
ON THE K−i-FUNCTORS

ERIK KJÆR PEDERSEN

0. Statement of results

The functors K0 and K1 have well-known descriptions in terms of projectives and auto-
morphisms, respectively. The purpose of this paper is to give analogous descriptions of the
K−i-functors of Bass [1]. In fact given a ring R, we give two descriptions of K−i(R), i ≥ 0;
one as a Whitehead construction on a certain category of R-modules (elements represented
by automorphisms), and one as a Grothendieck construction on a related category of R-
modules (elements represented by objects). The categories in question are associated with
the category of Zi-graded R-modules and bounded homomorphisms in the following sense:

0.1. Definition. Let R be a ring. Ai(R) denotes the category of Zi-graded R-modules and
bounded homomorphisms. This means an object A is a direct sum

⊕
j1,...,ji

A(j1, . . . , ji) of
R-modules, and a morphism f : A → B is an R-module morphism, such that there exists
k = k(f) satisfying

f(A(j1, . . . , ji)) ⊆
k⊕

hs=−k
s=1,...,i

(B(j1 + h1, . . . , ji + hi).

Remark. A0(R) is just the category of R-modules.

We shall be more interested in the full subcategory of Ai(R) with objects A satisfying
A(j1, . . . , ji) are finitely generated free R-modules. This category we denote Ci(R). We shall
some times write Ai and Ci instead of Ai(R) and Ci(R) when it is clear from the context
which ring we are working with. Since C0(R) is the category of finitely generated free R-
modules, it is helpful to think of Ci(R) as the category of Zi-graded finitely generated free
R-modules and bounded homomorphisms.

In Ai as well as Ci we have an obvious notion of direct sum (degree-wise). We define a
sequence 0 → A → B → C to be exact if it is split-exact, i. e. , it is equivalent (in the
category) to the sequence 0 → A→ A⊕B → B → 0. We may now define K1 of the category
Ci+1(R). That is the Abelian group generated by [A,α] where A is an object of Ci+1(R) and
α an automorphism of A, subject to the relations

[A,αβ] = [A,α] + [A, β] and [B, β] = [A,α] + [C, γ]
1
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when there is a commutative diagram

0 // A

α

��

// B

β
��

// C

γ

��

// 0

0 // A // B // C // 0

with exact rows. Note that this implies that [A, 1] = 0 and further that

A⊕B

{
1 η
0 1

}
−−−−→ A⊕B,

where η : B → A any bounded morphism, represents 0. An isomorphism of this type we
shall call an elementary isomorphism.

0.2. Definition. K ′
−i(R) = K1(Ci+1(R)).

Given a category A we define the category PA as follows: An object is an idempotent in
A, i. e. p : A → A with p2 = p, and a morphism φ : (A1, p1) → (A2, p2) is a morphism
φ : A1 → A2 so that φp1 = p2φ. In PCi(R) we have an induced notion of direct sum, so we
may form the Grothendieck group of PCi(R).

0.3. Definition. We define K ′′
−i(R) to be the Grothendieck group on the category PCi(R)

with the additional relation [A, 0] = 0 if i = 0.

We may now state our

Main Theorem. Let R be a ring. Then there are natural isomorphisms

K−i(R) ∼= K ′
−i(R) ∼= K ′′

−i(R).

This result indicates that Ci+1(R) is some kind of nonconnective delooping of the category
of finitely generated free R-modules. This is indeed the case, and it is the subject of a
forthcoming joint work with C. Weibel.

It is a pleasure to acknowledge useful conversations with Hans J. Munkholm and Douglas
R. Anderson in connection with this work.

1. The Isomorphism K ′
−i(R) ' K ′′

−i(R)

In this section we define isomorphism φs : K ′
−i(R) ∼= K ′′

−i(R), where s = 1, . . . , i+ 1. The
construction we employ to define φs is based on a variation of a well-known construction due
to Bass, Heller and Swan[2]. First we need some definitions. Let A be an object of Ci(R).
We define

s+(A)(j1, . . . , js, . . . , ji) = A(j1, . . . , js − 1, . . . ji) (1.1)

and

s−(A)(j1, . . . , js, . . . , ji) = A(j1, . . . , js + 1, . . . ji) (1.2)
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for 1 ≤ s ≤ i. There are obvious bounded isomorphism A ∼= s+(A) and A ∼= s−(A) induced
by the identity, which we denote by s+ and s− respectively. Also define

As+

(j1, . . . , ji) =

{
A(j1, . . . , ji) if js ≥ 0

0 if js < 0,
(1.3)

As−(j1, . . . , ji) =

{
0 if js ≥ 0

A(j1, . . . , ji) if js < 0,
(1.4)

for 1 ≤ s ≤ i. The following lemma was pointed out by the referee.

1.5. Lemma. Let A be an object in Ci(R). Then [A, 1] and [A, 0] represent 0 in K ′′
−i(R) if

i > 0.

Proof. Clearly [A, 1] = [A1+
, 1] + [A1− , 1] but

A1+ ⊕
∞⊕

k=1

(1+)k(A1+

) =
∞⊕

k=0

(1+)k(A1+

)

and 1+ is an isomorphism
∞⊕

k=0

(1+)k(A1+

) ∼=
∞⊕

k=1

(1+)k(A1+

)

Note that even though the sum is infinite, it is finite in each degree since A1+
(j1, . . . , ji) = 0

if j1 < 0. This proves [A1+
, 1] = 0 in K ′′

−i(R) and [A1−, 1] is dealt with similarly. Clearly
[A, 0] can be treated the same way. �

1.6. Remark. Lemma 1.5 proves that any two objects of Ci(R), i > 0, are stably isomorphic.

We now proceed to define the isomorphism φs : K ′
−i(R) ∼= K ′′

−i(R).

Given an object A of Ci+1(R), we have a direct sum decomposition A = As− ⊕ As+
(by

1.3 and 1.4 above). We denote the projection on the first factor by

ps
− : A→ A (1.7)

(the projection on the negative s-half space). Given an automorphism α : A→ A in Ci+1(R),
consider αps

−α
−1. Assuming α is bounded by k, this is a projection of A which is the identity

on A(j1, . . . , js, . . . , ji+1) if js < −2k, and the 0-map if js > 2k. We define φs[A,α] by

A(j1, . . . , ĵs, . . . , ji+1) =
2k⊕

js=−2k

A(j1, . . . , ji+1),

φs([A,α]) = [A,αps
−α

−1]− [A, ps
−].

(1.8)

Several comments are in order here. The term [A, ps
−] represents 0 unless i = 0. A nice way

to think of φs([A,α]) is to keep the Zi+1-grading and notice we are looking at αps
−α

−1 in a
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certain band around js = 0, the width of the band at least from −2k to 2k. Outside this
band αps

−α
−1 is equal to ps

−; hence, when we subtract the restrictions of αps
−α

−1 and ps
−, the

width of the band does not matter. Actually it is useful to notice that widening the band
corresponds to stabilization.

1.9. Theorem. φs defines an isomorphism K ′
−i(R) → K ′′

−i(R)

To prove this theorem we first need to see that φs respects the relations in the definition
of K ′

−i(R).

1.10. Lemma. Let A and B be objects of Ci+1(R) and ψ : A ⊕ B → A ⊕ B a bounded
projection satisfying

ψ|(A⊕B)(j1, . . . , ji+1) =

{
0 if js > k

1 if js < −k
for some k. Let γ : A⊕B → A⊕B be an elementary isomorphism with matrix

γ =

(
1 η
0 1

)
, η : B → A

Then ψ and γψγ−1 restricted to a sufficiently big band around js = 0 represent the same
element of K ′′

−i(R).

Proof. Assume η is bounded by l > k. Define B′ and B′′ by

B′(j1, . . . , ji+1) =

{
B(j1, . . . , ji+1 if |js| ≤ 2l

0 if |js| > 2l

and B = B′ ⊕B′′. Also define η′, η′′ : B → A as the composites B → B′ ⊕ 0 → B
η−→ A and

B → 0⊕B′′ → B
η−→ A. Letting

γ′ =

(
1 η′

0 1

)
and γ′′ =

(
1 η′′

0 1

)
it is clear that γ = γ′ · γ′′ = γ′′ · γ′. But

γψγ−1 = γ′γ′′ψ(γ′′)−1(γ′)−1 = γ′ψ(γ′)−1.

This follows since ψ is only nontrivial in a small band around js = 0 and γ′′ is the identity
in a bigger band around js = 0. But γ′ψ(γ′)−1 and ψ are equivalent projections in the band
|js| ≤ 3l since γ′ restricts to an isomorphism of that band, �

This immediately leads to

1.11. Lemma. The construction 1.8 gives a well-defined homomorphism

φs : K ′
−i(R) → K ′′

−i(R).
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Proof. If we have a diagram in Ci+1(R)

0 // A

α

��

// A⊕B

γ

��

// B

β

��

// 0

0 // A // A⊕B // B // 0

one easily sees that γ · (α−1 ⊕ β−1) is an elementary isomorphism. Since φs commutes with
direct sum, Lemma 1.10 shows

φs([A⊕B, γ]) = φs([A,α]) + φs([B, β]). (1.12)

It follows directly from the definition that

φs([A, 1]) = 0 (1.13)

and now the standard identity(
β−1 0
0 β

)
=

(
1 β−1

0 1

) (
1 0
−β 1

) (
1 β−1

0 1

) (
1 −1
0 1

)
(

1 0
1 1

) (
1 −1
0 1

) (1.14)

and repeated application of Lemma 1.10 shows that if α and β are isomorphisms of A in
Ci+1(R), then

φs([A,αβ]) = φs([A⊕ A,αβ ⊕ 1]) = φs([A⊕ A,α⊕ β])

= φs([A,α]) + φs([A, β]).

�

Here we used (1.13) in the first equality. It is easy to see

1.15. Lemma. The map φs is onto.

Proof. LetB be an object of Ci(R) and p : B → B a projection. DefineA(j1, . . . , js, . . . , ji+1) =
B(j1, . . . , js−1, js+1, . . . , ji+1) and α : A→ A by

js = . . . −2 −1 0 1 2 . . .

A

=α

��
. . .

!!C
CC

CC
CC

CC B

1−p

��

p

!!D
DD

DD
DD

D B

1−p

��

p

!!B
BB

BB
BB

B B

1−p

��

p

  @
@@

@@
@@

B

1−p

��

p

  @
@@

@@
@@

B

1−p

��   B
BB

BB
BB

BB
. . .

A B B B B B

(1.16)

This is a standard construction of Swan [5]. We compute αps
−α

−1 to be
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js = . . . −2 −1 0 1 2 . . .

A

αps
−α−1

��
= . . .

B

1
��

B

1
��

B

p

��

B

0
��

B

0
��

. . .

A B B B B B

so φs([α]) = ([B, p]). �

The most difficult part of Theorem 1.9 is to prove φs is 1-1.
For this we need some condition to ensure elements represent 0 in K ′

−i(R).

1.17. Definition. Let α be an automorphism of A in Ci+1(R). We say α is split at s-degree
m if the following holds:

js ≥ m implies α(A(j1, . . . , js, . . . , ji+1)) ⊂
⊕
kl;l 6=s
ks≥m

A(k1, . . . , ks, . . . , ki+1)

and
js < m implies α(A(j1, . . . , js, . . . , ji+1)) ⊂

⊕
kl;l 6=s
ks<m

A(k1, . . . , ks, . . . , ki+1)

Heuristically the point of the definition is that α preserves the two halves of A given by
js ≥ m and js < m, respectively.

1.18. Lemma. Let α be an automorphism of A in Ci+1(R), which is split at s-degree m.
Then [A,α] represents the trivial element of K ′

−i(R).

Proof. Define A′ and A′′ in Ci+1(R) by

A′(j1, . . . , js, . . . , ji+1) =

{
A(j1, . . . , js, . . . , ji+1), js ≥ m

0, js < m

and A = A′ ⊕ A′′.
α restricts to isomorphisms α′ : A′ → A′ and α′′ : A′′ → A′′ and (A′⊕A′′, α′⊕α′′) = (A,α)

so
[A,α] = [A′, α′] + [A′′, α′′].

We show these two terms are 0. Consider [A′, α′]. We define

B′ =
∞⊕
l=0

(s+)l(A′) and B′′ =
∞⊕
l=0

(s+)2l(A′)

and note that 1⊕ s+ is an isomorphism

1⊕ s+ : B′′ ⊕B′′ ∼= B′ (1.19)
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in Ci+1(R). As usual these infinite sums are finite in each degree, so they do make sense.
Conjugating α′ : A′ → A′ by (s+)l gives an automorphism (s+)l(A′) → (s+)lA′ which we will
denote by (α′)l. We now use a trick due to Farrell and Wagoner, really just the so-called
“Eilenberg swindle”:

[A′, α′] = [B′, α′ ⊕ 1]

by stabilization and

α′ ⊕ 1 = (α′ ⊕ 1⊕ 1⊕ 1⊕ . . .)

= (α′ ⊕ (α′)−1
1 ⊕ (α′)2 ⊕ (α′)−1

3 ⊕ . . .)(1⊕ (α′)1 ⊕ (α′)−1
2 ⊕ . . .),

so we shall show these two automorphisms represent 0. But conjugating (α′ ⊕ (α′)−1
1 ⊕ · · · )

by the isomorphism 1.19 gives (B′′ ⊕B′′, β ⊕ β−1) where β = (α′ ⊕ (α′)2 ⊕ (α′)4 ⊕ · · · ).
We finish off using 1.14 and the fact that elementary automorphisms represent 0 inK ′

−i(R).
The other factor is dealt with similarly. �

Next we investigate what it means for some elements to be 0 in K ′′
−i(R).

1.20. Lemma. Let A be an object of Ci(R) and p1,p2 projections on A. Then [A, p1]−[A, p2] =
0 ∈ K ′′

−i(R) if and only if there are objects A′ and A′′ in Ci(R) and an automorphism φ of
A⊕ A′ ⊕ A′′ so that (p2 ⊕ 1⊕ 0) · φ = φ(p1 ⊕ 1⊕ 0).

Proof. The if part is trivial, so assume [A, p1] = [A, p2]. In case i > 0 we conclude there is
a projection q : A′ → A′ of some object in Ci(R) so that (A ⊕ A′, p1 ⊕ q) is isomorphic to
(A⊕A′, p2⊕q). But then (A⊕A′⊕A′, p1⊕q⊕ (1−q) is isomorphic to (A⊕A′⊕A′, p2,⊕q⊕
(1− q)). Conjugating (A′ ⊕A′, q ⊕ (1− q)) by

{
q 1−q

1−q q

}
gives (A′ ⊕A′, 1⊕ 0) so we obtain

the desired result by letting A′′ = A′. In case i = 0 we only conclude (A⊕A′⊕B′, p1⊕q⊕0)
is isomorphic to (A ⊕ A′ ⊕ B′′, p2 ⊕ q ⊕ 0) since in this case we divide out by terms of the
form (B, 0). But then B′ and B′′ are stably isomorphic and we are reduced to considerations
as above. �

The proof of Theorem 1.9 is completed by

1.21. Lemma. The map φs is monic.

Proof. Assume φs([A,α]) = 0. In the terminology of 1.8 we have [A,αps
−α

−1] − [A, ps
−] =

0 in K ′′
−i(R). Thus we may use Lemma 1.20 to determine A′ and A′′ in Ci(R) so that

(A ⊕ A′ ⊕ A′′, αps
−α

−1 ⊕ 1 ⊕ 0) is isomorphic to (A ⊕ A′ ⊕ A′′, ps
− ⊕ 1 ⊕ 0). However (A ⊕

A′ ⊕ A′′, αps
−α

−1 ⊕ 1⊕ 0) = (A⊕ A′ ⊕ A′′, (α ⊕ 1⊕ 1)(ps
− ⊕ 1⊕ 0)(α ⊕ 1⊕ 1)−1). Since we

can replace (A,α) by (A⊕B,α⊕ 1) where

B(j1, . . . , js, . . . , ji+1) =


A′(j1, . . . , ĵs, . . . , ji+1) js = −1

A′′(j1, . . . , ĵs, . . . , ji+1) js = 0

0, otherwise,
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we may thus assume there is an isomorphism β : A→ A so that βαps
−α

−1 = ps
−β. Extending

β to all A by the identity, we get on all A that βαps
− = ps

−βα. This means that βα is split

at s-degree 0 so [A, βα] = 0 by Lemma 1.18. However β is the identity outside A, so β is
split at s-degree 2k+1 where k is the bound for α, hence [A, β] = 0 and thus [A,α] = 0. �

This ends the proof of Theorem 1.9

2. The Bass-Heller-Swan homomorphisms

In this section we define homomorphisms

λs
t : K ′

−i(R) → K ′
−i(R[t, t−1]), s = 1, 2, . . . , i+ 1,

which will eventually be the Bass-Heller-Swan homomorphisms.
Let [A,α] represent an element of K ′

−i(R). Consider the automorphism ps
t : A[t, t−1] →

A[t, t−1] given by

ps
t = tps

− + (1− ps
−) (2.1)

(with inverse t−1p+
− + (1− ps

−)). Consider the commutator between α (extended to a map of
A[t, t−1]) and ps

t , [α, ps
t ]. Since α is bounded and commutes with multiplication by t, this is

the identity on A(j1, . . . , ji+1) away from a band −k ≤ js ≤ k, where k is a bound for α. By
restriction as in 1.8 we obtain that [α, ps

t ] is an i-graded bounded R[t, t−1] automorphism of
A[t, t−1] and we define

λs
t([A,α]) = [A[t, t−1], [α, ps

t ]]. (2.2)

2.3. Theorem. λs
t is a well-defined homomorphism of K ′

−i(R) → K ′
−i+1(R[t, t−1]).

To prove λs
t respects the relations, we need to consider the following situation: Let A be

an object of Ci+2(R) and γ an isomorphism of A which is 1 except for some band around
js = 0. Then γ may be thought of as an isomorphism of a Zi+1-graded object by restriction
and thus defines an element of K ′

−i(R). If β is a bounded isomorphism of A, then βγβ−1 is
also the identity outside a sufficiently big band around js = 0 and we have

2.4. Lemma. [γ] = [βγβ−1] ∈ K ′
−i(R).

Proof. We stabilize βγβ−1 to βγβ−1⊕ 1 on A⊕A and note that βγβ−1⊕ 1 = (β⊕β−1)(γ⊕
1)(β−1⊕β). Now we proceed exactly as in Lemma 1.10 using 1.14 to complete the proof. �

Proof of Theorem 2.3. It is clear that λs
t sends exact sequences a to exact sequences. Now

consider α and β, two automorphisms of an object A ∈ Ci+1(R).

λs
t [βα] = [βα, ps

t ] = βαps
tα

−1β−1(ps
t)
−1

= β[α, ps
t ]β

−1 · [β, ps
t ]

and, by Lemma 2.4, β[α, ps
t ]β

−1 represents the same element as [α, ps
t ]. �
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2.5. Theorem. If s1 < s2, then the diagram

K ′
−i+1(R[t1, t

−1
1 ])

λ
s2−1
t2

**TTTTTTTTTTTTTTTT

K ′
−i(R)

λ
s1
t1

77nnnnnnnnnnnn

λ
s2
t2 ''PPPPPPPPPPPP

K ′
−i+2(R[t1, t

−1
1 , t2, t

−1
2 ])

K ′
−i+1(R[t2, t

−1
2 ]))

λ
s1
t1

44jjjjjjjjjjjjjjjj

is commutative.

Proof. Let pi represent pti for i = 1, 2. Given [A,α] ∈ K ′
−i(R) we have to compare

[[α, p1], p2] and [[α, p2], p1]

on A[t1, t
−1
1 , t2, t

−1
2 ] in a band around js1 = 0 and js2 = 0.

Using Lemma 2.4 we see that

[α, p2] = αp2α
−1p−1

2 ∼ α−1p−1
2 αp2

as an element of K ′
−i+1(R[t2, t

−1
2 ]), hence

[α, p2] = [α−1, p−1
2 ]

. Now
[[α, p1], p2] = αp1α

−1p2αp
−1
1 α−1p−1

2

since p1 and p2 commute, whereas [[α−1, p−1
2 ], p1] = α−1p−1

2 αp1α
−1p2αp

−1
1 . This last expres-

sion however may be conjugated by p2α to give αp1α
−1p2αp

−1
1 α−1p−1

2 . So applying Lemma
2.4 once again shows the two terms represent the same element, and we are done. �

2.6. Proposition. There is a standard identification of K ′
1 with K1 and of K ′

0 = K ′′
0 with

K0 under which λt : K0(R) → K1(R[t, t−1]) is the usual Bass-Heller-Swan homomorphism.

Proof. K ′
1(R) is equal to K1(R) by definition. We have seen K ′

0(R) ' K ′′
0 (R) and, if we

send a projection p : Rn → Rn to im(p) ⊂ Rn, this gives a direct summand (the other
summand being im(1− p)) and thus a finitely generated projective. On the other hand, if P
is projective, we may find Q such that P ⊕Q = Rn and 1P ⊕ 0Q will define the appropriate
projection. If φ : P1 → P2 is an isomorphism of projectives, the diagram

P1 ⊕Q1 ⊕ P2 ⊕Q2

1⊕0⊕0⊕0
��

φ⊕1⊕φ−1⊕1 // P2 ⊕Q1 ⊕ P1 ⊕Q2

1⊕0⊕0⊕0
��

P1 ⊕Q1 ⊕ P2 ⊕Q2
φ⊕1⊕φ−1⊕1 // P2 ⊕Q1 ⊕ P1 ⊕Q2

(2.7)

shows that the corresponding projections are equivalent in K ′′
0 (R), so K ′′

0 (R) is isomorphic
to K0(R). The usual Bass-Heller-Swan homomorphism is described as follows: Let P be
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a finitely generated projective R-module. Choose Q so that P ⊕ Q = Rn and send [P ] to
[P [t, t−1] ⊕ Q[t, t−1], t ⊕ 1]. In terms of projections this means that p : Rn → Rn is sent to
tp+1−p : R[t, t−1]n → R[t, t−1]n. If we are given [A,α] ∈ K ′

0(R), the corresponding element
in K ′′

0 (R) is given by [A,αp−α
−1]− [A, p−] where A = ⊕k

l=−kA(i).
The Bass-Heller-Swan construction thus gives tαp−α

−1 + 1− αp−α
−1)(tp− + 1− p−)−1 =

α(t · p− + 1− p−)α−1(tp− + 1− p−)−1 = [α, pt]. This completes the proof. �

We wish to show that the λs
t -homomorphisms we have constructed are split monomor-

phisms. The idea is to define a map K ′
−i+1(R[t, t−1]) → K ′

−i(R) using the t-powers to give
an extra grading. However given a Zi-graded R[t, t−1] isomorphism α : A[t, t−1] → A[t, t−1],
we do not have a bound on the powers of t that may occur in expressing α. Hence we may
not get a bounded isomorphism when we use the t-powers as gradings. This is the reason
for the following slightly artificial step.

2.8. Definition. Let R be a ring. We define Ci(R)[J, J−1] where J = (t1, . . . , tr) as fol-
lows: We denote R[t1, t

−1
1 , . . . , tr, t

−1
r ] by R[J, J−1], and given an R-module A, we denote

the R[J, J−1]-module A[t1, t
−1
1 , . . . , tr, t

−1
r ] by A[J, J−1]. An object of Ci(R)[J, J−1] is just an

object of Ci(R), but a morphism A → B is an R[J, J−1]-morphism A[J, J−1] → B[J, J−1]
that can be written as a finite sum α =

∑
tn1
1 · · · tnr

r αna,··· ,nr , where αn1,··· ,nr are morphisms
in Ci(R).

We also need the category PCi(R)[J, J−1] and the result analogous to Section 1:

2.9. Lemma. K1(Ci(R)[J, J−1]) ∼= K0(PCi(R)[J, J−1]) for i > 0 and K1(Ci(R)[J, J−1]) is
isomorphic to K0(PCi(R)[J, J−1]) with the extra relations induced by [A, 0] = 0.

Proof. We define φs as in section 1, and note there are no infinite compositions, so everything
we do in Section 1 (which corresponds to J = ∅) goes right through. �

We define

KJ
−i(R[J, J−1]) = K1(Ci+1(R)[J, J−1]). (2.10)

2.11. Remark. There is an obvious map KJ
−i(R[J, J−1]) → K ′

−i(R[J, J−1]) induced by sending
[A,α] to [A[J, J−1], α]. By construction λs

t : K ′
−i(R) → K ′

−i+1(R[t, t−1]) factors through
Kt
−i+1(R[t, t−1]) → K ′

−i+1(R[t, t−1]). It is also clear that λs
t generalizes to

λs
t : KJ

−i(R[J, J−1]) → KJ,t
−i (R[J, J−1, t, t−1])

. Thinking of λs
t in this way as a homomorphism K ′

−i(R) → Kt
−i+1(R[t, t−1]) we will be able

to define a left inverse, and we shall then eventually showKt
−i+1(R[t, t−1]) ∼= K ′

−i+1(R[t, t−1]).

Consider an element [B, β] of KJ,t
−i+1(R[J, J−1, t, t−1]) where J = (t1, . . . , tr) as above. We

define

C(j1, . . . , js, . . . , ji+1) = B(j1, . . . , ĵs, . . . , ji+1)[J, J
−1](tjs),
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the R[J, J−1]-submodule of B(j1, . . . , ĵs, . . . , ji+1)[J, J
−1][t, t−1] generated by tjs . We may

clearly consider β an R[J, J−1]-module isomorphism of C. Since the condition that β (and
β−1) may be written as a sum only involving finitely many t-powers will ensure that β is

a bounded Zi+1-graded automorphism of C, we may define µs
t : KJ,t

−i+1(R[J, J−1, t, t−1]) →
KJ
−i(R[J, J−1]) by

µs
t([B, β]) = [C, β]. (2.12)

Popularly speaking µs
t is the identity, only we consider the t-powers an extra grading

placed at the sth coordinate.

2.13. Proposition. µs
t is a well-defined homomorphism and µs

t · λs
t = 1

Proof. We consider the case K ′
−i(R)

λs
t−→ Kt

−i(R[t, t−1])
µs

t−→ K ′
−i(R) and note the argument

we give carries over to the general case as in the proof of Lemma 2.9.
The fact that β may be written as a finite sum

∑
tjβj ensures that β becomes a bounded

automorphism of C. Since µs
t is essentially the identity, it will respect all relations. To

prove that µs
t · λs

t is the identity, consider an element of K ′
−i(R). Using Theorem 1.9 (see in

particular Lemma 1.15) we may assume α is of the form

js = . . . −2 −1 0 1 2 . . .

=α . . . p

!!C
CC

CC
CC

CC B

1−p

��

p

!!D
DD

DD
DD

D B

1−p

��

p

!!B
BB

BB
BB

B B

1−p

��

p

  @
@@

@@
@@

B

1−p

��

p

  @
@@

@@
@@

B

1−p

��   B
BB

BB
BB

BB
. . .

B B B B B

where B is an object of Ci(R) and p : B → B a projection. It is easy to compute the
commutator [α, ps

t ], and we get

js = . . . −2 −1 0 1 2 . . .

[α, ps
t ] = . . .

B

1
��

B

1
��

B

tp+1−p

��

B

1
��

B

1
��

. . .

B B B B B

so λs
t([α]) = [B[t, t−1], tp+ 1− p].

When we turn the t-powers into gradings we get back α on the nose, so we are done. �

As mentioned above (Remark 2.11) we get a mapKJ
−i(R[J, J−1]) → K ′

−i(R[J, J−1]) sending
[A,α] to [A[J, J−1], α]. This map induces an isomorphism.

2.14. Proposition. KJ
−i(R[J, J−1]) ∼= K ′

−i(R[J, J−1]).
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Proof. The proof is by induction on i, the induction starting with i = −1. In this case
the R[J, J−1]-module is finitely generated so it is no restriction to require a bound on the
powers of ti (remember J = (t1, . . . , tr)). The slight difference between A[J, J−1] where A is
a finitely generated free R-module, and a finitely generated free R[J, J−1]-module causes no
trouble. Assume inductively that KJ

−i+1(R[J, J−1]) → K ′
−i+1(R[J, J−1]) is an isomorphism

for all rings R. In the commutative diagram

KJ
−i(R[J, J−1]) //

λ1
t
��

K ′
−i(R[J, J−1])

λt
1

��

KJ,t
−i+1(R[J, J−1, t, t−1])

µ1
t

��

// K ′
−i+1(R[J, J−1, t, t−1]) Kt

−i+1(R[J, J−1][t, t−1])oo

µ1
t

��

KJ
−i(R[J, J−1]) // K ′

−i(R[J, J−1])

(2.15)

the middle horizontal maps are isomorphisms by induction hypothesis. Since µ1
t · λ1

t = 1, it
follows that KJ

−i(R[J, J−1]) → K ′
−i(R[J, J−1]) is an isomorphism. �

In view of Proposition 2.13 and 2.14 we have proved the following:

2.16. Theorem. λs
t : K ′

−i(R) → K ′
−i(R[t, t−1]) is a split monomorphism with left inverse

given by K ′
−i(R[t, t−1]) ∼= Kt

−i(R[t, t−1])
µs

t−→ K ′
−i(R).

We have not discussed how λs
t and µs

t depend on s. Note, that if g ∈ Gl(i + 1,Z) is
used to regrade an object A of Ci+1(R) by Ag(j1, . . . , ji+1) = A(g(j1, . . . , ji+1)), the identity
1g : Ag → A is not a bounded automorphism of Ag. But if α is a bounded automorphism
of A, 1gα1−1

g is a bounded automorphism of Ag. This defines an action of Gl(i + 1,Z) on
K−i(R) which is given by

2.17. Lemma. g ∈ Gl(i+ 1,Z) acts on K ′
−i(R) by multiplication by det(g).

Proof. First we show that if g is elementary, g = Ers(a), the action is trivial. If [A,α]

is regraded by g we get the composite Ag 1g−→ A
α−→ A

1−1
g−−→ Ag. But λs

t([A
g, 1−1

g α1g]) =

[A[t, t−1]g, [1−1
g α1g, p

s
t ]] and since 1g and ps

t commute, we get [A[t, t−1]g, 1−1
g [α, ps

t ]1g] and
restrict to a band around js = 0. But g = Ers(a), so 1g is a bounded isomorphism when
restricted to a band around js = 0, hence this last element is equivalent to [A[t, t−1], [α, ps

t ]]
which represents λs

t([A,α]). Since λs
t is a monomorphism, we are done. We now only need

to see how g, which acts on Zi+1 by multiplying the sth coordinate by −1, acts. A typical
element [α] ∈ K ′

−i(R) may be written (by Theorem 1.9)
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js = . . . −2 −1 0 1 2 . . .

=α . . .
!!C

CC
CC

CC
CC B

1−p

��

p

!!D
DD

DD
DD

D B

1−p

��

p

!!B
BB

BB
BB

B B

1−p

��

p

  @
@@

@@
@@

B

1−p

��

p

  @
@@

@@
@@

B

1−p

��   B
BB

BB
BB

BB
. . .

B B B B B

which is mirrored about js = 0 by g to give α−1, so g acts by −1. This completes the
proof. �

2.18. Corollary. λs+1
t = −λs

t : K ′
−i(R) → K ′

−i+1(R[t, t−1]) and
µs+1

t = −µs
t : K ′

−i+1(R[t, t−1]) → K ′
−i(R).

Proof. Let τ be the transposition that interchanges the sth and s + 1th coordinate. Then
λs

t · τ = λs+1
t and µs+1

t = τ · µs
t . �

In view of 2.18 we shall denote λ1
t , µ

1
t by λt, µt, respectively, and note that

µs
t = (−1)s−1µt, λs

t = (−1)sλt. (2.19)

Proof of Main Theorem. One possible definition of K−i−1(R) is by induction as the intersec-
tion of the images of the Bass-Heller-Swan homomorphisms

K−i(R[t1, t
−1
1 ]) → K−i+1(R[t1, t

−1
1 , t2, t

−1
2 ])

and

K−i(R[t2, t
−1
2 ]) → K−i+1(R[t1, t

−1
1 , t2, t

−1
2 ]).

Our proof will be by induction on the statement K ′
−i(R) ∼= K−i(R) by an isomorphism

under which the image of λt : K ′
−i(R) → K−i+1(R[t, t−1]) is sent to the image of the

usual Bass-Heller-Swan homomorphism. The start of the induction is proposition 2.6.
Denoting λt1 , λt2 , µt1 , µt2 by λ1, λ2, µ1, µ2 respectively, we have a homomorphism λ2 · λ1 :
K ′
−i−1(R) → K−i+1(R[t1, t

−1
1 , t2, t

−1
2 ]). Theorem 2.5 implies λ2λ1 = −λ1λ2 so im(λ2λ1) is

contained in (imλ1 ∩ (imλ1) = K−i−1(R) (by induction hypothesis). λ2λ1 is a monomor-
phism by Proposition 2.13. To show it is epic let a ∈ K−i+1(R). Consider a as an element
of K−i+1(R[t1, t

−1
1 , t2, t

−1
2 ]). By induction hypothesis a = λ1(b1) = λ2(b2) and, by 2.13,



14 ERIK KJÆR PEDERSEN

b1 = µ1(a), b2 = µ2(a). The diagram

K ′
−i−1(R)

λs
t1

))RRRRRRRRRRRRRR

K ′
−iR[t2, t

−1
2 ]

µs+1
t2

66lllllllllllll

λt1

s

((RRRRRRRRRRRRR
K ′
−i(R[t1, t

−1
1 ])

K ′
−i+1R[t1, t

−1
1 , t2, t

−1
2 ]

µs
t2

55lllllllllllll

(2.20)

is commutative since one way sends [α] to [α, ps
t1
] and then turns t2-powers into a grading,

whereas the other way around turns t2-powers into a grading and then takes the commutator
with ps

t1
. Hence µ2λ1 = −λ1µ2 and we get λ2λ1(−µ2µ1(a)) = λ2µ2λ1µ1(a) = a, so λ2λ1 is

onto. This completes the proof of the Main Theorem. �

3. Final Remarks

In geometric applications one is usually not considering an automorphism α : A→ A, but
rather an isomorphism α : A → B. This, however, only makes a difference in the category
C0(R) since if ps

− : A→ A is the projection 1.7 we may consider αps
−α

−1. The restriction to a
band around js = 0 gives a projection, which is 1 if js � 0 and 0 if js � 0. Hence the width
of the band only matters in case i = 0; in all other cases we have a well-defined invariant
in K−i(R). For i = 0 we have to divide out by identity projections to get a well-defined
invariant.

This amounts to getting an invariant in K̃0(R). With the obvious notion of a contractible

chain-complex in the category Ci+1(R) we thus get an associated K̃−i(R)-invariant (K̃−i(R) =
K−i(R) for i > 0). Also associated to a homotopy projection of a Ci(R) chain complex, we

get a K̃−i(R)-invariant (using the methods of [4], see [3] for a proof). These ideas are further
developed in [3]. Altogether a number of results due to Quinn can be given “standard”
proofs using this description of the K−i-functors.
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