Ay so that ¢p; = pa¢. In PC;(R) we have an induced notion of direct sum, so we
may form the Grothendieck group of PC;(R).

0.3. Definition. We define K”,(R) to be the Grothendieck group on the category PC;(R)
with the additional relation [A,0] =0 if i = 0.

We may now state our

MAIN THEOREM. Let R be a ring. Then there are natural isomorphisms
K_(R)= K',(R) = K",(R).

This result indicates that C;.1(R) is some kind of nonconnective delooping of the category
of finitely generated free R-modules. This is indeed the case, and it is the subject of a
forthcoming joint work with C. Weibel.

It is a pleasure to acknowledge useful conversations with Hans J. Munkholm and Douglas
R. Anderson in connection with this work.

1. TueE IsomorpPHISM K’ (R) ~ K",(R)

In this section we define isomorphism ¢* : K’ ,(R) = K”,(R), where s =1,...,i+ 1. The
construction we employ to define ¢* is based on a variation of a well-known construction due
to Bass, Heller and Swan[2]. First we need some definitions. Let A be an object of C;(R).
We define

S+(A)(j17 s 7js> cee 7]1) = A(jla s )js - 17 o ]z) (11)
and
S_(A)(jl, . ,js, e 7]1) = A(jl; . ,js + 1, .. ]2) (12)
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for 1 < s <. There are obvious bounded isomorphism A = s™(A) and A = s~ (A) induced
by the identity, which we denote by st and s~ respectively. Also define

: : AQr,.-5i) if Js =0
A Gy, i) = A 1.3
(s i) {o it . <0, (13)
- . 0 it 5, >0
(s 52) {A(jl,...,ji) if j, <0, (14)

for 1 < s <. The following lemma was pointed out by the referee.

1.5. Lemma. Let A be an object in C;(R). Then [A,1] and [A,0] represent 0 in K" ,(R) if
1> 0.

Proof. Clearly [A,1] = [A'", 1] + [A'", 1] but

o @) - Py
k=1 k=0

and 17 is an isomorphism

@ A1+ ~ @(1+)k<Al+)

k=0 k=1

Note that even though the sum is infinite, it is finite in each degree since A" (J1,---,7:) =0
if j; < 0. This proves [A'",1] = 0 in K”,(R) and [A'~,1] is dealt with similarly. Clearly
[A, 0] can be treated the same way. O

1.6. Remark. Lemma 1.5 proves that any two objects of C;(R), i > 0, are stably isomorphic.

We now proceed to define the isomorphism ¢° : K’ ,(R) = K" ,(R).
Given an object A of Ciyi(R), we have a direct sum decomposition A = A5 @ A" (by
1.3 and 1.4 above). We denote the projection on the first factor by
pP i A— A (1.7)

(the projection on the negative s-half space). Given an automorphism o : A — A in C;11(R),
consider ap® a~!. Assuming o is bounded by k, this is a projection of A which is the identity
on A(J1,- -+, Jsy -+, Jir1) if Js < —2k, and the O—map if j; > 2k. We define ¢°[A, a] by

Ay Jsy s Jinr) = @ A(jrs -5 Jiv1),s
o (1.8)

?*([A, a]) = [A, ap>a™'] — [A,p"].

Several comments are in order here. The term [A, p* ] represents 0 unless i = 0. A nice way

to think of ¢*([A, a]) is to keep the Z"™-grading and notice we are looking at ap® a™! in a
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certain band around j; = 0, the width of the band at least from —2k to 2k. Outside this
band ap® a~! is equal to p? ; hence, when we subtract the restrictions of ap® a=! and p? , the
width of the band does not matter. Actually it is useful to notice that widening the band
corresponds to stabilization.

1.9. Theorem. ¢*° defines an isomorphism K’ ,(R) — K”,(R)

To prove this theorem we first need to see that ¢° respects the relations in the definition
of K" ,(R).

1.10. Lemma. Let A and B be objects of C;x1(R) and v : A® B — A @ B a bounded
projection satisfying

0 ifjo>k

1 ifjs < —k

for some k. Letv: A® B — A® B be an elementary isomorphism with matriz

_ (L :
7—(0 1), n:B— A

Then v and vy~ restricted to a sufficiently big band around j, = 0 represent the same
element of K" ,(R).

Proof. Assume 7 is bounded by [ > k. Define B’ and B” by

B(]l)ujz-i-l if |.]S| §2l
0 if |js| > 21

¢|(A@ B)(jl, ce >ji+1) = {

Bl(jla <. 7ji+1) = {

and B = B’ ® B”. Also define 1/, 1" : B — A as the composites B — B'®0 — B -5 A and
B — 0@ B" — B-L A. Letting

/_17]/ //_177”
7‘(0 1> and 7—(01

it is clear that v =~'-+" =+"-+'. But
,yw,_)/—l — Pylvllw(,_)///)—l(,y/)—l — ’Y'@D(’/)_l-
This follows since 1 is only nontrivial in a small band around j, = 0 and +” is the identity

in a bigger band around j, = 0. But 7/ (y")~! and 1 are equivalent projections in the band
|7s| < 3l since 7/ restricts to an isomorphism of that band, O

This immediately leads to

1.11. Lemma. The construction 1.8 gives a well-defined homomorphism

¢°: K',(R) — K",(R).
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Proof. 1f we have a diagram in C;,1(R)
0—A—A@B—B——0
KA
0—A—A@B—B——0

one easily sees that - (™ @ $71) is an elementary isomorphism. Since ¢* commutes with
direct sum, Lemma 1.10 shows

¢’ ([A® B,1]) = ¢°([A a]) + ¢°([B, 5]). (1.12)
It follows directly from the definition that
¢*(14,1]) = 0 (1.13)

and now the standard identity
(o 5)=6 ) )66 )
0 p 0 1 -6 1)\0 1 0 1 (1.14)
1 0\ /1 -1
G963

and repeated application of Lemma 1.10 shows that if a and [ are isomorphisms of A in
Cit1(R), then

?*([A,af]) =¢*([A@ A af@1]) = ¢°([AD A, a & F])
= ¢°([A, o)) + ¢°([A, 3]).

Here we used (1.13) in the first equality. It is easy to see
1.15. Lemma. The map ¢° is onto.

Proof. Let B be an object of C;(R) and p : B — B a projection. Define A(jy, ..., Jsy .-, Jiv1) =
B(ji, -5 Js—15Jst15 - - -5 Jiy1) and a1 A — A by

Jo = e —2 ~1 0 1 2

A B B B B B (1.16)
N N NN

A B B B B B

This is a standard construction of Swan [5]. We compute ap® a™! to be
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Js = —2 —1 0 1 2
A B B B B B
\Lapsal— \Ll \Ll \LP \LO iO
A B B B B B

so ¢*([a]) = ([B, p])-

The most difficult part of Theorem 1.9 is to prove ¢° is 1-1.
For this we need some condition to ensure elements represent 0 in K’ ,(R).

1.17. Definition. Let o be an automorphism of A in C;;1(R). We say « is split at s-degree

m if the following holds:

jS >m lmphes a(A(jlv s 7.j57' . aji-‘rl)) - @ A(kb' : '7ks7' : '7ki+1)

ky;l#s
ks>m

and

js <m 1mphes a(A<]17 s 7js> cee 7ji+1)) - @ A(kla t ksa R ki—l—l)

ky;l#s
ks<m

Heuristically the point of the definition is that « preserves the two halves of A given by

Js > m and js < m, respectively.

1.18. Lemma. Let o be an automorphism of A in Ciy1(R), which is split at s-degree m.

Then [A, a] represents the trivial element of K’ ;(R).
Proof. Define A" and A” in C;11(R) by

A(jl;---7j$7"‘7ji+l)7 ]sZm

A1, ey Ti =
(1 J Ji+1) {o, i m

and A=A"@ A”.

« restricts to isomorphisms o’ : A" — A" and o' : A” — A" and (A @ A", o/ Ba”)

SO
[A, o] = [A', ]+ [A", "]
We show these two terms are 0. Consider [A’, o/]. We define

B =@@M)'(4A)  and B =H(sH)*A)

and note that 1 @ s* is an isomorphism
lest:B"eoB"= B

= (A7 a)

(1.19)
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in C;11(R). As usual these infinite sums are finite in each degree, so they do make sense.
Conjugating o’ : A" — A’ by (s7)! gives an automorphism (s7)!(A") — (s7)'A’ which we will
denote by (a’);. We now use a trick due to Farrell and Wagoner, really just the so-called
“Eilenberg swindle”:
(A" o] = [B',d & 1]
by stabilization and
del=(dlolela...)
=(@e@)'e@se@;e.Jle(@he @) e...),

so we shall show these two automorphisms represent 0. But conjugating (o/ @ (o/);' @ --+)
by the isomorphism 1.19 gives (B” & B”, 3@ 37') where 8 = (o/ & (a/)y ® (/)4 B -+ +).
We finish off using 1.14 and the fact that elementary automorphisms represent 0 in K’ ;(R).

The other factor is dealt with similarly. O
Next we investigate what it means for some elements to be 0 in K”,(R).

1.20. Lemma. Let A be an object of C;(R) and py,ps projections on A. Then [A, p1]—[A, pa] =
0 € K”,(R) if and only if there are objects A" and A" in C;(R) and an automorphism ¢ of
A A ® A" sothat (poB1®0)-¢=0o¢(p1®1&0).

Proof. The if part is trivial, so assume [A,p;] = [A, pa]. In case ¢ > 0 we conclude there is
a projection ¢ : A — A’ of some object in C;(R) so that (A @ A, p; @ ¢) is isomorphic to
(A A", pa®q). But then (A A’ @A, p1 ®q®(1—q) is isomorphic to (AB A’ B A’ ps, Bgd
(1 —¢q)). Conjugating (A'® A’ q® (1 —q)) by { 2, 1;(1} gives (A'@® A’ 1@ 0) so we obtain
the desired result by letting A” = A’. In case i = 0 we only conclude (A® A’ @ B, p; ®q®0)
is isomorphic to (A @® A’ @ B”,py & ¢ @ 0) since in this case we divide out by terms of the
form (B,0). But then B’ and B” are stably isomorphic and we are reduced to considerations
as above. 0

The proof of Theorem 1.9 is completed by
1.21. Lemma. The map ¢° is monic.

Proof. Assume ¢*([A4,a]) = 0. In the terminology of 1.8 we have [A, ap®a™!] — [4,p*] =
0 in K”,(R). Thus we may use Lemma 1.20 to determine A" and A” in C;(R) so that
(Ae A @ A" ap®a™' © 1@ 0) is isomorphic to (A @ A’ @ A", p* ® 1@ 0). However (A @
AdA ap’at@100)=(AdA @A (a01®)(p> @130)(a®1d1)7!). Since we
can replace (A, a) by (A® B,a ® 1) where

Al(jl?"'a]ia"-ajﬂrl) js =—1
B(j1,-- s Jsr- s Jiv1) = S A1y -+ oy s ooy Jiv1) Js=0
0, otherwise,



8 ERIK KJZAR PEDERSEN

we may thus assume there is an isomorphism 3 : A — A so that Bap®a~' = p* 3. Extending

0 to all A by the identity, we get on all A that Sap® = p® fa. This means that Sa is split
at s-degree 0 so [A, Ba] = 0 by Lemma 1.18. However f3 is the identity outside A, so 3 is
split at s-degree 2k + 1 where k is the bound for «, hence [A, 3] = 0 and thus [4,a] =0. O

This ends the proof of Theorem 1.9

2. THE BASS-HELLER-SWAN HOMOMORPHISMS

In this section we define homomorphisms
A K (R)— KRt tY),  s=1,2,...,i+1,

which will eventually be the Bass-Heller-Swan homomorphisms.

Let [A, o] represent an element of K’ (R). Consider the automorphism p; : A[t,t7!] —
Alt, t71] given by

pi=tp> +(1-p2) (2.1)

(with inverse ¢t~ 'p* + (1 —p?)). Consider the commutator between o (extended to a map of
Alt,t71) and p}, [a, pi]. Since « is bounded and commutes with multiplication by ¢, this is
the identity on A(jy,...,Ji+1) away from a band —k < j; < k, where k is a bound for a. By
restriction as in 1.8 we obtain that [a, p{] is an i-graded bounded R[t,¢~!] automorphism of
Alt,t7'] and we define

M (A, o]) = [Aft, 7], o, pi]l- (2.2)
2.3. Theorem. X} is a well-defined homomorphism of K' ;,(R) — K’ (R[t,t™']).

To prove A respects the relations, we need to consider the following situation: Let A be
an object of C;1o(R) and v an isomorphism of A which is 1 except for some band around
js = 0. Then v may be thought of as an isomorphism of a Z*!-graded object by restriction
and thus defines an element of K’ ;(R). If 8 is a bounded isomorphism of A, then y37! is
also the identity outside a sufficiently big band around j, = 0 and we have

2.4. Lemma. [y] = [8y87'] € K ,(R).

Proof. We stabilize 3y~ to 3y57 @1 on A® A and note that Sy37 ' @1 = (8@ (v®
1)(87'®3). Now we proceed exactly as in Lemma 1.10 using 1.14 to complete the proof. [

Proof of Theorem 2.3. 1t is clear that A\] sends exact sequences a to exact sequences. Now
consider a and 3, two automorphisms of an object A € Ci11(R).

A [Ba] = [Ba,pg] = Bapja™' B (py) !
= Bla, 167" - (6, 7]

and, by Lemma 2.4, B[a, p{]3~! represents the same element as [« pf]. O
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2.5. Theorem. If sy < so, then the diagram

z+1 R[thtl
52 1

51
/ K

KI z+2 R[thtl_l’t??tQ_ID

x /

t2 t1
—H—l (R[t% t2

15 commutative.

Proof. Let p; represent py, for i = 1,2. Given [4, o] € K’ ,(R) we have to compare

Ha>p1]ap2] and Hava]?pl]
on Alty,t7*, 15,5 "] in a band around j,, = 0 and j,, = 0.
Using Lemma 2.4 we see that
[, po] = apocr™'pyt ~ a7 py tap,

as an element of K’ ;(R[t2,t5']), hence

[aap2] = [a—1’p2—1]
. Now
[[ov, p1], p2] = apra™ poapy o ' py
since p; and py; commute, whereas [[a~!, py'],p1] = o 'p; tapia pyap;t. This last expres-
sion however may be conjugated by pya to give apia™'pyap;a'p;t. So applying Lemma
2.4 once again shows the two terms represent the same element, and we are done. 0

2.6. Proposition. There is a standard identification of K| with Ky and of K} = K{ with
Koy under which X\; : Ko(R) — Ky(R[t,t7]) is the usual Bass-Heller-Swan homomorphism.

Proof. K{(R) is equal to K;(R) by definition. We have seen K(R) ~ K{(R) and, if we
send a projection p : R™ — R"™ to im(p) C R", this gives a direct summand (the other
summand being im(1 — p)) and thus a finitely generated projective. On the other hand, if P
is projective, we may find () such that P @ () = R" and 1p @ O¢ will define the appropriate
projection. If ¢ : P, — P5 is an isomorphism of projectives, the diagram

¢D1do~ el
Pe@Q®P®Qs

P Q1 ® P ® Q2
i 180B0@0 J/ 1608080 (2.7)
PeQ®P®Q: P,oQ1d P D Qo

shows that the corresponding projections are equivalent in K{/(R), so KJ(R) is isomorphic
to Ko(R). The usual Bass-Heller-Swan homomorphism is described as follows: Let P be

Po1oo @1
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a finitely generated projective R-module. Choose @ so that P & @ = R™ and send [P] to
[P[t,t7'] @ Q[t,t7'],t ® 1]. In terms of projections this means that p : R" — R™ is sent to
tp+1—p: R[t,t71" — R[t,t71". If we are given [A, a] € K|(R), the corresponding element
in KY/(R) is given by [A, ap_a™'] — [A,p_] where A = ®F__, A(3).

The Bass-Heller-Swan construction thus gives tap_a™ +1—ap_a™)(tp_ +1—p_)"' =
alt-p-+1—p)at(tp_- +1—p_)"' = [a,p]. This completes the proof. O

We wish to show that the Aj-homomorphisms we have constructed are split monomor-
phisms. The idea is to define a map K’ (R[t,t7!]) — K’ ,(R) using the t-powers to give
an extra grading. However given a Z’-graded R[t,t™!] isomorphism « : A[t, t7!] — A[t,t71],
we do not have a bound on the powers of ¢ that may occur in expressing o. Hence we may
not get a bounded isomorphism when we use the t-powers as gradings. This is the reason
for the following slightly artificial step.

2.8. Definition. Let R be a ring. We define Ci(R)[J, J71Y where J = (t1,...,t,) as fol-
lows: We denote R[ti,t;!,... ,tr,t; ] by R[J,J7!], and given an R-module A, we denote
the R[J, J Y-module A[t;,#;", ... t.,t-!] by A[J,J7]. An object of C;(R)[J, J~] is just an
object of C;(R), but a morphism A = Bis an R[J, J7']-morphism A[J, J™'] — B[J, J7!]
that can be written as a finite sum o = > 1" - -t vy, ... ., Where ayy, ... », are morphisms

We also need the category PC;(R)[J,J7'] and the result analogous to Section 1:

2.9. Lemma. K;(C;(R)[J,J7') =& Ko(PC;/(R)[J,J7]) for i > 0 and K{(C;(R)[J, J7]) is
isomorphic to Ko(PC;i(R)[J, J~Y]) with the extra relations induced by [A, 0] = 0.

Proof. We define ¢* as in section 1, and note there are no infinite compositions, so everything
we do in Section 1 (which corresponds to J = (}) goes right through. d

We define
K7(R[J, J7Y) = K1 (Cop (R, T71). (2.10)

2.11. Remark. There is an obvious map K7,(R[J, J7']) — K’ (R[J, J~']) induced by sending
[A, o] to [A[J,J71],a]. By construction Xj : K’ (R) — K’ ,(R[t,t"']) factors through
K',  (R[t,t7Y]) — K’ (R[t,t71]). It is also clear that \{ generalizes to

X K7 (R[J,JY)) — KPURT, T4 6,67Y)
,t71) we will be able
]) =K z+1(R[t7t ])

Consider an element [B, 3] of K7 | (R[J, J~',t,t71]) where J = (t1,...,1,) as above. We
define

. Thinking of A] in this way as a homomorphism K’ ;(R) — K*, (R[t
to define a left inverse, and we shall then eventually show K*, | (R[t, ¢~

Oty s divr) = BUn - Jsr o Gie) [, T (#9),
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the R[J,J']-submodule of B(ji,...,Jjs:--.,jis1)[J, J7U[t,t7] generated by t*. We may
clearly consider 3 an R[J, J~!]-module isomorphism of C'. Since the condition that 3 (and
£71) may be written as a sum only involving finitely many t-powers will ensure that 3 is
a bounded Z™*!-graded automorphism of C, we may define 1 : K”!  (R[J, ', t,t7"]) —
K’,(R[J,J7"]) by
i ([B, B]) = [C, B]. (2.12)
Popularly speaking p; is the identity, only we consider the ¢-powers an extra grading
placed at the sth coordinate.

2.13. Proposition. p; is a well-defined homomorphism and pij - \j =1

Proof. We consider the case K’ ;(R) X, Kt (R[t,t7']) &% K’,(R) and note the argument
we give carries over to the general case as in the proof of Lemma 2.9.

The fact that 5 may be written as a finite sum y  #3; ensures that § becomes a bounded
automorphism of C. Since i is essentially the identity, it will respect all relations. To
prove that uf - AJ is the identity, consider an element of K’ (R). Using Theorem 1.9 (see in
particular Lemma 1.15) we may assume « is of the form

Js = - —2 —1 0 1 2
B B B B B
B B B B B

where B is an object of C;(R) and p : B — B a projection. It is easy to compute the
commutator [, p;], and we get

Js = ... 9 -1 0 1 9
B B B B B
[a,pf] = - ll ll ltpﬂp ll J{1
B B B B B

so Aj([a]) = [Blt,t™'],tp+ 1 —pl.
When we turn the t-powers into gradings we get back a on the nose, so we are done. [

As mentioned above (Remark 2.11) we get amap K”,(R[J, J7']) — K’ ,(R[J, J~!]) sending
[A, a] to [A[J, J7],a]. This map induces an isomorphism.

2.14. Proposition. K7,(R[J,J7|) = K' (R[J, J71)).
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Proof. The proof is by induction on ¢, the induction starting with ¢ = —1. In this case
the R[J, J !]-module is finitely generated so it is no restriction to require a bound on the
powers of t; (remember J = (t1,...,t,)). The slight difference between A[J, J~!] where A is
a finitely generated free R-module, and a finitely generated free R[J, J~']-module causes no
trouble. Assume inductively that K7, ,(R[J,J7Y]) — K’ ,(R[J,J7']) is an isomorphism
for all rings R. In the commutative diagram

K7 (R[J, T K'(R[J,J71])

K (R I 6 t7) ——= KL (R, T 4071 ) <— KL (BRI ETY) (2.15)
K (R[J,J7Y) K’ (R[J,J7])

the middle horizontal maps are isomorphisms by induction hypothesis. Since p} - A} = 1, it
follows that K“,(R[J, J7']) — K’ (R|[J,J7']) is an isomorphism. O

In view of Proposition 2.13 and 2.14 we have proved the following:

2.16. Theorem. X\ : K’ ,(R) — K',(R[t,t7']) is a split monomorphism with left inverse
given by K’ (R[t,t™1]) = K* (R[t,t""]) 5 K" (R).

We have not discussed how A; and u; depend on s. Note, that if g € Gl(i + 1,Z) is
used to regrade an object A of Ciy1(R) by A9(j1, ..., jir1) = A(g(J1, - - -, Jir1)), the identity
1y : A9 — Ais not a bounded automorphism of A9. But if « is a bounded automorphism
of A, 19041;1 is a bounded automorphism of AY. This defines an action of GI(i + 1,Z) on
K_;(R) which is given by

2.17. Lemma. g € Gl(i + 1,Z) acts on K’ ,(R) by multiplication by det(g).

Proof. First we show that if g is elementary, g = E,s(a), the action is trivial. If [A, o]

1t

is regraded by g we get the composite AY 4% A, A9 But Af([Ag,lglalg]) =
[A[t, t71]9,[1;'aly, pf]] and since 1, and pj commute, we get [A[t,t7']9, 1 [a,p;]1,] and
restrict to a band around j, = 0. But g = E,4(a), so 1, is a bounded isomorphism when
restricted to a band around j; = 0, hence this last element is equivalent to [A[t, t~!], [a, p;]]
which represents AJ([A, a]). Since A is a monomorphism, we are done. We now only need
to see how ¢, which acts on Z™! by multiplying the sth coordinate by —1, acts. A typical
element [a] € K’ ,(R) may be written (by Theorem 1.9)



ON THE K_;-FUNCTORS 13

Js = -2 -1 0 1 2
B B B B B
N Y VNS
B B B B B

which is mirrored about j, = 0 by g to give a™!, so g acts by —1. This completes the
proof. O

2.18. Corollary. \it' = —)\¢: K’ ,(R) — K, 1 (R[t,t7]) and
pith =g KL (R EY) — KL(R).

Proof. Let 7 be the transposition that interchanges the sth and s + 1th coordinate. Then
Ao =X and pitt =7 s O

In view of 2.18 we shall denote A}, i} by A, i1, respectively, and note that
pp = (=0, X = (1) (2.19)

Proof of Main Theorem. One possible definition of K_; 1(R) is by induction as the intersec-
tion of the images of the Bass-Heller-Swan homomorphisms

K_i(R[t,,t7"]) = K i1 (R[tr, 17 1o, 85])

and
K_i(R[ta, t57]) — K_i1(R[tr, 7" 1, 1571)).

Our proof will be by induction on the statement K’ ;(R) = K_;(R) by an isomorphism
under which the image of A, : K’ (R) — K_;1(R[t,t7!]) is sent to the image of the
usual Bass-Heller-Swan homomorphism. The start of the induction is proposition 2.6.
Denoting Ai,, Aty fhey s fit, DY A1, A, i1, io respectively, we have a homomorphism Ay - Ay :
K', ((R) — K_i 1(R[t1,t; ", t2,t5']). Theorem 2.5 implies A\pA; = —A Ay s0 im(Xo)\;) is
contained in (imA; N (imA;) = K_;_;(R) (by induction hypothesis). Ay\; is a monomor-
phism by Proposition 2.13. To show it is epic let a € K_;1(R). Consider a as an element
of K_ iy 1(R[t1,t7", t2,t5"]). By induction hypothesis a = (b)) = Ay(b2) and, by 2.13,
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by = pi(a), by = po(a). The diagram
—1 1(R>

1
y &\

K’ Rlts, t5 ] K' (R[t,t;']) (2.20)

_H_lR[tla tl ’ t27 t2 ]

is commutative since one way sends [a] to [a, pj,] and then turns ¢;-powers into a grading,
whereas the other way around turns t,-powers into a grading and then takes the commutator
with p; . Hence pody = —Aipe and we get AoAi(—popi(a)) = Aopiodjii(a) = a, so ApAy is
onto. This completes the proof of the Main Theorem. O

3. FINAL REMARKS

In geometric applications one is usually not considering an automorphism « : A — A, but
rather an isomorphism « : A — B. This, however, only makes a difference in the category
Co(R) since if p* : A — A is the projection 1.7 we may consider ap® a~!. The restriction to a
band around j; = 0 gives a projection, which is 1 if j, < 0 and 0 if j5 > 0. Hence the width
of the band only matters in case ¢ = 0; in all other cases we have a well-defined invariant
in K_;(R). For i = 0 we have to divide out by identity projections to get a well-defined
invariant. _

This amounts to getting an invariant in Ky(R). With the obvious notion of a contractible

chain-complex in the category C; 1 (R) we thus get an associated K_;(R)-invariant (K_;(R) =
K_;(R) for i > 0). Also associated to a homotopy projection of a C;(R) chain complex, we
get a K_;(R)-invariant (using the methods of [4], see [3] for a proof). These ideas are further
developed in [3]. Altogether a number of results due to Quinn can be given “standard”
proofs using this description of the K_;-functors.
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