Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things

Shancang Li\(^{(1),(2)}\), Li Da Xu\(^{(3)}\), Xinheng Wang\(^{(2)}\)

\(^{(1)}\) Faculty of Engineering, University of Bristol, UK;
\(^{(2)}\) College of Engineering, Swansea University, UK;
\(^{(3)}\) Old Dominion University, USA
Introduction and Motivation

- WSNs and IoT based signal/data acquisition
 - Sparseness of Information
 - Heterogeneous networks and networked things
- Motivation
 - Low-cost data acquisition system
 - Resolution, sensitivity and reliability of data compression in IoT
 - Adaptive sparse representation and recovery
Compressed Sensing (1)

- **Condition of Compressed Sensing**
 - Compressible of signal/data
 - Sparse representation
 \[x = \sum_{i=1}^{n} \theta_i \psi_i \quad \text{or} \quad \theta = \Psi^T x, \]
 - Random measurements
 - Coherence of two vectors
 \[\mu = \max_{i,k} |\langle \phi_i, \psi_k \rangle| . \]
Compressed Sensing (2)

- **k-RIP Condition**
 \[
 (1 - \delta_k) \frac{m}{n} \|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta_k) \frac{m}{n} \|x\|_2^2.
 \]

- **Recovery Algorithm**
 - RIP guarantees near optimal recovery
 \[
 \min_{\theta} \|\theta\|_p \text{ s.t. } y = \Phi \Psi \theta
 \]
 - Existing recovery algorithms:
 (BP, MP, OMP, StOMP, CoSaMP, SP)
Compressed Sensing (3)

- Noise Model and Recovery Accuracy

\[
\arg \min_{\theta} \| y - \Phi \Psi \theta \|_2^2 + \lambda_2 \| \theta \|_1.
\]

\[
\rho = \frac{||x - \bar{x}||_2^2}{n}.
\]
CS-Based Framework in WSNs and IoT (1)

- CS IoT (CSI)
 - CS information end-node (CSIE), which aims to reduce the number of samples without losing the essential information;
 - Compressed data delivery scheme, which aims to minimize the received data distortion and communication burden;
 - Information recovery at fusion center(s)
Signal/Data Acquisition Model

- Node-Dependent Signal/Data Acquisition

\[y = Ax + \epsilon \]

- benefits:
 1) reduce number of samples;
 2) reduce communication burden;
 3) reduce the computation cost at nodes
CS-Based Framework in WSNs and IoT (4)

- Cooperative Signal/Data Acquisition between nodes:

\[
\mathbf{y} = [y_1, \cdots, y_m]^T = \sum_{j=1}^{n} A_{i,j} x_j
\]

- Consensus Algorithm based Signal/Data Acquisition over Networks:

\[
\begin{aligned}
\mathbf{y}_a &= \Phi \mathbf{A} \mathbf{x} + \mathbf{\epsilon}_a \\
\min_{\mathbf{x}} \sum_{i \in \mathcal{N}_a} \left(y_i - x_{i}^{(i)} - \sum_{k \in \mathcal{N}_s \cup \mathcal{N}_i} A_{k,i} x_{k}^{(i)} - \sum_{j \in \mathcal{N}_a} A_{k,i} x_{j}^{(j)} \right)^2 \\
\text{s.t. } &x_{i}^{(i)} \geq 0, \forall i \in \mathcal{N}_a, \\
&x_{k}^{(i)} \geq 0, \forall k \in \mathcal{N}_s \cup \mathcal{N}_i.
\end{aligned}
\]
Sparse Representation

- CSIE samples the original information and then deliver the samples through CSI;

- Advantages:
 1) it runs on thin node of IoT;
 2) it takes the advantage of the temporal correlation between continuous data matrices
CS-Based Framework in WSNs and IoT (6)

- Illustration of the compressibility of network

(a) Monitoring scenario.

(b) Sparse representation of monitoring data.
Noise Model, Communication Load, and Recovery Accuracy

- Input noise
 \[y = A(x + \epsilon) \quad \epsilon \sim \mathcal{N}(0, I_n) \]

- Probability of a packet in error
 \[P_E = 1 - (1 - P_e)^L \]

- Average arrival rate
 \[\sigma = \frac{N(1 - e^{\eta^T})e^{-2N\eta^T_p}(1 - P_E)}{T} \]
The number of useful packets

\[\text{Prob} \{ K(\eta, T) = k \} = P_K(k; \eta, T) = \frac{(\eta T)^k}{k!} e^{-\sigma T}. \]
Adaptive Cluster Sparse Representation and recovery algorithm

Step 1) Estimate the residual of each iteration.
Step 2) Compute the best clusters $C_{k,c}$ support set of the errors (index set).
Step 3) Merge the strongest support set.
Step 4) Reconstruct the signals according to the given support sets.
Step 5) Prune x and compute residual for the next round.
Performance Evaluation

- Node-Dependent Signal Acquisition

(a) Original map and (b) reconstructed map with ACSRA algorithm.
Performance Evaluation (2)

- **ECG Signal Acquisition and Recovery**
 - ECG dataset is available:
 http://www.cs.ucr.edu/eamonn/discords
 - $k=128$, the length of signal is 2048, $M = [256, 384]$
 - only 18.75% of the original data needs to be transmitted over network.

<table>
<thead>
<tr>
<th>No.</th>
<th>ECG Datasets</th>
<th>Size(N)</th>
<th>Recovery Error</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chfdb1</td>
<td>3750</td>
<td>0.0360</td>
<td>2.22690</td>
</tr>
<tr>
<td>2</td>
<td>chfdb2</td>
<td>3750</td>
<td>0.0280</td>
<td>1.50751</td>
</tr>
<tr>
<td>3</td>
<td>ltstdb1</td>
<td>3750</td>
<td>0.1066</td>
<td>1.30932</td>
</tr>
<tr>
<td>4</td>
<td>ltstdb2</td>
<td>3750</td>
<td>0.0691</td>
<td>1.48217</td>
</tr>
<tr>
<td>5</td>
<td>mitdb</td>
<td>5400</td>
<td>0.0426</td>
<td>3.69623</td>
</tr>
<tr>
<td>6</td>
<td>stdb</td>
<td>5400</td>
<td>0.1193</td>
<td>2.10079</td>
</tr>
<tr>
<td>7</td>
<td>xmitdb</td>
<td>5400</td>
<td>0.0139</td>
<td>3.42036</td>
</tr>
</tbody>
</table>
Performance Evaluation (3)

- Comparison with GPSR, LASSO, and OMP

- $k=74$, the length of signal is 2048, $M = 512$
Summary and Conclusions

- We formulate the problem of data acquisition based on CS in IoT and WSNs.
- A CS-based information acquisition framework is proposed for IoT, which involves the compressed sampling at IoT end nodes, information transmission over IoT, and accurate data recovery at FC.
- By taking the correlation of sensing data over IoT and WSNs into consideration, an adaptive sparse representation and corresponding signal reconstruction algorithm are proposed that offer a higher accuracy and lower computational complexity compared with preexisting group/cluster sparse reconstruction algorithm.
Reference (1)

Reference (2)

- S. Kumar, B. Kadow and M. Lamkin "Challenges with the introduction of radio-frequency identification systems into a manufacturer's supply chain for a pilot study", Enterprise Inf. Syst., vol. 5, no. 2, pp.235 -253 2011.
Disclaimer

These slides are made by authors to help readers quick and better understanding of the subject. The opinions made or information presented here belong to the sole responsibility of the authors.

IE Tech News (ITeN) neither endorses nor denounces any opinions made or information presented. Part or full of these material may be used only with written permission from the authors.
Thank you for your attention!