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Considering a discrete and finite statistical model of a general position we introduce an exact
expression for the partition function in terms of a finite series. The leading term in the series is the
Bethe-Peierls (Belief Propagation)-BP contribution, the rest are expressed as loop-contributions on
the factor graph and calculated directly using the BP solution. The series unveils a small parameter
that often makes the BP approximation so successful. Applications of the loop calculus in statistical
physics and information science are discussed.

PACS numbers: 05.50.+q,89.70+C

Discrete statistical models, the Ising model being the
most famous example, play a prominent role in theoreti-
cal and mathematical physics. They are typically defined
on a lattice, and major efforts in the field focused pri-
marily on the case of the infinite lattice size. Similar sta-
tistical models emerge in information science. However,
the most interesting questions there are related to graphs
that are very different from a regular lattice. Moreover
it is often important to consider large but finite graphs.
Statistical models on graphs with long loops are of par-
ticular interest in the fields of error-correction and combi-
natorial optimization. These graphs are tree-like locally.

A theoretical approach pioneered by Bethe [1] and
Peierls [2] (see also [3]), who suggested to analyze statisti-
cal models on perfect trees, has largely remained a useful
efficiently solvable toy. Indeed, these models on trees are
effectively one-dimensional, thus exactly-solvable in the
theoretical sense, while computational effort scales lin-
early with the generations number. The exact tree results
have been extended to higher-dimensional lattices as un-
controlled approximations. In spite of the absence of
analytical control the Bethe-Peierls approximation gives
remarkably accurate results, often out-performing stan-
dard mean-field results. The ad-hoc approach was also
re-stated in a variational form [4, 5]. Except for two
recent papers [6, 7] that will be discussed later in the let-
ter, no systematic attempts to construct a regular theory
with a well-defined small parameter and Bethe-Peierls as
its leading approximation have been reported.

A similar tree-based approach in information science
has been developed by Gallager [8] in the context of error-
correction theory. Gallager introduced so called Low-
Density-Parity-Check (LDPC) codes, defined on locally
tree-like Tanner graphs. The problem of ideal decoding,
i.e. restoring the most probable pre-image out of the ex-
ponentially large pool of candidates, is identical to solv-
ing a statistical model on the graph [9]. An approximate
yet efficient decoding Belief-Propagation algorithm intro-
duced by Gallager constitutes an iterative solution of the
Bethe-Peierls equations derived as if the statistical prob-
lem was defined on a tree that locally represents with

the Tanner graph. We utilize this abbreviation coinci-
dence to call Bethe-Peierls and Belief-Propagation equa-
tions by the same acronym – BP. Recent resurgence of
interest to LDPC codes [10], as well as proliferation of
the BP approach to other areas of information and com-
puter science, e.g. artificial intelligence [11] and com-
binatorial optimization [12], where interesting statistical
models on graphs with long loops are also involved, posed
the following questions. Why does BP perform so well
on graphs with loops? What is the hidden small param-
eter that ensures exceptional performance of BP? How
can we systematically correct BP? This letter provides
systematic answers to all these questions.

The letter is organized as follows. We start with in-
troducing notations for a generic statistical model, for-
mulated in terms of interacting Ising variables with the
network described via a factor graph. We next state our
main result: a decomposition of the partition function
of the model in a finite series. The BP expression for
the model represents the first term in the series. All
other terms correspond to closed undirected and possibly
branching yet not terminating at a node subgraphs of the
factor-graph, referred to as generalized loops. The sim-
plest diagram is a single loop. An individual contribution
is the product of local terms along a generalized loop, ex-
pressed explicitly in terms of simple correlation functions
calculated within the BP. We proceed with discussing the
meaning of BP as a successful approximation in terms of
the loop series followed by presenting a clear derivation of
the loop series. The derivation includes three steps. We
first introduce a family of local gauge transformations,
two per an original Ising variable. The gauge transfor-
mation changes individual terms in the expansion with
the full expression for the partition function natually re-
maining unchanged. We then fix the gauge in a way
that only those terms that correspondent to generalized
loops contribute to the modified series. Finally, we show
that the first term in the resulting generalized loop series
corresponds exactly to the standard BP approximation.
This interprets BP as a special gauge choice. We con-
clude with clarifying the relation of this work to other

http://arXiv.org/abs/cond-mat/0601487v2


2

recent advances in the subject, and discussing possible
applications and generalizations of the approach.

Vertex Model. Consider a generic discrete statistical
model defined for an arbitrary finite undirected graph, Γ,
with bits a, b = 1, . . . , m with the neighbors connected by
edges, (a, b), . . . , the neighbor relation expressed as a ∈ b
or b ∈ a. Configurations σ, are characterized by sets
of binary (spin) variables σab = ±1, associated with the
graph edges: σ = {σab; (a, b) ∈ Γ}. The probability of
configuration σ is

p(σ) = Z−1
∏

a∈Γ

fa(σa), Z =
∑

σ

∏

a∈Γ

fa(σa), (1)

fa(σa) being a non-negative function of σa a vector
built of σab with b ∈ a: σa = {σab; b ∈ a}. The
notation assumes σab = σba. Our vertex model gen-
eralizes the celebrated six- and eight-vertex models of
Baxter [3]. An example of a factor graph with m = 8

that corresponds to p(σ1, σ2, σ3, σ4) = Z−1
∏8

a=1 fa(σa),
where σ1 ≡ (σ2, σ4, σ8), σ2 ≡ (σ1, σ3), σ3 ≡ (σ2, σ4),
σ4 ≡ (σ1, σ3, σ5), σ5 ≡ (σ4, σ6, σ8), σ6 ≡ (σ5, σ7),
σ7 ≡ (σ6, σ8), σ8 ≡ (σ1, σ5, σ7), is shown in Fig. 1.

Loop decomposition. The main exact result of the
Letter is decomposition of the partition function defined
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FIG. 1: Example of a factor graph. Twelve possible marked
paths (generalized loops) are shown in bold in the bottom.

by Eq. (1) in a finite series:

Z = Z0






1 +

∑

C

∏

a∈C

µa(C )

∏

(a,b)∈C

(1 − mab(C )2)






, (2)

mab(C ) =
∑

σab

σabbab(σab), (3)

µa =
∑

σa

b6=a
∏

b∈a,C

(σab − mab)ba(σa), (4)

where summation goes over all allowed (marked) paths
C , or generalized loops. They consist of bits each with at
least two distinct neighbors along the path. Twelve al-
lowed marked paths for our example are shown in Fig. (1)
on the right. A generalized loop can be disconnected,
e.g. the last one in the second raw shown in Fig. (1. In
Eqs. (2) bab(σab), ba(σa) and Z0 are beliefs (probabili-
ties) defined on edges, bits, and the partition function,
respectively, calculated within the BP. A BP solution can
be interpreted as an exact solution in an infinite tree built
by unwrapping the factor graph. A BP solution can be
also interpreted [5] as a set of beliefs that minimize the
Bethe free energy

F =
∑

a

∑

σa

ba(σa)ln
ba(σa)

fa(σa)
−

∑

(a,b)

∑

σab

bab(σab) ln bab(σab),

under the set of realizability, 0 ≤ ba(σa), bab(σab) ≤ 1,
normalization,

∑

σa
ba(σa) =

∑

σab
bab(σab) = 1, and

consistency
∑

σa\σab
ba(σa) = bab(σab), constraints. The

term associated with a marked path is the ratio of the
products of irreducable correlation functions (4) and the
quadratic magnetization at-edge functions (3) calculated
along the marked path C within the BP approximation.

As usual in statistical mechanics exact expressions for
the spin correlation functions can be obtained by differ-
entiating Eq. (2) with respect to the proper factor func-
tions. In the tree (no loops) case only the unity term in
the r.h.s. of Eq. (2) survives. In the general case Eq. (2)
provides a clear criterion for the BP approximation valid-
ity: The sum over the loops in the r.h.s. of Eq. (2) should
be small compared to one. The number of terms in the
series increases exponentially with the number of bits.
Therefore, Eq. (2) becomes useful for selecting a smaller
than exponential number of leading contributions. In
a large system the leading contribution comes from the
paths with the number of degree two connectivity nodes
substantially exceeding the number of branching nodes,
i.e. the ones with higher connectivity degree. Accord-
ing to Eq. (2) the contribution of a long path is given
by the ratio of the along-the-path product of the irre-
ducible nearest-neighbor spin correlation functions asso-
ciated with a bit, µa to the along-the-path product of
the edge contributions, 1/(1 − m2

ab). All are calculated



3

within BP. Therefore, the small parameter in the pertur-
bation theory is ε =

∏

a∈C
µa(C )/

∏

(a,b)∈C
(1−m2

ab). If
ε is much smaller than one for all marked paths the BP
approximation is valid. We anticipate the loop formula
(2) to be extremely useful for analysis and possible differ-
entiation between the loop contributions. Whether the
series is dominated by a single loop contribution or some
number of comparable loop correction, will depend on
the problem specifics (form of the factor graph and func-
tions). In the former case the leading correction to the
BP result is given by the marked path with the largest ε.

Derivation of the loop formula. We relax the con-
dition σab = σba in Eq. (1) and treat σab and σba as inde-
pendent variables. This allows to represent the partition
function in the form

Z =
∑

σ
′

∏

a

fa(σa)
∏

(b,c)

1 + σbcσcb

2
, (5)

where there are twice more components since any pair
of variables σab and σba enters σ independently. It is
also assumed in Eq. (5) that each edge contributes to
the product over (b, c) only once. The representation
(5) is advantageous over the original one (1) since σa at
different bits become independent. We further introduce
a parameter vector η with independent components ηab

(i.e., ηab 6= ηba). Making use of the key identity

cosh(ηbc + ηcb)(1 + σbcσcb)

(cosh ηbc + σbc sinh ηbc)(cosh ηcb + σcb sinh ηcb)
= Vbc,

Vbc (σbc, σcb)=1+(sinh(ηbc + ηcb)−σbc cosh(ηbc+ηcb))

× (sinh(ηbc+ηcb)−σcb cosh(ηbc+ηcb)) , (6)

we transform the product over edges on the rhs of Eq. (5)
to arrive at:

Z =





∏

(b,c)

2 cosh (ηbc+ηcb)





−1
∑

σ
′

∏

a

Pa

∏

bc

Vbc, (7)

Pa(σa) = fa(σa)
∏

b∈a

(cosh ηab + σba sinh ηab) . (8)

The desired decomposition Eq. (2) is obtained by choos-
ing some special values for the η-variables (fixing the
gauge !!) and expanding the V -terms in Eq. (7) in a
series followed by a local computation (summations over
σ-variables at the edges). Individual contributions to the
series are naturally identified with subgraphs of the origi-
nal graph defined by a simple rule: Edge (a, b) belongs to
the subgraph if the corresponding “vertex” Vab on the rhs
of Eq. (7) contributes using its second (non-unity) term,
naturally defined according to Eq. (6). We next utilize
the freedom in the choice of η. The contributions that
originate from subgraphs with loose ends vanish provided
the following system of equations is satisfied:

∑

σa

(tanh(ηab + ηba) − σba)Pa(σa) = 0. (9)

The number of equations is exactly equal to the number
of η variables. Moreover, Eqs. (9) are nothing but BP
equations: simple algebraic manipulations (see [13] for
details) allow to recast Eq. (9) in a more traditional BP
form

tanh ηba =

∑

σa
σabfa(σa)

∏c 6=b

c∈a (cosh ηac + σac sinh ηac)
∑

σa
fa(σa)

∏c 6=b

c∈a (cosh ηac + σac sinh ηac)
,

with the relation between the beliefs that minimize the
Bethe free energy F and the η fields according to:

ba(σa) =
Pa(σa)

∑

σa
Pa(σa)

.

The final expression Eq. (2) emerges as a result of direct
expansion of the V term in Eq. (5), performing summa-
tions over local σ-variables, making use of Eqs. (3,4), and
also identifying the BP expression for the partition func-
tion as

Z0 =

∏

a Pa(σa)
∏

(b,c) 2 cosh (ηbc + ηcb)
.

To summarize, Eq. (2) represents a finite series where all
individual contributions are related to the correspond-
ing generalized loops. This fine feature is achieved via
a special selection of the BP gauge (9). The condition
enforces the “no loose ends” rule thus prohibiting any-
thing but generalized loop contributions to Eq. (2). Any
individual contribution is expressed explicitly in terms of
the BP solution.

Comments, Conclusions and Path Forward. We
expect that BP equations may have multiple solutions
for the model with loops. This expectation naturally
follows from the notion of the infinite covering graph,
as different BP solutions correspond to different ways to
spontaneously break symmetry on the infinite structure.
This different BP solutions will generate loop series (2)
that are different term by term but give the same result
for the sum. Finding the “optimal” BP solution with
the smallest ε, characterizing loop correction to the BP
solution, is important for applications. A solution related
to the absolute minimum of the Bethe free energy would
be a natural candidate. However, one cannot guarantee
that the absolute minimum, as opposed to other local
minima of F is always “optimal” for arbitrary fα.

We further briefly discuss other models related to
the general one discussed in the paper. The vertex
model can be considered on a graph of the special ori-
ented/biparitite type. A bipartite graph contains two
families of nodes, referred to as bits and checks, so that
the neighbor relations occur only between the nodes from
opposite families. A bipartite factor-graph model with
an additional property that any factor associated with a
bit is nonzero only if all Ising variables at the neighbor-
ing edges are the same, leads to the factor-graph model
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considered in [5]. Actually, this factorization condition
means re-assignment of the Ising variables, defined at the
edges of the original vertex model, to the corresponding
bits of the bipartite factor-graph model. Furthermore, if
only checks of degree two (each connected to only two
bits) are considered, the bipartite factor graph model is
reduced to the standard binary-interaction Ising model.
The loop series derived in this Letter is obviously valid
for all less general aforementioned models. Also note that
the bipartite factor graph model was chosen in [13] to in-
troduce an alternative derivation of the loop series via
an integral representation, where BP corresponds to the
saddle-point approximation for the resulting integral.

Let us now comment on two relevant papers [6, 7]. The
Ising model on a graph with loops has been considered by
Montanari and Rizzo [6], where a set of exact equations
has been derived that relates the correlation functions to
each other. This system of equations is under-defined,
however, if irreducible correlations are neglected the BP
result is restored. This feature has been used [6] to gen-
erate a perturbative expansion for corrections to BP in
terms of irreducible correlations. A complementary ap-
proach for the Ising model on a lattice has been taken
by Parisi and Slanina [7], who utilized an integral rep-
resentation developed by Efetov [14]. The saddle-point
for the integral representation used in [7] turns out to
be exactly the BP solution. Calculating perturbative
corrections to magnetization, the authors of [7] encoun-
tered divergences in their representation for the partition
function, however, the divergences cancelled out from the
leading order correction to the magnetization revealing a
sensible loop correction to BP. These papers, [6] and [7],
became important initial steps towards calculating and
understanding loop corrections to BP. However, both ap-
proaches are very far from being complete and problems-
free. Thus, [6] lacks an invariant representation in terms
of the partition function, and requires operating with cor-
relation functions instead. Besides, the complexity of the
equations related to the higher-order corrections rapidly
grows with the order. The complimentary approach of
[7] contains dangerous, since lacking analytical control,
divergences (zero modes), which constitutes a very prob-
lematic symptom for any field theory. Both [6] and [7]
focus on the Ising pair-wise interaction model. The ex-
tensions of the proposed methods to the most interesting
from the information theory viewpoint multi-bit inter-
action cases do not look straightforward. Finally, the
approaches of [6] and [7], if extended to higher-order cor-
rections, will result in infinite series. Re-summing the
corrections in all orders, so that the result is presented
in terms of a finite series, does not look feasible within
the proposed techniques.

We conclude with a discussion of possible applications

and generalizations. We see a major utility for Eq. (2) in
its direct application to the models without short loops.
In this case Eq. (2) constitutes an efficient tool for im-
proving BP through accounting for the shortest loop cor-
rections first and then moving gradually (up to the point
when complexity is still feasible) to account for longer
and longer loops. Another application of Eq. (2) is di-
rect use of ε as a test parameter for the BP approxima-
tion validity: If the shortest loop corrections to BP are
not small one should either look for another solution of
BP (hoping that the loop correction will be small within
the corresponding loop series) or conclude that no feasi-
ble BP solution, resulting in a small ε, can be used as
a valid approximation. There is also a strong general-
ization potential here. If a problem is multi-scale with
both short and long loops present in the factor graph, a
development of a synthetic approach combining General-
ized Belief Propagation approach of [5] (that is efficient
in accounting for local correlations) and a corresponding
version of Eq. (2) can be beneficial. Finally, our approach
can be also useful for analysis of standard (for statistical
physics and field theory) lattice problems. A particularly
interesting direction will be to use Eq. (2) for introduc-
ing a new form of resummation of different scales. This
can be applied for analysis of the lattice models at the
critical point where correlations are long-range.
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