Selective degeneration of neocortical callosal pyramidal neurons by noninvasive laser illumination was used for directed studies of neocortical transplantation, to test the hypothesis that transplanted embryonic neurons may seek to restore normal cytoarchitecture within an appropriately permissive local environment. At long wavelengths that penetrate through tissue without major absorption, photolysis can cause extremely selective degeneration to desired subpopulations of targeted neurons in vivo (Macklis and Madison, 1991; Madison and Macklis, 1993). Cell death is geographically defined and slowly progressive, allowing control over the anatomical substrate for transplantation. Targeting occurs by retrograde incorporation of cytolytic chromophores that are activated by specific-wavelength light. Intermixed neurons, glia, axons, blood vessels, and connective tissue remain intact.

Degeneration was effected within neocortical lamina II/III of neonatal mouse pups following targeting in utero or early postnatally with photoactive nanospheres. Total neuron density was reduced typically by 25–30% within defined areas, with approximately 60% loss of large projection neurons and no change in the number of small, presumptive interneurons. Embryonic day 17 neocortical cell suspensions, which included recently postmitotic neurons destined to form lamina II/III, were transplanted lateral to these regions of ongoing neuron degeneration in juvenile mice. Cellular injection sites spanned laminae II–V, to provide donor neurons with both lateral and laminar choice for possible migration and integration. Donor cells were labeled in vitro with unique fluorescent and electron-dense nanospheres that allowed distinct identification of donor cells at both light and electron microscopic levels. Control experiments included neocortical transplants into intact age-matched hosts, into hosts with kainic acid lesions to neocortex, or distant to the region of photolytic neuronal degeneration; embryonic cerebellar transplants to the regions of selective photolytic degeneration; and grafts of hypoosmotically lysed neocortical cells to lesioned regions. After survival times of 1 hr to 12 weeks, labeled neurons were identified morphologically and positions were digitized for qualitative and quantitative analysis of position and specificity of migration and cellular integration; electron microscopy was used to confirm further the donor identities of migrated neurons. Neurons placed near host zones of photolytic neuron degeneration migrated up to 780 μm specifically within these zones; approximately 44% of donor neurons migrated significantly beyond the injection site to enter these regions. Migration and integration did not occur in normal, unaffected deeper layers IV–VI of these experimental mice, or in the normal lamina II/III bordering the transplantation site on the side opposite the neuron-deficient region. Control grafts of all five types revealed only minimal local spread without laminar preference. Donor neurons within the photolytic degeneration zones largely assumed a pyramidal neuron morphology and extended early processes; neurons outside these regions and in controls were morphologically nonpyramidal. These results suggest that transplanted neocortex seeks to restore normal cytoarchitecture in these selectively neuron-deficient zones, using age-specific cues from normal development that may be reexpressed to guide migration and integration to vacant neuronal "addresses."

[Key words: neocortex, transplantation, mouse, laser, nanospheres, lesion, graft, embryo, integration, migration, cell culture, development, degeneration, photolysis]

Significant research effort is being applied toward the transplantation of immature or genetically modified neurons to study factors critical to normal and perturbed development, and potentially to repopulate injured regions of the CNS (Gage and Fisher, 1991). Such studies of neuronal transplantation are of special relevance to potential future therapy for developmental or degenerative neocortical injury. A model system of "targeted" neuronal subpopulation injury in rodents that provides selective, defined, and localized neuronal degeneration (Madison and Macklis, 1989a,b, 1993; Macklis and Madison, 1991) now allows careful dissection of key individual effects on the migration, structural integration, and function of immature neocortical neurons transplanted into the neocortex of selectively and anatomically localized neuron-deficient hosts.
Many studies involving the transplantation of immature neurons or genetically altered cell lines have dealt with systems in which transplanted cells might alter function or effect recovery in a relatively nonspecific, "paracrine" fashion, releasing neurotransmitters or trophic substances that can diffuse relatively long distances to reach target tissue. This is not the case for neocortex, where precise cellular circuitry is responsible for motor control, sensation, and cognition. Many studies in a variety of CNS regions indicate successful graft survival (Jaeger and Lund, 1980; Kromer et al., 1983; Nistri-Sampetro et al., 1984; Stanfield and O'Leary, 1985; Isacson et al., 1986; Gibbs and Cotman, 1987) and partial integration or functional recovery to damaged host tissue (Bjorklund et al., 1982; Freed, 1983; Gage et al., 1983, 1984; Labbe et al., 1983; Bickford-Wimer et al., 1987; Juliano et al., 1987; Buszaki et al., 1988; Goetz et al., 1989; Klassen and Lund, 1990; Lindvall et al., 1990; Liu et al., 1990; Nilsson et al., 1990a; Ralph et al., 1990; Wictorin et al., 1990; Dawson et al., 1991). There are many questions with these models of transplantation regarding possible modes of recovery and passive delivery of neurotransmitters or trophic factors, surgical effects to antagonist systems, activation of endogenous host trophic factors or cellular changes, or action as a pump across the blood–brain barrier (Eclancher et al., 1985; Keswinkel et al., 1986; Kromer, 1987; Rosenberg, 1987; Anderson et al., 1988; Arendt et al., 1988; Bernstein and Goldberg, 1989; Dunnett et al., 1989; Houle and Reier, 1989; Otto and Unsicker, 1990; Sofroniew et al., 1990).

Neuronal repopulation by transplantation in neocortex would require specific migration and synaptic integration of grafted cells into positions within the neuronal network left vacant by injured or degenerated neurons. These may be processes similar to those active during initial, normal neocortical development. Models for such transplantation must reflect the intricate interconnections of neurons that degenerate within cerebral cortex. Most existing models, including excitotoxic lesions, ischemic lesions, aged animals, mutant mice, and intact hosts, do not offer loss of neocortical neurons sufficiently specific to study these interactions fully (Gibbs et al., 1985; Gonzalez and Sharp, 1987; Horn and Carey, 1987; Peschank and Besson, 1987; Hohmann and Ebner, 1988; Hubner et al., 1989; Norman et al., 1989; Sorensen et al., 1989; Tonder et al., 1989a,b).

Recent studies suggest that normal, extrinsic developmental cues are quite important in neuronal laminar "fate" determination, but that such cues are normally available only during a brief "time window" of active neuronal migration during neocortical development (McConnell, 1985, 1988; Sotelo and Alvarez-Mallatt, 1986, 1987a,b; Gardette et al., 1990; Sotelo et al., 1990; McConnell and Kaznowski, 1991). Unlike neocortex, where neurons transplanted into postmigrational or nonspecifically lesioned rodents show little if any migration or integration, studies in Purkinje cell degeneration (PCD) mutant mice show a great degree of positional and temporal specificity by embryonic Purkinje cells when transplanted to adult PCD mice lacking essentially all host Purkinje cells. No neocortical, selectively neuron-deficient model exists, and nonselective lesioning methods (ischemic, excitotoxic, surgical, e.g.) do not appear to allow for such migration and integration in either neocortex or cerebellum.

The experiments reported here investigate whether immature neurons migrate correctly to their appropriate positions in regions of selective degeneration to callosal neurons in lamina II/III within postmigrational, juvenile host cortex. This approach tests the hypothesis that transplanted neocortex will seek to restore normal cytoarchitectonics within an appropriately permissive milieu. The lamina of host cortex deficient in neurons in this novel model may exert selective neurotropic action on fetal neocortical neurons, just as the Purkinje cell layer deficient in neurons in the PCD mutant is selectively repopulated after transplantation of immature cerebellum. These studies provide a model of both specificity of laminar positioning during cerebral development and potential future therapeutic transplantation. Similar paradigms could prove useful in developmental and transplantation studies involving other regions in the nervous system and other degenerative diseases. Although such experimental tissue is now primarily fetal, studies in other CNS paradigms suggest the future feasibility of using xenographs, cryopreserved cells, or cultured cells immortalized or genetically altered to retain developmental pluripotentiality (Gage et al., 1987; Lindsay et al., 1987; Frederickson et al., 1988; Redmond et al., 1988; Rosenberg et al., 1988; Temple, 1989; Cattaneo and McKay, 1990; Horellou et al., 1990; Ronnett et al., 1990; Ryder et al., 1990; Fisher et al., 1991; Lee et al., 1991; Renfrazzi et al., 1991; White and Whittemore, 1991; Snyder et al., 1992).

Studies of integration by neurons of defined embryonic age into "vacant" neuronal locations within an otherwise normal environment at various developmental stages offer an in vivo three-dimensional equivalent to studies of cellular development and interaction in tissue culture. The host brain can be viewed as a custom, neurological "mutation" of precisely defined cell type, geographic location, and time after onset of neuronal degeneration. Issues of laminar commitment, cell fate, and extracellular/intracellular cues during normal developmental cell positioning can be probed in vivo by alteration of both donor cell type and host environment. Similarly, understanding the factors controlling such integration is critical to the goal of returning function by transplantation within the complex neocortex injured by a variety of dysgenetic, perinatal, or degenerative influences.

At long wavelengths in the range of 650–850 nm, an "optical window" exists where near-infrared light energy can penetrate nervous system tissue several millimeters without significant absorption by unpigmented tissue (Anderson and Parrish, 1983; Madison and Macklis, 1989a). Selective photolysis (PL) by singlet oxygen (\(O_2\)) is a mechanism by which unfocused laser energy produces extremely selective, noninvasive injury to entire subpopulations of cells containing appropriate exogenously targeted photolytic chromophores with absorption in the near-infrared range (Macklis and Madison, 1985, 1991; Madison et al., 1988; Madison and Macklis, 1989a,b). Illumination produces singlet oxygen (\(O_2\)), a toxic species with a diffusion range of approximately 0.1–0.2 mm. Light-activated chromophores may be targeted to specific populations of cells, producing no injury prior to specific-wavelength illumination. It is unnecessary to aim at cells to be lesioned by PL because optical and absorptive properties of target cells and neighboring tissue provide selectivity of damage. Damage by PL is different from methods using laser microbeams, fluorescent dye injections, or focused fluorescent beams (Muller and Selverston, 1979; Hibbard and Erlich, 1982; Kater and Hadley, 1982; Bently and Caudy, 1983; Raper et al., 1984; Eison et al., 1989; Ettensohn, 1990; Jay and Keshishian, 1990). Only micrometers of tissue penetration are possible with these methods, and only small numbers of cells or localized protein are injured with individual exposures.
Using this approach in adult mice, such cell population-specific, noninvasive PL was achieved (Madison and Macklis, 1989a,b, 1993) in neocortical neurons targeted by retrograde uptake of latex nanospheres containing the chromophore chlorin e_6 in vivo, producing exquisitely selective damage to entirely selected populations of callosally projecting neurons noninvasively and without damage to intermixed neurons, glia, axons, or vascular and connective tissue. This selective damage provides a defined model of neocortical neuronal deficiency seen in development, perinatal, or degenerative pathology. It allows control over the anatomical substrate for the study of cellular interactions after transplantation.

In the experiments reported here, embryonic day 17 (E17) neurons were transplanted into young mice with defined zones deficient in neurons within the "appropriate" lamina II/III, the layers that E17 neurons are normally "destined" to populate. The PL approach was modified for use in the early neonatal period, to produce selective neuron deficiency in juvenile mice beyond the normal migrational period, but during a period in which the normal developmental environment might be most generally permissive for repopulation, integration, and neuronal transplant viability. Immature neocortical neurons were labeled with nanospheres (Madison et al., 1990) uniquely conjugated with rhodamine 6G and colloidal gold prior to transplantation to allow distinct light microscopic (LM) and electron microscopic (EM) recognition of grafted cells following transplantation. Information on such integration in the neocortex provides insight into a possible hierarchy of "cues" that guide laminar positioning during development, allowing directed studies of transplantation of neocortical tissue or pluripotent neural cell lines under genetic or potentially pharmacologic control, as a possible future therapy for developmental, perinatal, and degenerative injury to neocortex.

A preliminary report of some of these experiments has been presented previously (Macklis, 1991). Materials and Methods

This study is based on data from transplants into 97 host C57B/6J mouse pups (82 controls of five types, 15 experimental), with donor neurons from 39 separate embryonic dissections (30 for controls and 9 for experiments). An additional 35 mice were used to standardize the extent and progression of neocortical kainic acid lesions used for some control transplants (n = 70 bilateral injections), and 4 additional mice (2 controls and 2 experimental) were used for glial fibrillary acidic protein (GFAP) immunohistochemistry to assess the extent of any reactivity following laser photolysis. In addition to control dissociated neocortical transplants into intact hosts (n = 61), control neocortical transplants were performed into hosts with localized kainic acid lesions to assess potential effects of neuronal migration and integration of nonspecific host neocortical hypocellularity (n = 8; 16 bilateral transplants). Control transplants of dissociated cerebellar cells were performed into hosts with regions of photolytically induced neuron degeneration to assess specificity regarding site of donor origin (n = 3). Hypoamotically lysed neocortical cells were transplanted into intact hosts (n = 2; 4 bilateral transplants) and lesioned hosts (n = 4) to control for potential spread of intracellular label to host neurons. Controls with transplants at locations isolated from the regions of photolytically induced neuron degeneration were analyzed to assess potential nonlocalization effects of neuron depletion (n = 4). Experimental host mice were made selectively neuron deficient by targeted laser photolysis on postnatal day 4 or 5 (Fig. I; P4, n = 6; P5, n = 9), after unilateral cortical/callosum injection of cytolytic nanospheres in utero at embryonic day 17 (E17, n = 12) or on the first postnatal day (P0, n = 3). Cellular transplantation, using dissociated cell suspensions of embryonic neocortex or cerebellum labeled with nanospheres modified from Madison et al. (1990), allowing distinct identification by fluorescence and EM, was performed at P14–P15 in experimental mice (9–10 d after laser photolysis); at either P14, P15 or P0, P1 in intact controls, and at P14–P15 in kainic acid–lesioned controls (9–10 d after kainic acid injection at P4–P5), controls with transplants distant to the neuron-deficient regions, controls with cerebellar transplants, and controls with hypoamotically lysed neocortical cells. Neocortical and cerebellar cultures from these cell suspensions were followed and assessed in parallel to the in vivo studies to assure cellular viability and differentiation. Eleven experimental mice underwent histological analysis of full series of serial sections alternately processed for fluorescence and routine histology. 1 hr (n = 2), 1 d (n = 4), or 2 weeks (n = 5) later, and four underwent LM analysis (including fluorescence) of unstained thick sections only, at 1 week (n = 2) or 2 weeks (n = 7), prior to directed microdissection and EM. Control intact neonatal hosts received donor cell suspensions from three experimental ages; 46 underwent LM analysis of full series of serial sections alternately processed for fluorescence and routine histology 1 hr to 2 weeks following transplantation. Additional intact host controls underwent LM analysis of suboptimally fixed tissue within 1 d of transplantation, following maternally inflicted injury in the postnatal period that limited tissue fixation and integrity.

In utero and early postnatal targeting of callosal projection neurons. All C57B/6J mice with timed pregnancies were obtained from our institutional breeding colony. The day of vaginal plug observation was defined as embryonic day 0 (E0), and the day of birth defined as postnatal day 0 (P0). Pregnant mice at E17 were deeply anesthetized with Avertin and warmed through surgery, and the uterus exposed by a 1.5–2 cm midline ventral incision under sterile conditions. The embryos were externalized, typically two at a time, and three or four embryos from each litter were stabilized and injected unilaterally within deep cortex and callosum with approximately 250 nl of nanospheres carrying chlorin e_6 (Madison and Macklis, 1989a,b, 1993), using a pulled glass micropipette with tip diameter of approximately 50 µm introduced via punctate incisions in the uterus and skull made with an ophthalmic scalpel. Such injections remain extremely localized at the site of injection, providing a first level of specificity in the targeting of the desired population projection (Quattrochi et al., 1989; Macklis and Quattrochi, 1991). Callosal ingrowth into cortical plate begins at approximately E17 in mice, so this was chosen as the earliest possible time for retrograde chromophore labeling. Later experiments employed injection made during the first postnatal day with equivalent results. Significant levels of retrograde chromophore labeling are present within a few days after injection (Katz et al., 1984). The remaining pups in utero were unmanipulated to ensure acceptance of the entire litter by the mothers after delivery. After all injections were performed, the abdomen was closed in layers with suture and the mother was allowed to recover from anesthesia over 4–6 hr of continuous warming. Mice were dropper fed a sugar/chow/water mixture in the cages during this period until fully ambulatory. They were provided such a mixture and water alone in low dishes in the cages until delivery to avoid discomfort or premature delivery.

Delivery of litters typically occurred on the expected day (E19–E20), although some litters were born up to 1 d early. Approximately one-half of the injected litters were born early, although maternal injury additionally decreased survival past 1–2 d. Approximately one-third of the injected embryos survived to be included in these experiments (n = 15). They were physically and behaviorally normal compared with control littersmates.

Postnatal mouse pups undergoing nanosphere injection for retrograde targeting were deeply anesthetized with Avertin and warmed throughout surgery, the skin overlying the rostral skull was incised and reflected bilaterally, and nanospheres were injected as described above, approximately 1 mm lateral and 1 mm posterior to bregma. Half of each litter was left unmanipulated to optimize maternal care to the litters. Pups were dropper fed until the entire litter was returned to maternal care. Selective laminar lesioning. After allowing sufficient time for dense retrograde chromophore labeling, intracranial incisions (Madison and Macklis, 1989a, 1993; Madison et al., 1990), P4–P5 mice were exposed to 670 nm laser energy transcranially over the region of homologous cortex contralateral to the initial nanosphere injection site.
Transcranial penetration in early postnatal mice by the 670 nm light used in these experiments allows selective photolysis within lamina II/III of neocortex without need for craniotomy. Mice were deeply anesthetized, and the skin overlying the rostral skull was incised and reflected bilaterally, leaving the skull intact. The site of initial nanosphere injection was identified, and the symmetrically located contralateral region was exposed to laser energy. A continuous wave solid state diode laser operating at 670 nm (Candela Laser Corp.) delivered 10.8 mW for 10 min via a 1-mm-diameter quartz optical fiber with special optics (Candela Laser) to improve cross-sectional energy uniformity to a region approximately 2-2.5 mm in diameter, yielding a total incident energy density of approximately 100-150 J/cm². These optics also provide a depth of columnation limited to lamina II/III with subsequent high slope of optical dispersion (Dansereau and Ebbini, unpublished observations); the initially uniform column of energy scatters rapidly with these special optics at depths greater than 200-300 μm, due to defocusing and tissue diffractive properties. Energy doses in lamina II/III were approximately four- to sixfold below the maximum energy dose found to cause no nonspecific injury in prior studies (Madison and Macklis, 1989a,b; 1993; Macklis and Madison, 1991). Doses in deep laminae were approximately 10-50-fold lower than those in lamina II/III, avoiding photolysis to callosal neurons prominent in deep layers (Wise and Jones, 1976) and known to be labeled by nanospheres (Madison et al., 1990). This dosimetry was chosen to initiate a slowly progressive neuronal degeneration highly limited to callosal neurons within lamina II/III. No gross changes (erythema, e.g.) to skull or underlying brain tissue were observed. Following exposure, overlying skin was closed, and mice were returned to standard care.

Kainic acid control lesions. In a series of preliminary experiments to define appropriate conditions to induce a limited and geographically localized kainic acid lesion to neocortex, mice were injected bilaterally with kainic acid in sterile 0.1 M phosphate buffer at pH 7.3-7.4 at concentrations of 1 or 10 μg/ml and in volumes of 50 nl to 1 μl. Appropriate, reproducible neocortical lesions approximately 1-1.5 mm in diameter were produced with 500 nl and 1 μl injections of 10 μg/ml solution infused into superficial to middle layers of neocortex, so these kainic acid doses were used for control transplant experiments. Lesions were apparent within the first few days; by P14-P15 lesioned areas were well demarcated and significantly hypocellular. By 1 month of age, there was significant surrounding cortical compression to reduced thickness and relatively normal cellular density (see Fig. 6A,B). Neocortical cultures at P4-5 were deeply anesthetized, the skin overlying the rostral skull was incised and reflected bilaterally, and a small craniotomy was performed approximately 1 mm lateral and 1 mm posterior to bregma. Pulled glass micropipettes were used to pressure inject the kainic acid solution slowly in divided volumes at four to six depths over approximately 3 min to minimize efflux and maximize reproducibility. Following injection, overlying skin was closed, and pups were warmed and fed until active, and returned to their litters under standard care until transplantation at P14-P15. Neocortical cell transplants. Photoactive nanospheres were injected unilaterally via a pulled glass micropipette either at E17 in utero or at P0-P1 (top). After uptake by axonal terminals and retrograde labeling of callosally projecting pyramidal neurons (dotted pyramids in laminae II/III and V), P4-P5 mice were exposed to 670 nm laser energy transcranially via a quartz fiber optically coupled to the skull by saline (batched area) over the region of homologous cortex contralateral to the initial nanosphere injection site. Energy dosimetry was selected to initiate progressive, noninflammatory neuronal degeneration to labeled neurons slowly within lamina II/III of the exposure field. Neocortical cell suspensions, with neurons prelabeled with distinct nanospheres providing identification by fluorescence and EM, were transplanted on P14 spanning laminae II-V adjacent to these zones (outlined box containing jagged pyramids representing degenerating neurons). Labeled neurons outside the defined zone of laser illumination remain undamaged. In the absence of repopulation by transplantation, these zones become specifically deficient in pyramidal neurons, without change in the population of smaller interneurons (ovals). Histologic and ultrastructural analyses of donor neuron migration and integration were performed in experimental and control mice from 1 hr to 12 weeks after transplantation.

Figure 1. Schematic representation of sequential steps in preparation of zones of photolytic pyramidal neuron degeneration for experimental neocortical cell transplants. Photoactive nanospheres were injected unilaterally via a pulled glass micropipette either at E17 in utero or at P0-P1 (top). After uptake by axonal terminals and retrograde labeling of callosally projecting pyramidal neurons (dotted pyramids in laminae II/III and V), P4-P5 mice were exposed to 670 nm laser energy transcranially via a quartz fiber optically coupled to the skull by saline (batched area) over the region of homologous cortex contralateral to the initial nanosphere injection site. Energy dosimetry was selected to initiate progressive, noninflammatory neuronal degeneration to labeled neurons slowly within lamina II/III of the exposure field. Neocortical cell suspensions, with neurons prelabeled with distinct nanospheres providing identification by fluorescence and EM, were transplanted on P14 spanning laminae II-V adjacent to these zones (outlined box containing jagged pyramids representing degenerating neurons). Labeled neurons outside the defined zone of laser illumination remain undamaged. In the absence of repopulation by transplantation, these zones become specifically deficient in pyramidal neurons, without change in the population of smaller interneurons (ovals). Histologic and ultrastructural analyses of donor neuron migration and integration were performed in experimental and control mice from 1 hr to 12 weeks after transplantation.

Neonatal mice at P4-P5 were deeply anesthetized, the skin overlying the rostral skull was incised and reflected bilaterally, and a small craniotomy was performed approximately 1 mm lateral and 1 mm posterior to bregma. Pulled glass micropipettes were used to pressure inject the kainic acid solution slowly in divided volumes at four to six depths over approximately 3 min to minimize efflux and maximize reproducibility. Following injection, overlying skin was closed, and pups were warmed and fed until active, and returned to their litters under standard care until transplantation at P14-P15. Neocortical cell transplants. Photoactive nanospheres were injected unilaterally via a pulled glass micropipette either at E17 in utero or at P0-P1 (top). After uptake by axonal terminals and retrograde labeling of callosally projecting pyramidal neurons (dotted pyramids in laminae II/III and V), P4-P5 mice were exposed to 670 nm laser energy transcranially via a quartz fiber optically coupled to the skull by saline (batched area) over the region of homologous cortex contralateral to the initial nanosphere injection site. Energy dosimetry was selected to initiate progressive, noninflammatory neuronal degeneration to labeled neurons slowly within lamina II/III of the exposure field. Neocortical cell suspensions, with neurons prelabeled with distinct nanospheres providing identification by fluorescence and EM, were transplanted on P14 spanning laminae II-V adjacent to these zones (outlined box containing jagged pyramids representing degenerating neurons). Labeled neurons outside the defined zone of laser illumination remain undamaged. In the absence of repopulation by transplantation, these zones become specifically deficient in pyramidal neurons, without change in the population of smaller interneurons (ovals). Histologic and ultrastructural analyses of donor neuron migration and integration were performed in experimental and control mice from 1 hr to 12 weeks after transplantation.

Neonatal mice at P4-P5 were deeply anesthetized, the skin overlying the rostral skull was incised and reflected bilaterally, and a small craniotomy was performed approximately 1 mm lateral and 1 mm posterior to bregma. Pulled glass micropipettes were used to pressure inject the kainic acid solution slowly in divided volumes at four to six depths over approximately 3 min to minimize efflux and maximize reproducibility. Following injection, overlying skin was closed, and pups were warmed and fed until active, and returned to their litters under standard care until transplantation at P14-P15. Neocortical cell transplants. Photoactive nanospheres were injected unilaterally via a pulled glass micropipette either at E17 in utero or at P0-P1 (top). After uptake by axonal terminals and retrograde labeling of callosally projecting pyramidal neurons (dotted pyramids in laminae II/III and V), P4-P5 mice were exposed to 670 nm laser energy transcranially via a quartz fiber optically coupled to the skull by saline (batched area) over the region of homologous cortex contralateral to the initial nanosphere injection site. Energy dosimetry was selected to initiate progressive, noninflammatory neuronal degeneration to labeled neurons slowly within lamina II/III of the exposure field. Neocortical cell suspensions, with neurons prelabeled with distinct nanospheres providing identification by fluorescence and EM, were transplanted on P14 spanning laminae II-V adjacent to these zones (outlined box containing jagged pyramids representing degenerating neurons). Labeled neurons outside the defined zone of laser illumination remain undamaged. In the absence of repopulation by transplantation, these zones become specifically deficient in pyramidal neurons, without change in the population of smaller interneurons (ovals). Histologic and ultrastructural analyses of donor neuron migration and integration were performed in experimental and control mice from 1 hr to 12 weeks after transplantation.

Neonatal mice at P4-P5 were deeply anesthetized, the skin overlying the rostral skull was incised and reflected bilaterally, and a small craniotomy was performed approximately 1 mm lateral and 1 mm posterior to bregma. Pulled glass micropipettes were used to pressure inject the kainic acid solution slowly in divided volumes at four to six depths over approximately 3 min to minimize efflux and maximize reproducibility. Following injection, overlying skin was closed, and pups were warmed and fed until active, and returned to their litters under standard care until transplantation at P14-P15.

Neonatal mice at P4-P5 were deeply anesthetized, the skin overlying the rostral skull was incised and reflected bilaterally, and a small craniotomy was performed approximately 1 mm lateral and 1 mm posterior to bregma. Pulled glass micropipettes were used to pressure inject the kainic acid solution slowly in divided volumes at four to six depths over approximately 3 min to minimize efflux and maximize reproducibility. Following injection, overlying skin was closed, and pups were warmed and fed until active, and returned to their litters under standard care until transplantation at P14-P15.
Neuronal transplantation. Mouse hippocampi were dissected out and transplanted into the medial prefrontal cortex of experimental and control mice, the number and proportion of transplanted neuronal nuclei were determined to assess the viability, morphology, and integration of transplanted neurons. Neuronal viability, morphology, and integration were assessed in all mice.

Histological analysis. Survival times for histological analysis ranged from 1 hr to 12 weeks following neocortical cell suspension transplantation into control mice. Experimentally treated mice were evaluated between 1 hr and 2 weeks after receiving transplants. Mice undergoing LM and EM analysis were perfused at 1 hr, 1 week, and 3 weeks following transplantation, respectively.

Immunohistochemical staining for GFAP was performed using a commercially available, polyclonal antiserum (rabbit anti-GFAP, Incstar) and the peroxidase–antiperoxidase (PAP) method. Two experimental mice were targeted for selective photolysis to callosally projecting pyramidal neurons at P14 by injection of photoactive nanospheres, and neuronal injury was effected by exposure to 670 nm laser energy at P14, as described above for in utero targeting. Processing for GFAP immunohistochemistry was performed 2 and 3 weeks later, corresponding to the time in transplanted experimental mice of cellular transplantation and early integration 1 week later, and late integration 2 weeks after cellular transplantation. Neuron counts and area measurements were repeated by the initial observer and by a blinded second observer on selected zones from these four cases to assess both reproducibility of measurements by a single observer and interobserver reliability.

Results
Sections rostral or caudal to the area of cellular transplantation displayed geographically defined loss of large-diameter mor-
Figure 2. Selective lesioning by PL of large, retrogradely targeted, pyramidal neurons in lamina II/III of neocortex indicated by absence of these large-diameter neurons and relative neuron deficiency within the well-demarcated region indicated by arrows in a and b. c, Higher-magnification view of this CV-stained section, with relative absence of pyramids to the right of the long arrow, and remaining population of smaller-diameter, ovoid, presumptive local-connection neurons (short arrow). Staining for GFAP did not reveal significant reactive gliosis, and no significant inflammatory infiltration occurred. Scale bars: a, 1 mm; b, 250 μm; c, 50 μm.

Figure 3. A, Quantitative neuron density within lesioned zones and in adjacent and contralateral homologous zones for four experimental cases (n = 18 sample control zones and n = 6 sample lesioned zones quantified per case; error bars represent SD). B, Quantitative neuronal cross-sectional areas for the four cases in A, demonstrating relative loss of large-diameter pyramidal neurons, without change in the population of smaller-diameter, presumptive internurons (n = 72 control zones and n = 24 experimental zones; error bars represent SD).

Quantitative morphometric analysis of these zones revealed reduction of total neuron number by 5–32%, typically 25–30%, compared with adjacent and contralateral homologous control
regions (Fig. 3A). The reduction in neurons was limited to those with larger cross-sectional areas (Fig. 3B), with elimination of almost half of medium (70-120 \(\mu \text{m}^2 \)) and large (120-220 \(\mu \text{m}^2 \)) neurons and almost two-thirds of the larger group alone. The population of small, presumptive local connection neurons was unchanged. Measurements were reproducible between observers, and by the initial observer, for total neuron counts within individual defined 5000 \(\mu \text{m}^2 \) tissue areas (yielding neuron densities). Interobserver variability ranged between ±2% and ±8%, typically ±2-4%, for individual tissue areas, with averages of six areas in a region typically within ±2% between observers. Repeat cell counts for individual tissue areas varied by 0% to ±10% by the initial observer, typically ±0-4%. Neuronal cross-sectional area measurements were similarly reproducible, with repeat measurements varying between ±2% and ±7%.

Neocortical and cerebellar neurons followed in culture in parallel to the in vivo experiments displayed excellent viability, growth, and differentiation (Fig. 4a,c). Neurons extended processes and developed dense intercellular contacts by phase-contrast appearance. Labeled neurons retained bright intracellular, granular fluorescence that did not fade during the experiments (Fig. 4b). Intracellular label varied within a single culture from a few lysosomal granules per neuron to more intense and diffuse label initially, with a trend toward accumulation of label within granules over the first few days. There was also variability of labeling efficiency between different dissociation experiments.

Figure 5. CONTROL, Representative camera lucida drawings of serial sections of mouse brains 1 week to 12 weeks following cell suspension neocortical grafting with E17 cells into control, unlesioned mouse pups. Cellular injections spanned cortical laminae II-V to offer both lateral and laminar choice to labeled neurons. Grafted neurons (individual dots) remained quite localized to the injection track without significant lateral spread or preferential localization (arrows). A single anomalous case at 3 weeks displayed more extensive spread near layer I and corpus callosum, shown in more detail in Figure 6. PHOTOLYTIC DEGENERATION, Neocortical grafts of E17 neurons into P14-P15 mouse pups selectively lesioned by PL at P4-P5. One day after transplantation, neurons remained localized to the injection track, as in controls (small curved arrow). The large curved arrow indicates the geographically defined zone of ongoing neuronal degeneration. Two examples are shown at 2 weeks; grafted neurons have preferentially entered and now reside in the selectively neuron-deficient zone in lamina II/III (straight arrows). In deeper laminae, grafted neurons remain localized along the injection track (curved arrows). The upper 2 week case is shown in more detail in Figure 6. KAINIC ACID LESION. Neocortical grafts of E17 neurons into P14-P15 mouse pups with lesions (large arrow) produced by injection of kainic acid at P4-P5. Two weeks after grafting, donor neurons remained localized to the injection track (small arrow); they did not enter the compacted lesion that had been hypocellular at the time of grafting. Scale bars, 1 mm (scale bar in CONTROL 1 week refers to all panels except PHOTOLYTIC DEGENERATION 1 day shown at slightly higher magnification).
Neuronal Migration into Regions of Photolytic Degeneration

Figure 6. Higher-magnification camera lucida drawings of one experimental photolytic degeneration case at 2 weeks and the single anomalous 3 week control case from Figure 5. For each case, regions of interest from three serial sections (every third section; r, rostral; m, middle; c, caudal) are shown along with low-magnification photomicrographs of sections adjacent to section m, stained with CV, indicating the cortical laminae (1-6), corpus callosum (cc), and dura (d). A, Migration of E17 donor neurons 2 weeks after transplantation adjacent to a region of ongoing photolytic degeneration to callosal neurons in lamina II/III (arrows). A subpopulation of donor neurons migrated selectively toward and deep into this region in a relatively narrow band limited to lamina II/III (arrows). In deeper layers and on the opposite side of the injection track, no significant spread of neurons occurred. B, In the single control case with extensive spread of donor neurons, the cellular injection track extended more deeply than desired into the corpus callosum (cc), with significant deposition into the relatively acellular lamina I (arrows), and corpus callosum (arrowheads), although a smaller number of neurons spread within other cortical layers. Scale bar, 250 μm.

but all contained sufficient label to identify cells well in vivo. Neocortical neurons lysed by hypoosmolar conditions were nonviable, but the aliquots injected into control mice contained numerous nonviable cells and cellular debris (Fig. 4d).

Embryonic neocortical precursor cells from E13–E17 donors transplanted into intact control hosts behaved as expected from the extensive literature of grafts of neocortex, hippocampus, or cerebellum into parenchyma of normal postmigrational or adult hosts. Appropriate dissociation, labeling, and injection methods ensured neuronal viability and morphologic maturation, but transplanted neurons remained extremely localized to their "tubular" shaped injection position spanning cortical layers without preference (Fig. 5). They did not migrate or spread significantly, typically remaining within approximately 100 μm of the central injection location. Donor neurons retained a predominantly uninterrupted structural association with other transplanted neurons, readily recognized by bright intracellular label. There was little change in distribution of donor neurons over the wide range of survival times from 1 hr to 12 weeks. Little evidence of gross cellular integration with surrounding parenchyma was seen. Neuronal morphology was typically small and ovoid, and process elongation indicated by intracellular fluorescence was limited. There was no difference in neuronal location or migration with different donor ages from E13 to E17. By 2–3 weeks posttransplantation, control neurons were maximally dispersed, and morphologic differentiation was evident. This guided the timing of analysis of experimental cases at 2 weeks.

In prior pilot studies, aimed primarily at developing reproducible stereotaxic transplant placement within neocortical lamina II–V, more extensive spread was observed when cells were deposited within the white matter of the corpus callosum, or when injections effluxed into layer I of neocortex. When deposited into these relatively acellular layers, transplanted cells formed heterotopias that were clearly delineated from surrounding white matter and parenchyma, but individual neurons did
not demonstrate gross integration with surrounding tissue. In
the prior studies and in the studies reported here, small, mor-
phologically glial cells were seen at relatively large distances
from the injection location, typically within white matter tracts,
as previously described (Bernstein and Goldberg, 1989). In one
anomalous control case ("3 week" control included as a worst
case in Fig. 5), more extensive spread of neurons was observed.
Most of this spread was within or near layer I or the corpus
callosum (Fig. 6), although a few neurons spread up to 300 μm
in other cortical layers.

Neocortical neurons transplanted into host neocortex lesioned
by kainic acid similarly remained local to the injection position,
without significant lateral spread into the extremely pale-staining
and hypocellular regions of kainic acid injury (Figs. 5, 7). One
hour and 1 d after transplantation, donor neurons were
present as a localized tubular injection in the midst of the hy-
pocellular kainic acid-lesioned zones. Two weeks after trans-
plantation, these tubular neuronal groupings were present within
or adjacent to compressed regions of reduced cortical thickness,
representing the prior site of widespread neuronal injury induced
by kainic acid. There was no significant spread from the injection
location.

Cerebellar cells transplanted to lesioned zones of neocortex
did not appear viable histologically at 6 d or 2 weeks, although
cultured cells from those same dissociations (and cultured di-
rectly from the micropipettes used for transplantation) were
extremely healthy and well differentiated for a period of several
weeks following transplantation. Tubular groupings of crinated
cells and surrounding macrophages were seen. No pyramidal
neuron morphology was present.

Hypoosmotically lysed neocortical cells transplanted into in-
tact or lesioned neocortex remained close to the injection site.
The regions were surrounded by and infiltrated by "foamy"
macrophages within 2-4 d, continuing at 1 and 2 weeks, making
the border between the injection zone and surrounding neocor-
tex quite distinct. These cases did not mimic either experimental
or control cases in appearance; there was no confounding spread
of fluorescent nanospheres to host neurons that would confuse
the distinct identification of donor cells. Fluorescence was pres-
cent either in small, acellular deposits or as diffuse cytoplasmic
label within the numerous surrounding phagocytes.

Controls with neocortical transplants at locations isolated from
the regions of photolytically induced neuron degeneration re-
vealed localization of donor neurons at the tubular injection
location, with only the extremely limited spread seen in the
intact host controls. There was no migration across intact neo-
cortex to the regions of photolytic neuron degeneration either
1 week or 2 weeks after transplantation. Morphologically, donor
neurons in these animals remained small and ovoid, as in the
other control groups.

Embryonic neurons transplanted on E17 into mice with se-
lective, experimentally induced photolytic degeneration of cal-
losally projecting pyramidal neurons in lamina II/III demon-
strated strikingly different behavior (Fig. 5). These neurons,
placed adjacent to, but not within, the defined zones of neuron
deficiency, were offered both a laminar "choice" (the injection
spanned layers II-V), and a lateral "choice" within lamina II/
III (neighboring control tissue immediately lateral to the injec-
tion site was completely intact). After brief survivals of 1 hr or
1 d, donor neurons remained local to the injection site. Although
known from prior silver degeneration studies to be undergoing
active degeneration at the time of transplantation, lesioned neu-
rons within these regions were still present. CV histology re-
vealed only subtle pallor in some pyramidal neurons, without
gross hypocellularity that theoretically could provide a reduc-
tion of physical barriers to movement resulting from pressure
injection, potentially allowing nonspecific entry into hypocel-
lular regions at the time of cellular injection. A substantial por-
tion of donor neurons preferentially entered the selectively neu-
ron-deficient zones over the time between 1 d and 2 weeks
posttransplantation, locating up to 700-800 μm laterally from
the initial site of transplantation, exclusively repopulating the

Figure 7. Control neocortical trans-
plantation into mouse pups with lesions
to neocortex produced by kainic acid.
(a) At the time of cellular transplanta-
tion at P14, 9-10 d after injection of
kainic acid at P4-P5, well-demarcated,
hypocellular regions of neocortex were
clearly visible (arrow). (b) Two weeks
later, these lesioned regions were com-
pacted to a reduced cortical thickness
of relatively normal cellular density
surrounding the focus of kainic acid in-
jection (arrow). The most superficial
portion of the site of cell grafting is
indicated by the arrowhead. c, Higher-
magnification view of the region of in-
terest in b. d, Combined fluorescence
and phase-contrast appearance of this
same region of fluorescently labeled
grafted neurons within compacted
kainic acid lesion. Scale bars: a and b,
1 mm; c and d, 250 μm.

The Journal of Neuroscience, September 1993, 13(9) 3887
Figure 8. Quantitative analysis of donor neuron positions digitized from camera lucida drawings (n = 18 from controls, 4056 neurons; n = 6 from experimentals at 2 weeks, 1521 neurons), showing neuronal migration from the injection sites. A, Neurons transplanted adjacent to regions of photolytic degeneration were distributed asymmetrically, with 44% migrating selectively toward or into the neuron degeneration zones (arrows, typical location), up to 781 μm. These asymmetrically dispersed neurons may represent the second portion of a bimodal distribution; the remaining 56% of the neurons were distributed very close to the injection site, similar to controls. B, Neurons in controls were distributed relatively closely and symmetrically medial (positive values) and lateral (negative values) to the injection track, with a small percentage of more widely distributed neurons from the single anomalous 3 week control shown in Figure 6 (arrows). C, Excluding the single anomalous control, donor neurons in controls were distributed extremely closely and symmetrically. D, Neurons in the anomalous control were distributed more widely, but relatively symmetrically, from the injection site.

Experimental region. Six of seven cases at 2 weeks displayed qualitatively directed migration to varying degrees into the regions of photolytic degeneration. Neurons did not enter the adjoining control regions of lamina II/III, nor did they spread more in deep layers than in the control cases (Fig. 6). An equivalent proportion of the donor neurons did not migrate; they behaved like those in control mice (small cross-sectional area, ovoid morphology, without integration with host parenchyma).

Quantitative analysis of digitized donor neuron positions confirmed and reinforced these qualitative observations (Fig. 8). Donor neurons in controls including the single anomalous control were distributed relatively symmetrically medial (positive values) and lateral (negative values) to the injection track (Fig. 8B); mean position was 2 ± 64 μm. Excluding the single anomalous 3 week control removed much of the variance in the control group. Remaining controls had a mean donor neuron position of −1 ± 40 μm and were distributed extremely symmetrically medial and lateral to the injection track (Fig. 8C). Donor neurons in experimental cases were widely distributed, very asymmetrically with respect to the injection track (Fig. 8A; mean position of 110 ± 165 μm), with 44% (34–54%) positioned toward or into the region of photolytic degeneration beyond three SDs of the controls (excluding the anomalous control). Only 5.8% were positioned beyond three SDs on the opposite side of the injection track, with a maximum value of −251 μm. The subpopulation of neurons in experiments beyond three SD of the controls on the photolytic degeneration side had a mean position of 305 ± 124 μm with a maximum of 781 μm;
Figure 9. Partially repopulated graft site within neocortex previously selectively lesioned by PL. a, CV-stained section showing large-diameter, phenotypically pyramidal neurons laterally dispersed from the injection track (arrows). b, Fluorescence image of the same location in the adjacent section showing positive identification of phenotypically pyramidal neurons by distinct intracellular fluorescence (arrows). Scale bars: a, 50 μm; b, 20 μm.

graphically, there is a suggestion that these neurons represent the second portion of a bimodal distribution. The remaining 56% of the neurons in experimentals had a mean position of 24 ± 42 μm, quite similar to the controls. The relatively wide spread of the neurons in the single anomalous 3 week control case (Fig. 8D; mean position of 12 ± 103 μm) was much more limited and symmetric about the injection track than in the experimentals, without suggestion of a bimodal distribution. The number of neurons positioned beyond three SDs was much more symmetric, 23% medially and 12% laterally, with maximum values of 426 and -330 μm, respectively.

Morphologically, those neurons within the previously neuron-deficient zones assumed large cross-sectional area, pyramidal neuron morphology, very distinct from smaller intrinsic neurons, by both routine histology and intracellular fluorescence (Fig. 9). Although some of the donor neurons within the photolytically lesioned zones were oriented aberrantly, many were histologically appropriate, surrounded by smaller host neurons and occasionally extending both apical dendritic and fine axonal processes. They were uniquely identified at the LM level by both their distinct morphologic appearance as clusters of pyramids within surrounding regions otherwise lacking such neurons and by their granular labeling with the nanospheres marking donor neurons.

Figure 10. a, Thick section allowing microdissection for EM analysis of identified neurons: fluorescence appearance of grafted neurons (arrows) within the previously selectively neuron-deficient zone in lamina II/III. b, Phase-contrast appearance of the same field, showing partial repopulation with large diameter pyramidal neurons. Scale bar, 100 μm.

Further assurance that the neurons identified by fluorescence within these zones were donor in origin was provided by EM analysis of the thick sections that were microdissected after fluorescence and phase-contrast examination to include labeled neurons (Fig. 10; Quattrochi et al., 1987). The intact thick sections were used only to confirm the overall distribution of labeled cells seen in other, thinner sections; they were not used to differentiate neurons from non-neuronal cells, or to analyze the morphologic phenotype of labeled neurons. Low-magnification EM analysis (5000-10,000×) allowed rapid, distinct identification of donor neurons (Fig. 11), using standard morphologic criteria including pale nuclei that are large relative to the cytoplasm, dispersed nuclear chromatin, prominent nucleoli, abundant rough endoplasmic reticulum and ribosomes, numerous mitochondria, prominent Golgi complex, lysosomes, microtubules, and occasional axosomatic synapses (Jones, 1983; Peters et al., 1991). Lysosomal vesicles approximately 400-500 nm in diameter were easily recognized within donor neurons by the extremely electron-dense nanospheres, approximately 30-70 nm in diameter, contained within them. The combination of neuronal morphology, unique fluorescence, nanosphere inclusion within lysosomes, and colloidal gold label provided a high level of certainty regarding the donor origin of these neurons. The control transplants of hypoosmotically lysed neocortical cells further argue against potential confusion by passive transfer of nanospheres to host neurons; phagocytes accumu-
lated these released nanospheres local to the injection location, and no labeled neurons were seen distant from the injection (where EM analysis was performed). Other indirect evidence further supports this and argues against the possibility that identified neurons could be host neurons that accumulated free nanospheres following the transplant injection or after lysis of some donor cells: (1) these labeled cells were located distant to the tubular transplantation site only within the lesioned zones, not in the similarly located area of lamina II/III, and not in other layers as one might expect if host labeling occurred; (2) labeled neurons in other layers in the experimental mice and neurons in all layers in control mice displayed nonpyramidal phenotype, a specificity not consistent with host uptake of free nanospheres; (3) the intensity of donor neuron labeling was qualitatively distinct from labeling observed after direct injection of nanospheres into neocortex (direct application in vitro during the dissociation of embryonic neurons yields a much more intense labeling than with differentiated neurons in situ).

Discussion

The results presented in this report suggest that transplanted neocortical neurons will migrate to restore normal cytoarchitecture if provided with an appropriately permissive host environment. There may be multiple levels of hierarchical control over the migration and laminar positioning of neocortical neurons during development and, therefore, during attempts to experimentally repopulate regions of neocortex. During the normal developmental timetable in cortex, a specific time sequence of expression of neuronal, glial, trophic, and adhesive signals may occur, and these naturally disappear after a relatively brief period. Some of these permissive or enhancing factors may be upregulated or reactivated given a specific enough degeneration of a selected subpopulation of neurons. The host model used in these studies was designed to provide control and definition over both temporal rate and extent of the neuronal dropout and, therefore, these possible host environmental cues.

We chose E17 donor neurons for initial study for several reasons. Neurons of this age are known to dissociate and grow well in culture, thus allowing the necessary prelabeling and parallel culture observation. The generation and migration of neocortical neurons is most active between E14/15 and E17/18 in mice (Angevine and Sidman, 1961; Austin and Cepko, 1990). At E17, most newly postmitotic neurons leaving the germinal matrix and entering the migrational phase within neocortex are destined to form the superficial lamina, notably lamina II/III made most profoundly neuron deficient by these selective photolytic lesions. This age of donor population, therefore, provides a sample at the height of neuronal migration; future experimental variation of embryonic donor age to both earlier and later times (E14 and E19, e.g.) is possible.

The striking finding of apparent preferential migration of a subpopulation of transplanted E17 neurons (presumably the portion still in migrational phase) to the selectively neuron-deficient zone in young postnatal hosts may provide a partial answer to the hypothesis under study regarding restoration of normal cytoarchitecture. The suggestion from these first experiments is that, even after the normal period for appropriate neuronal migration to correct laminar positions is completed, it is possible to reactivate a specific combination of environmental cues to allow neuronal migration that otherwise would not occur in normal or nonspecifically lesioned animals. It is possible that such reactivated cues are capable of at least partially superseding intrinsic neuronal signals acquired during the cell cycle within the germinal matrix (McConnell and Kaczynski, 1991), allowing repopulation by neocortical neurons otherwise "destined" to form other, deeper laminae, for example, or by appropriately pluripotent neural cell lines. Important contributions may be provided by extracellular matrix components, glial populations via reexpression of radial glial morphology (Geschwind and Hockfield, 1989; Culican et al., 1990; Rosen et al., 1990), and neuronal populations of local-circuit neurons and more distant afferents.

Two lines of inquiry suggest that integration in "point-to-point" systems is possible if host and donor conditions are appropriate; definition of these complex conditions and necessary modifications are not established. Studies using the cerebellum of PCD mutant mice by Sotelo, Alvarado-Mallart, and colleagues have shown the feasibility of neural grafting procedures to restore damaged neuronal systems that are connected in a "point-to-point" fashion (Sotelo and Alvarado-Mallart, 1991).
Within a normal, developing mouse. Specific repopulation after yatani et al., 1989; Savio and Schwab, 1989; Bolz et al., 1990; neurons that are normally generated and integrated much earlier reconstitution of normal cytoarchitecture (Bronner-Fraser, 1987; normal ontogeny is complete indicates environmental cues that can be reactivated in more mature rodents to initiate or permit host environment beyond the normal migrational period can host "milieu" can be permissive to immature migrational phase neurons, but that exclusively selective models of neuronal degeneration are necessary to allow appropriate cellular laminar positioning, cellular integration, and intercellular connections. Two alternative interpretations of the findings are that (1) the uniqueness of cerebellar Purkinje cell specification offers more redirected growth to restore appropriate positioning whereas increased inherent complexity in neocortex makes appropriate migration difficult, or (2) the PCD neuronal degeneration produces necessary cues that are absent in the intact developing ferret neocortical system. A general disadvantage of using neurologically mutant mice for such studies in neocortex is that mutations are random in their occurrence and frequently unclear as to their origin; it is often unknown whether the observed defects are primary or lower-order effects of the mutations (Heckroth et al., 1989; Messer et al., 1991). Most importantly, cerebral cortex is a region for which no mutant model of selective cell loss exists. The host model used in these studies allows lesions to preselected neuronal populations in vivo; it is flexible and avoids such disadvantages. The rate, cell type, and geographic localization for donor neuron development in vivo. Similarly, such cues may allow earlier pluripotent progenitor cells or immortalized cell lines to differentiate and acquire correct neuronal phenotypes when transplanted into host environments providing appropriate and specific developmental signals.

References

Culican SM, Baumrind NL, Yamamoto M, Pearlman AL (1990) Cor-

