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Abstract: Glomerular podocytes are highly differentiated cells that cover glomerular capillaries from
the outside and have a characteristic morphology with numerous foot processes. The formation of
slit membranes between the foot processes serves as a final filtration barrier for urine filtration from
the blood. Podocyte damage causes disruption of the slit membrane, subsequent proteinuria and
finally glomerulosclerosis, which is a common pathway in various types of chronic kidney disease
(CKD). In recent years, there has been an increase in diabetes, due to rapid lifestyle changes, which is
the main cause of CKD. Therefore, understanding the effect of diabetic status on podocytes is of great
importance to establish a strategy for preventing CKD progression. In this review, we summarize
altered glucose and lipid metabolism in diabetic podocytes and also discuss the reversibility of the
changes in podocyte phenotype.

Keywords: podocyte; high glucose; lipotoxicity; diabetic nephropathy

1. Introduction

Chronic kidney disease (CKD), defined as evidence of structural or functional renal
impairment for 3 or more months, is generally progressive and irreversible. The global
prevalence of diabetes mellitus (DM) has increased over the past few decades, mainly
driven by an increase in the prevalence of type 2 diabetes mellitus (T2DM) due to obesity
and the metabolic syndrome [1,2]. Microvascular changes within the kidney often lead to
chronic kidney disease, an entity referred to as diabetic nephropathy (DN) [3]. DN is the
most common cause of CKD and end-stage kidney disease worldwide [4].

It has recently become clear that the initial glomerular injury affects the podocytes
as important target cells for the progression of CKD and end-stage kidney disease [5].
Podocytes are highly differentiated epithelial cells that cover the outer layer of the glomeru-
lar basement membrane. Podocytes serve as the final barrier to urinary protein loss through
the special formation of foot processes and an interposed slit diaphragm. As podocytes are
terminally differentiated cells without a capacity for proliferation or replenishment, chronic
injury causes phenotypical changes, detachment and apoptosis in podocytes, leading to
disruption of the slit membrane and finally glomerulosclerosis [6,7].

Therefore, understanding podocyte phenotype and function in diabetes is necessary
for CKD management and for considering future therapeutic targets. This review sum-
marizes podocyte injury in diabetes, focusing on not only the effect of high glucose itself,
but also lipotoxicity that is frequently associated with diabetes.

2. Effects of Hyperglycemia on Podocytes in Diabetic Nephropathy (DN)

Hyperglycemia induces a podocytopathy, characterized by cellular hypertrophy, foot
process effacement, and podocyte depletion. It is suggested that podocytes may respond to
injurious stimuli in different ways, including hypertrophy, dedifferentiation, detachment
and depletion, depending on the severity and duration of the injury [8]. Some of the new
mechanisms that drive the effects of hyperglycemia on podocytes and possible therapeutic
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targets are discussed below, divided into chapters by types of podocyte morphological
changes, because the function of podocytes primarily depends on their structure and
morphology. The key molecules in the impact of hyperglycemia on podocytes in DN are
summarized in Table 1.

Glycemic control is the main determinant to prevent the progression to overt DN.
Improvement in HbA1c decelerates glomerular filtration rate (GFR) loss and delays the
onset of End stage renal diseases (ESRD) in patients with type 1 diabetes mellitis (T1DM)
and proteinuria [9]. Moreover, 10 years after pancreas transplantation in type 2 diabetes
mellitus (T2DM) under normoglycemia, glomerular lesions were markedly improved,
which suggests that the lesions of diabetic nephropathy are reversible and that the kidney
can undergo remodeling upon long-term normoglycemia [10]. On the other hand, large
clinical trials of diabetes have suggested that even transient treatments or injuries could
have a sustained effect on the onset or progression of complications for longer periods,
which is known as ‘metabolic memory’ [11–14]. One of possible mechanisms of the
memory is epigenetic alteration. Recent studies indicate that specific DNA methylation
of blood or kidney cells in diabetic patients may be associated with development of
the nephropathy [15–17]. Therefore, better understanding of epigenetic regulation in
podocytes is necessary when considering the reversibility or plasticity of podocyte damage
following therapeutic approaches in DN. Epigenetic alterations in diabetic podocytes are
also described.

2.1. Podocyte Hypertrophy

Previous studies of animal models and humans have established that podocyte hyper-
trophy is associated with the development of DN [18,19]. Angiotensin II has been shown
to increase the expression of parathyroid hormone-related protein (PTHrP), Transformin
Growth Factor β1 (TGF-β1), and cell cycle regulatory protein-p27Kip, which promotes the
aggravation of podocyte hypertrophy in high-glucose conditions [20]. Several studies have
suggested that mTORC1 (mechanistic target of rapamycin signaling complex 1), a kinase
that senses nutrient availability, was upregulated in podocyte of diabetic mice, and closely
associated with the activation of podocyte hypertrophy induced by high glucose [21].
Inoki et al. have reported that abnormal mTORC1 activation caused mislocalization of slit
diaphragm proteins and induced endoplasmic reticulum (ER) stress in podocytes, which
suggest mTORC1 activation in podocytes is a critical event in inducing DN [22]. Moreover,
knockout of Ragulator component p18, recruiting of mTORC1 to lysosomal membranes,
attenuated its activation and cell injury under diabetic conditions. This points to mTOR-
lysosome recruitment as a potential therapeutic target for the treatment of DN [23].

2.2. Foot Process Effacement

Foot process effacement is a cytoskeletal rearrangement of podocytes reflected by
flattening, widening, and retraction of foot processes that signifies podocyte injury and
weakening of the integrity of the glomerular filter barrier, thereby leading to albumin-
uria in DN [24,25]. Dysregulation of nephrin, an essential transmembrane protein in the
slit diaphragm complex [26,27], is an important mechanism of foot process effacement.
The expression of nephrin is decreased in DN, resulting in aberrant rearrangement of
actin and breakdown of the slit diaphragm and foot process effacement [28]. Mislocal-
ization of nephrin has been also observed in DN [29]. Several studies have suggested
that protein kinase C α-type (PKCα) was upregulated under hyperglycemia and mediates
beta-arrestin2-dependent nephrin endocytosis [30,31]. Protein kinase C and casein kinase
substrate in neurons protein 2(PACSIN2) has also been reported as a molecule involved
in nephrin endocytosis [29]. Endpcytosis of nephrin is a promising target molecule for
podocyte protective therapy in DN.
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Table 1. Key molecules associated with high glucose in podocytes.

Key Molecules Effect on Podocytes Mechanism Experimental Model Expression Ref.

mTORC1

Hypertyophy
Foot process
effacement

GBM thickening
podocyte loss

Mislocalization of nephrin,
ER stress db/db mice increase [21,22]

PKCα
Foot process
effacement Endocytosis of nephrin STZ mice

DN, human increase [30,31]

Integrinα3β Podocyte detachment connecting podocytes
with the 7GBM

STZ rats
DN, human decrease [32,33]

NOX4 Foot process
effacement ROS production ApoE(−/−) mice increase [34]

NOX5
Foot process
effacement

GBM thickening
ROS production DN, human increase [35]

TRPC5
Foot process
effacement

Podocyte loss

cytoskeletal
rearrangement Dhal SS rats increase [36,37]

TRPC6 Podocyte apoptosis

intracellular Ca(2+)
overload,

NOX4-derived ROS
production

Dhal SS rats increase [38]

Dnmt1 Foot process
effacement

DNA methylation in the
nephrin promoter region db/db mice increase [39]

KLF4 Foot process
effacement

DNA methylation in the
nephrin promoter region

db/db mice
DN, human decrease [40,41]

KAT5 Foot process
effacement Impaired DNA repair db/db mice decrease [42]

mTORC1: mechanistic target of rapamycin complex1, PKCα: Protein kinase Cα, NOX4: nicotinamide adenine dinucleotide phosphate
oxdase4,NOX5: nicotinamide adenine dinucleotide phosphate oxdase5, TRPC5: Transient receptor potential cation channel, subfamily
C, member 5, TRPC6: Transient receptor potential cation channel, subfamily C, member 6, Dnmt1: DNA (cytosine-5)-methyltransferase
1, KLF4: Krüppel-like transcription factor 4, GBM: glomerular basement membrane, ER: endoplasmic reticulum, ROS: Reactive Oxygen
Species, STZ: Streptozocin, DN: diabetic nephropathy, ApoE(−/−): apo E deficiency, Dhal SS: Dhal salt sensitive.

The reduction of nephrin expression by DN results in not only foot process effacement
but also insulin signaling alternation, because the cytoplasmic tail of nephrin is necessary
for proper insulin signaling [43]. Mice with podocyte-specific deletion of the insulin recep-
tor develop significant albuminuria together with histological features that recapitulate DN
in a normoglycemia, which reveals insulin signaling to the podocyte is critical for kidney
function [8].

2.3. Podocyte Detachment and Apoptosis

The podocyte and glomerular basement membrane (GBM) are closely connected to
prevent proteinuria by sustaining the glomerular filtration barrier. Integrin α3β is an im-
portant receptor that can tightly connect podocytes with the GBM. The expression of α3β1
has been shown to be decreased in patients with diabetes and in rats with streptozotocin-
induced diabetes, contributing to detachment of podocytes from the GBM [32,33]. Podocyte
apoptosis is caused by glomerular hyperfiltration as well as hyperglycemia itself. Several
studies have shown that TGF-β induces apoptosis in podocytes by stimulating mitogen-
activated protein kinase (MAPK) p38 signaling and the classic effector caspase-3 pathway
in DN [44,45]. Podocyte apoptosis under high-glucose conditions is associated with the
release of mitochondrial and plasma membrane reactive oxygen species (ROS) that trigger
the p38MAPK and nicotinamide adenine dinucleotide phosphate oxidases (NOX) signaling
pathways [46,47]. In the rodent kidney, three isoforms of the catalytic subunit of nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase are expressed (NOX1, NOX2,
and NOX4). Nox4 is the main source of renal ROS in a mouse model of DN [34]. NOX5
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has been recently reported to be upregulated in human DN podocytes, and alter filtration
barrier function through the production of ROS [35]. ROS has obtained increasing attention
in recent years as a therapeutic target for DN, as we know bardoxolone methyl, an oral
antioxidant inflammation modulator, improves renal function in patients with advanced
CKD and T2DM [48]. Several reports have shown that NOX inhibition in vivo reduces
albuminuria and podocytopenia in models of diabetes [49,50]. Furthermore, pharmacologi-
cal inhibition of NOX1 and -4 reduces albuminuria and slows DN progression in a T2DM
model [51]. Transient receptor potential canonical 6 (TRPC6) channel is reported to play a
critical role on podocyte ROS. High glucose levels have been shown to induce podocyte
apoptosis by stimulating TRPC6 channel-mediated elevation of intracellular calcium in
the presence of elevated ROS levels [52]. Recent studies demonstrated that angiotensin
II enhances albuminuria by activating TRPC6 channels in podocytes, and this pathway
is required the production of ROS [53,54]. Furthermore, it has been reported that NOX4-
derived ROS is associated with TRPC5/TRPC6 channels [38]. In regard to TRPC5, TRPC5
is activated by Rac-1, which induces podocyte damage [36]. AC1903, A small-molecule
inhibitor of TRPC5, suppressed severe proteinuria and prevented podocyte loss in a rat
model of hypertensive proteinuric kidney disease, which indicates TRPC5 inhibitors may
be valuable for the treatment of progressive kidney diseases [37].

2.4. Epigenetic Regulation in Diabetic Podocytes

Recently, the link between altered gene expression and epigenetic regulation has at-
tracted much attention in CKD, especially that due to DN. Previously, we showed increased
DNA methylation at the nephrin promoter region in podocytes of murine models of DN
and patients with DN, which is associated with decreased expression of the transcription
factor Kruppel-like factor 4 (KLF4) [40,41]. Zhang et al. also reported a role of DNA methy-
lation in the nephrin promoter region by DNA methyltransferase (DNMT) 1, which may be
a possible target for the treatment of DN [39]. Regarding histone modifications, it has been
reported that hyperglycemia causes direct modification of histone acetylation status [55].
Interestingly, Rizotte et al. demonstrated that altered histone acetylation and methylation
in diabetic podocytes were sustained even after correction of glycemic control to the normal
range by continuous insulin administration [56]. This result indicates the possibility that
persistent epigenetic changes in podocytes may contribute to ‘metabolic memory’, which is
the persistent effect of transient treatments or injuries on disease progression. These results
indicate the possibility that podocyte phenotype may be recovered if altered epigenetic
marks could be reversed. Previously we have reported that podocyte phenotype could be
recovered by transient restoration of KLF4 expression in podocytes using the Tet-on system,
with reversed DNA methylation status [41]. Up to now, it is still unclear the intensity and
duration of treatment which is necessary to cause epigenetic recovery in podocytes. Further
study is needed to investigate the reversibility and plasticity of the podocyte epigenome in
each stage of DN.

2.5. DNA Damage and Hyperglycemia

We have discussed epigenetic modifications and the development of CKD, but the
process of formation of such epigenetic changes has remained unclear. We have recently
focused on the involvement of DNA damage repair in DNA methylation changes in
podocytes, since they are terminally differentiated cells without DNA replication. A DNA
repair factor lysine acetyltransferase 5 (KAT5) was found to be essential for the maintenance
of the podocyte genomic integrity and hyperglycemia was shown to decrease the expression
of KAT5 as well as to increase DNA damage in podocytes. Therefore, both of these induce
DNA methylation changes in podocytes, which may be involved in the pathogenesis
of diabetic nephropathy. [42]. This provides a novel possibility linking podocyte DNA
damage to epigenetic changes in metabolic diseases [57]. In humans, it is feasible to evaluate
podocyte DNA damage and the expression of DNA methylation modulators using urine-
derived cells in patients with diabetes and/or hypertension [58]. Thus, podocyte DNA
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damage and DNA methylation may be a hopeful target of a diagnostic marker as well as
a novel therapy for conquering against DN. When considering epigenetic regulation as a
target for DN treatment, such as DNMT1, the problem of side effects always arises. Because
DNA damage repair system is specific to cell types [57], factors associated with DNA
damage repair may be a hopeful therapeutic target regulating epigenetic status. Future
studies are necessary to investigate how to induce epigenetic changes only in the target
cells.

3. Effects of Lipotoxicity on Podocytes in DN

Hyperglycemia induced metabolic alterations play critical roles in disease initiation,
but a cluster of factors, including dyslipidemia and hypertension, could play a role in
inducing onset and progression of DN [59]. Evidence has been accumulated to suggest
that dyslipidemia is one of the risk factors for progression and regression of diabetic
nephropathy [60–63]. Reduced plasma triglyceride levels in T2DM patients with treat-
ment of fenofibrate result in reduction of albuminuria [64]. Improvement of elevation of
serum low-density lipoprotein (LDL)-cholesterol with treatment was associated with an
improvement in annual changes in estimated glomerular filtration rate (eGFR) [65]. These
observations support the notion of lipid-lowering therapies could provide beneficial effects
on dyslipidemia-mediated kidney injury.

Birnkkoetter et al. reported that in mice, podocytes rely primarily on anaerobic
glycolysis to maintain glomerular filtration barrier and are relatively insensitive to defect
in mitochondrial biogenesis during ischemia damage [66]. Instead, as lipid accumulation
is commonly observed in patients with CKD, podocytes are rather sensitive to cellular
lipid-mediated glomerular injury [67]. One evolving area of research has focused on
the role of lipotoxicity in podocyte damage in DN. Lipotoxicity, which is a disruptive
process caused by lipid accumulation in non-adipose tissue, resulting in cell damage and
cell death, is closely associated with the pathogenesis of these diseases. Intracellular lipid
accumulation causes insulin resistance, the production of reactive oxygen species (ROS) and
endoplasmic reticulum stress, all of which could cause renal damage. Several molecules
have been reported to be involved in the effects of lipid accumulation on podocytes as
described below Table 2 summarizes the key molecules involved in cholesterol and free
fatty acids accumulation separately.

Table 2. Key molecules associated with lipotoxicity in podocytes.

Key Molecules Effect on Podocytes Mechanism Experimental Model Expression Ref

ABCA1 Cholesterol
accumulation

efflux of
cholesterol

NOD mice
T2DM human decrease [68,69]

ABCG1 efflux of
cholesterol T2DM human decrease [68]

ACAT1 convert cholesterol
to ester SHL mice decrease [70]

CD36 FFA accumulation Transporter of FFA

HFD mice
SHL mice
AS mice

T2DM human

increase [71–74]

FATP4 Transporter of FFA ORG human increase [75]
FABP Transporter of FFA db/db mice increase [76]

ABCA1: ATP-binding cassette subfamily A member 1, ABCG1: ATP-binding cassette subfamily G member 1, ACAT1: Acetyl-Coenzyme
A acetyltransferase 1, FATP4: fatty acid transport protein 4, FABP: Fatty Acid-Binding Protein, FFA: free fatty acids, NOD: Non-obese
diabetic, SHL: apo E deficiency spontaneously hyperlipidemic, HFD: high-fat diet feeding, AS: Alport syndrome, ORG: obesity-related-
glomerulopathy.
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3.1. Cholesterol Accumulation and Podocytes

The accumulation of cholesterol in podocytes has been shown in diabetic nephropathy
(DN) to be involved in the development of glomerular sclerosis [77–79]. In addition to
DN, clinical studies have shown a similar accumulation of cholesterol in patients with
atherosclerosis and focal segmental glomerulosclerosis (FSGS) [68,80,81]. ATP-binding
cassette transporters, such as ATP-binding cassette subfamily A member 1 (ABCA1) and
ABC subfamily G member 1 (ABCG1), have important roles in cholesterol efflux to high-
density lipoprotein (HDL) acceptors and have recently been noted for their association
with CKD. The expression of ABCA1 is reduced in type 1 diabetic mice [69]. Similarly,
in type 2 diabetic mice, the downregulation of ABCA1 and ABCG1 has been reported,
leading to lipid accumulation [68]. Recently, Ducasa et al. have reported that podocyte-
specific deletion of ABCA1 rendered mice susceptible to DKD and the accumulation of
mitochondrial cardiolipin, and in mice with DN, an increase in cardiolipin oxidation was
observed and a cardiolipin peroxidase inhibitor treatment reversed DKD progression, with
improvements in podocyte number [82]. The involvement of the renin-angiotensin system
(RAS) in cholesterol metabolism in podocytes has been extensively studied. Angiotensin II
has been reported to induce the accumulation of cholesterol in mouse podocytes, which
was related to the expression of genes including ABCA1 and ABCG1 [83]. In addition,
we have also reported that in a mouse model of hyperlipidemia, treatment with high-dose
angiotensin receptor blockers (ARBs) reduced cholesterol accumulation in the glomerulus
and improved proteinuria. The suggested mechanism might involve reduced expression
of biglycan, a lipid-retaining proteoglycan, and ACAT1, which converts cholesterol to
ester, resulting in a relative increase in free cholesterol for lipid release [70]. Although an
important role of RAS in CKD development and progression is widely recognized, it would
be of great interest to understand the effect of activated RAS on CKD, focusing on lipid
accumulation.

3.2. Free Fatty Acids (FFAs) and Triglycerides

Triglycerides (TGs) are lipids that form lipid droplets, and free fatty acids (FFAs) accu-
mulate intracellularly as TGs. Increased uptake of FFAs in podocytes has been observed in
DN [79].

CD36 is a multifunctional transmembrane glycoprotein that acts as a transporter for
FFA uptake in the kidney, where it plays a main role in FFA uptake in tubular epithelial
cells, podocytes and mesangial cells, and is also important in the development of CKD [84].
CD36 is elevated in both mouse models and in humans in the presence of kidney dam-
age [85]. CD36 has been shown to be associated with lipid accumulation in patients with
diabetes [71,72]. In addition to DN and in Alport model mice, lipid accumulation with
elevated CD36 has been recognized [73]. In podocytes, CD36 mediated FFA uptake in-
creases ROS, leading to apoptosis [86–88]. In addition to CD36, other transporters for FFA
uptake include fatty acid transport protein 4 (FATP4) and fatty acid-binding protein (FABP).
FATP4 is upregulated in podocytes in a diabetic model and is involved in TG accumulation
and cell damage [75]. H-FABP has been reported to be expressed specifically in podocytes
and is associated with proteinuria in a mouse model of diabetes and in patients with
obesity-related nephropathy [76].

3.3. Ketone Bodies and Mechanistic Target of Rapamycin Signaling Complex 1 (mTORC1)

Ketone bodies are produced from fatty acid degradation in the liver in the state of
glucose depletion, such as fasting, and are known to be an important alternative energy
source that is quickly utilized in place of glucose in other tissues. In recent years, ketone
bodies have also attracted attention for their role as mediators of nutrient signals in cells [89].
One of the nutrient-sensing signals is mTORC1, which is upregulated in podocytes and
tubular cells in mouse models of diabetes and in patients with DM [22,90]. Administration
of ketones to a mouse model of diabetes suppressed mTORC1, decreased proteinuria,
and prevented podocyte damage. Sodium glucose cotransporter 2 (SGLT2) is known to
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increase the blood levels of ketones, and the renoprotective effects of SGLT2 have been
reported to be associated with elevated ketones and inhibition of mTORC1 [91]. In addition
to DN, ketone administration produces similar changes in 5/6 nephrectomized mice and
polycystic kidney disease (PKD) model mice, which indicates that time-restricted feeding
and ketogenic diets that promote ketosis attenuate mTORC1 signaling and inhibit PKD
progression [92].

4. Summary

This review summarizes podocyte damage caused by high glucose and lipotoxicity in
diabetes as shown in Figure 1. Recent advances in research techniques such as single-cell
analysis and epigenetic analysis, are revealing the biology of podocytes in detail. As a
characteristic feature of glomerular podocytes, their damage is directly linked to kidney
dysfunction and renal prognosis. Epigenetic alteration in podocytes may be important
to discuss the reversibility of podocyte phenotype following therapeutic intervention.
Understanding metabolic alterations in diabetic podocytes is important to investigate
novel strategies for the treatment of ever-increasing DN.
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