

In this paper we propose the Referee Anti-Cheat Scheme
(RACS) that extends PP-CA. RACS uses AoI filtering, and
solves the undo, BO, IE and IC cheats. RACS requires
lower delay and bandwidth than either C/S or P2P cheat
solutions, while providing security equivalent to C/S.

The layout of the paper is as follows. Section 2
describes various cheats and their solutions. In Section 3
we present the details of RACS. Section 4 provides an
analytical and simulation study of RACS. Section 5
concludes the paper.

2. BACKGROUND
2.1 Cheats and Solutions

We consider a cheater who can eavesdrop, replay,
modify, delay, insert, and destroy messages sent/received
by his host. He may also modify any program or software
on his system. Note, “he” should be read as “he or she”
throughout this paper. We exclude general security issues
such as authentication, denial of service, etc.

Table 1 classifies cheats into four levels: game,
application, protocol, and infrastructure; some cheats fall
into multiple levels (e.g., IE). The table extends that in [6]
with the undo, BO, IE [10], IC [14], and proxy/reflex
enhancers (PRE) [14] cheats. We consider PRE, such as
aiming proxies, in the infrastructure level as they are
deployed in the network between the client and the server
[14]. Section 2.2 details the undo, IE, IC, and BO cheats;
see [6] for the details of other cheats. Table 1 also shows
the different cheat solutions. Note that the solutions are not
mutually exclusive, e.g., using C/S with PunkBuster (PB).

Table 1. Game cheats and their possible solutions

Cheat C
/S

PB
/V

A
C

2

A
S

N
E

O
/S

E
A

R
A

C
S

Game Level

Bug ● ● ● ●
Application Level

IE, IC ● ●
Bots/reflex enhancers ●

Protocol Level
Suppressed update, Timestamp

Fixed delay, Inconsistency ● ● ● ●

Collusion
Replay, Spoofing ● ● ●

Undo NA ● NA

BO NA NA NA ●
Infrastructure Level

IE ● ● ●
PRE

Current P2P cheat solutions [2-4,6] divide time into
rounds, each of which comprises two consecutive steps: (i)

commit-to-an-update by transmitting an encrypted
message, and (ii) reveal-the-update by sending the message
key. To prevent cheating, all players must commit an
update before any player reveals their key.

Lockstep [2] is too slow for many genres of games as it
has a worst-case round length of 3d, where d is the delay
between the two slowest players. Furthermore, it is
vulnerable to inconsistency, replay, and spoofing cheats
[6]. Asynchronous Synchronisation (AS) [2] increases
responsiveness by only requiring players with overlapping
AoIs to work in lockstep. The round length in AS is
reduced to between 2d and 3d; here d is the delay of the
two slowest players with overlapping AoIs. Unfortunately,
AS does not prevent cheaters/griefers [8] from increasing d.
Sliding Pipeline (SP) [4] is another variation of Lockstep
that increases the transmission rate by pipelining updates;
however, its worst-case delay remains at 3d.

New Event Ordering (NEO) [6] limits the round length
of every group of players with overlapping AoIs to 2d.
NEO only considers an update valid if the majority of the
group receives it within d; late updates are discarded. Each
player then transmits the update’s key in the second half of
the round. However, NEO is vulnerable to inconsistency,
timestamp, replay, and spoofing cheats [3]. Secure Event
Agreement (SEA) [3] modifies NEO’s cryptography to
address these cheats, while maintaining its delay bound.
Unfortunately, both approaches [3,6] suffer from the undo
cheat (discussed in Section 2.2).

2.2 The IE, undo, IC, and BO Cheats
Information Exposure (IE): The goal of IE is to obtain
secret information to which the cheater is not entitled, thus
gaining an unfair advantage in selecting the optimal action.
We have included IE in the application and infrastructure
levels since information can be exposed at both levels,
subject to how the cheat is performed. At the application
level the game client or data files can be modified to reveal
secret information, while at the infrastructure level, IE is
achieved by modifying either (i) the graphics drivers to
render the world differently [18] (e.g., drawing walls
transparently), or (ii) the network infrastructure to allow
another host to sniff the network traffic [14]. Reference
[10] proposes On-Demand Loading to address IE, at the
expense of additional processing.

Undo: Let Pi denote a player with a unique identification i,
and Mi and Ki represent a message and its key from Pi
respectively. Without loss of generality, the undo cheat is
illustrated in Figure 1 involving only two players: an honest
PH and a cheating PC. Both players send their encrypted
game moves (MH and MC) in the commit phase. Then, PH
sends key KH in the reveal phase. PC cheats by delaying KC
until KH is received, and MH is revealed. If PC decides that
his committed MC is poor against MH, PC will purposely
drop KC (dashed line) undoing his MC. Even worse, in
[3,6], d is determined by the majority of players, which

allows colluding cheaters to increase the round length d to
gain time for evaluating their opponent’s moves.

Invalid Command (IC): In IC, the client application or
data files are modified to issue commands that originally
could not be generated [14]. IC is trivially solvable in C/S
since the server validates all commands. However,
preventing IC in P2P is difficult because all peers
(including cheaters) must agree on valid commands.

Figure 1. Sequence of messages in the undo cheat.

Blind Opponent (BO): A cheater in PP-CA may purposely
drop updates to his peers (but not to the CA), effectively
blinding them about his actions. Section 4.1 describes our
RACS solution.

3. REFEREE ANTI-CHEAT SCHEME
3.1 Concept and Protocol

RACS comprises three entities: an authentication
server, a set of players {Pi | i is the unique identifier (ID) of
each player}, and a referee R. The server is used to store
offline-player’s avatar state (T6), authenticate joining Pi,
download Pi’s avatar state to his host and R, and billing
(T7). The server assigns a unique ID to each player. Each
player receives updates (T1), simulates game play (T2), and
sends updates to his peers and the referee (T4).

The referee R is a process running on a trusted host that
has authority over the game state. Note that distributed
referees will be addressed in future work. The referee
performs Tasks T3 and T5 to prevent cheating and maintain
the game’s consistency. For these tasks, it receives and
simulates all updates (T1 and T2). The referee performs T4
if peers are unable to communicate directly (in the event of
message loss or cheating, discussed in Section 4.1).

The referee divides game time into rounds of length d≤dmax;
the developer sets dmax such that the game is playable. Note that R
can decrease (increase) d to lower delay (reduce its outgoing
bandwidth); the algorithm to compute the optimal value for d, and
the frequency of using it are application dependent, and therefore
we do not address these issues in this paper. In general, d should
be adapted to accommodate the clients’ Quality-of-Service (QoS)
characteristics. We suggest setting d to the maximum client delay
less than dmax. However, we do not recommend changing d when
high priority events are occurring, as this may induce temporal
disruptions.

For each round r every Pi generates a pair Ui=(r, I), to
be included in his messages transmitted to R and other
peers. Here, I is the information containing Pi’s actions

(e.g., move, attack, etc.) and/or information about
connections with his peers (e.g., informing R about
disconnecting from an opponent). The referee initialises the
round number r=1. Each copy of r (kept in R and each Pi)
is independently incremented for every elapsed d. One can
use NTP [6] for synchronising d.

As shown in Figure 2, RACS considers three different
message formats: (i) peer to peer message – MPPi (Ui), (ii)
peer to referee message – MPRi (Ui, Si, Ti), and (iii) referee
to peer message – MRPR(Ui,i), each of which is signed by
the sender (i.e., Pi or R). It is obvious that MPP (MPR) is
the smallest (largest). Note that MPP does not transmit
secret information Si (e.g., health and items), which is
conceptually similar to On-Demand Loading [10]. Instead,
Si is only included in MPR to the referee. In addition, he
includes a set Ti={(j, H(Uj), D(MPPj))} so that the referee
can detect inconsistency between each hash of update Uj,
H(Uj), that Pi received from each of his opponents Pj (in the
previous round) with that received by R. For each
unmatched H(Uj), R requests Pi to forward the MPPj that
he received to verify the cheat using the non-repudiation
quality of digital signatures; this step prevents cheaters
incriminating opponents by sending incorrect hashes to the
referee. The referee uses the transmission delay of all
MPPj, D(MPPj), to adjust d. Receiving MPRi(Ui,Si,Ti), R
forwards MRPR(Ui,i) to Pi’s peers if the players are in PRP
mode; otherwise (i.e., in PP mode), R simulates the game
and only sends MRP to relevant players when
inconsistency is detected. Note that PP and PRP modes are
discussed in Section 3.2.

(a) PRP mode (b) PP mode

Figure 2. RACS communication models

The recipient of each message validates its authenticity
using the public key of the sender. A late message (not
received within its round) is considered for a future round
assuming no newer messages have been received;
otherwise it is discarded. Thus RACS is more tolerable to
slow players and network delay than [3,6] which discards
late messages. We assume the use of a public key
infrastructure for authentication and non-repudiation [6].

3.2 Communication Models
As shown in Figure 2, the communication between any

PA and PB that are mutually aware (within each others’ AoI)
can be through the referee R (Peer-Referee-Peer: PRP
mode), or direct (Peer-Peer: PP mode). In PRP each player
sends MPR and receives MRP messages to/from R. This
mode provides security equal to that in C/S. In contrast,
peers in PP exchange their messages (MPP) directly, which

d

PC

KC
KH

MC MH

PH

d

reveal

commit

reduces delay, and R’s outgoing bandwidth while
maintaining security. Thus, PP is the preferable mode.
Note, R sends an MRP only in the event of conflicts
(dashed lines in Figure 2(b)).

A joining PA first contacts the authentication server,
which validates PA (e.g., his identity, subscription, banning,
etc.), and downloads his avatar state to both his host and R.
Then, R downloads the relevant game state to PA’s host,
and notifies all affected players, e.g., PB; PA is now in PRP
mode. For these joining steps, we assume the use of
existing player-authentication and startup protocols [1].

The referee converts mutually aware PRP peers (e.g.,
PA and PB) into PP by sending MRP that instruct them to
exchange MPP. On the other hand, PA reverts to PRP (with
respect to PB) if: (i) he is no longer in PB’s AoI, and vice
versa; (ii) he receives less than p percent of PB’s last s≥1
messages, or (iii) he does not receive PB’s update for more
than w≥0 consecutive rounds. Reversion requirement (i)
provides AoI filtering to reduce bandwidth; only players
that include PA in their AoI will be updated. Requirement
(ii) prevents a cheater repeatedly sending one message and
then dropping w consecutive messages, while requirement
(iii) ensures that losses are not clustered, which would have
a large impact on the game-play experience. For either
case, PA sends an MPP (MPR) to PB (R), that includes I
notifying them of the reversion. Then, R only forwards PA’s
moves to PB if PA is within PB’s AoI. Note that RACS is
cheat-proof when w=0 or p=100%. The optimal values for
w, p, and s should (i) minimise PP to PRP reversions, and
(ii) minimise the number of messages that may be dropped.

Each leaving PA (in PRP or PP) sends MPR (with
I=QUIT), which makes R upload PA’s avatar state to the
server, which in turn, sends an acknowledgement (ACK) to
both PA and R. Receiving the ACK, PA disconnects from R,
and R notifies all affected players.

Every Pi in PP mode sends his MPP (MPR) to all
affected peers (R) for each elapsed d. Thus, for every
round, R (each player) expects a message from each player
(all other players). However, due to communication failures
or cheating, a message may not arrive. Assume PB and R
are expecting a message from PA. We consider three cases
for missing messages: (i) neither receives, (ii) only R
receives, and (iii) only PB receives a message. In RACS, Pi
and R dead-reckon the avatar of each Pj whose message is
not received. R’s state is authoritative, and it notifies
affected players about inconsistencies caused by dead-
reckoning. In case (i), only PA may be disadvantaged, as PB
and R have matching state. However, in case (ii), PB might
be slightly disadvantaged if his game state is incorrect.
Finally, case (iii) disadvantages both PA and PB since R’s
dead-reckoning may make their states incorrect. Note that
for cases (i) and (ii), if the missing message violates
reversion requirements (ii) or (iii), PB will revert to PRP.

Every Pi in PRP mode sends MPRi (Ui,Si,Ti) to R for
each elapsed d. In the following round, the referee sends
MRPR(Ui,i) to Pi’s peers. The referee (peer) dead-reckons

Pi’s avatar for each missing MPR (MRP); any
inconsistency is resolved using the R’s authoritative state.

4. RACS PERFORMANCE EVALUATION
4.1 Security

PRP mode provides security equivalent to that in C/S,
since both models use a trusted entity to simulate the game
and forward updates. Obviously cheat solutions in PRP are
similar to those in C/S and, thus, are not discussed in this
paper. In the following, we explain how RACS in PP mode
addresses various cheats. Throughout our discussion, we
assume a referee R, a cheating PC, and PC’s opponent PH.

Bugs: RACS assumes that bugs will be fixed by software
patches (released by the publisher), as does C/S.

IE: PC does not receive any secret information SH, which is
only included in MPR; thus IE is prevented.

Bots/reflex enhancers: As in C/S [5], one may combine
RACS with PB or VAC2 to detect bots/reflex enhancers.

IC: R validates all player commands to prevent IC. Further,
the authentication server stores all offline players’ avatar
state to prevent command tampering.

Suppressed update: Missing messages are dead-reckoned/
interpolated by PH and R. Since R’s state is authoritative,
PC gains no advantage from suppressing his updates.

Fixed delay: Applying fixed delay may make PC violate
reversion requirements (ii) or (iii), which, in turn, will
revert PH from PP to PRP (with respect to PC). This will
punish PC because his delay (with respect to PH) will be two
hops, while that of PH (with respect to the other PP peers)
will be one hop. If PC’s message arrives within the round
(not late), RACS does not consider it cheating. Since late
updates are indistinguishable from cheating, the solution
may penalize honest but slow players; nevertheless, it is
better than [3,6] which prohibit slow peers from playing.

Inconsistency: R detects inconsistency by comparing the
hashes of all the messages received by PH in the previous
round with those received by R from PC (see Section 3.1).

Timestamp: Late updates are considered for the following
round (Section 3.1), and thus the cheat is prevented.

Collusion: RACS does not address the collusion cheat, nor
do existing P2P and C/S solutions [17].

Replay attack: A message is invalid if another message
with larger r has been received (see Section 3.1); hence, r is
a nonce to detect replay of old messages.

Spoofing cheat: RACS solves this cheat by authenticating
the signature of the message.

Undo: RACS does not use the commit/reveal steps as in
[3,6], and thus the undo cheat is impossible.

BO: This cheat is equivalent to missing message case (ii)
(Section 3.2). If the cheat results in PC violating reversion
requirement (ii) or (iii), PH will revert to PRP, which solves
the cheat. Otherwise PC gains an insignificant advantage.

4.2 Analytical Evaluation
Our analysis assumes one update (size Lu bytes) for

every d=Tu seconds. We consider a game with N players,
and every player is aware of at most M opponents. The
worst (best) case for RACS is when no (all) peers use PP.
A peer sends Lu/Tu ((Lu/Tu)*M) bytes in the worst (best)
case. For both cases, the inbound traffic to the referee and
each peer is (Lu/Tu)*N and (Lu*M)/Tu bytes, respectively.
Thus, the inbound bandwidth requirement of RACS is
equivalent to that of C/S, and may potentially be its
bottleneck. The best case outbound traffic from the referee
is negligible since MRP is only sent to resolve
inconsistencies. In the worst case, the referee sends
((Lu*M)/Tu)*N bytes, equivalent to the server in C/S. The
AoI filtering, used in RACS, greatly reduces the outgoing
bandwidth of the referee and peers compared to the server
and peers in PP-CA, while maintaining the same delay.
Thus, RACS is more scalable than PP-CA.

RACS is superior to NEO/SEA [3,6] in several ways.
First, RACS requires lower bandwidth. Every message in
SEA is comparable in size with each MPRi, and is sent to
all peers in the same region. In contrast, peers in RACS
send MPRi only to the referee, and use MPPi (smaller than
MPRi) between peers. Thus, the peer bandwidth in RACS
is lower than in SEA. Second, RACS determines dynamic d
more accurately and faster with lower bandwidth. Here,
NEO/SEA use a distributed algorithm [6] to calculate d, in
contrast to our centralized method that requires lower
bandwidth cost. Further, directly setting d to the maximum
client delay computes it more accurately and faster. Finally,
in contrast to RACS, NEO/SEA requires complex group
selection algorithms to prevent cheaters from colluding
against a minority of honest players.

4.3 Simulations
We used the Network Game Simulator (NGS) [16]

(netgamesim.sourceforge.net) to show the impact of
cheaters on RACS delay and bandwidth requirements. We
considered a game with a world of size 5000 by 5000 units,
and a referee that handles 5000 players with an AoI radius
of 50 units. Avatar movement is controlled by the random-
way-point mobility model with a velocity of two units per
second and a wait time of 0. We simulated 1000 seconds
for a loss-less network with no late messages. Each player
generated a message every d=50ms. Further, after reverting
to PRP, a pair of peers will not attempt PP mode for at least
60 seconds. We set w=0 (thus, p and s are irrelevant) to
show the worst case bandwidth and delay costs of RACS in
preventing cheats; equivalently, p=100% might be used.
Here, the cheaters do not send MPP messages, as in BO
and suppressed update. These cheats have the greatest

impact on the average delay and R’s outgoing bandwidth
because they require the referee to forward updates (Ui in
MRP) to other peers. We varied the percentage c of
cheaters, randomly selected, from 0% to 100%.

Figure 3 shows the referee’s average and maximum
outgoing bandwidth per second (left Y axis) and the
average delay (right Y axis) with an increasing percentage
of cheaters. The average bandwidth (delay) was calculated
by dividing the total bandwidth used (delay of all
messages) by the length of the simulation (number of
messages), whereas the maximum bandwidth was the peak
bandwidth consumption per second measured in the
simulation. As expected, the figure shows that the best case
(worst case) occurs when c=0% (c=100%) as all updates
are exchanged directly (routed through the referee) using
PP (PRP) mode. Figure 3 shows that RACS scales well,
even in the presence of cheaters, as honest players continue
to exchange updates. Note that the average bandwidth and
delay of RACS never exceeds those of C/S (c=100%).

Figure 3. RACS with increasing cheaters.

The following simulation illustrates how a developer
sets optimal w, s, and p for a lossy network. We consider
the Source Engine (SE) in Halflife (HL) [15] to show how
the values are determined. Note that HL requires very low
delay [4], and thus this illustration is applicable to all
genres of games, including MMOG. In the SE an update is
generated every 50 milliseconds. As most client’s delay
exceeds this, messages must be pipelined. Note that RACS
adopts a similar pipelining approach to that in [6] to avoid
any security issues. The SE does not render received
updates for 100ms, and uses interpolation to smooth player
transitions. In the event of two consecutive message losses,
the SE client dead-reckons for up to 250ms; therefore, the
client halts after seven consecutive losses.

From the described specifications, we set d=50ms and
w=6 ((100ms+250ms)/50ms - 1=6); hence, a peer reverts to
PRP after seven consecutive losses. We believe that losing
2*w=12 messages per 10 seconds will give a cheater an
insignificant advantage. Thus, s=200 (10 seconds/50ms),
and p=94% ((1-12/200) * 100%). The simulation uses MPP
message loss rates from 0% to 50%. We assume the
communication to/from the referee is well provisioned, and
therefore the loss rate for MPR and MRP is insignificant.
Also, all messages arrive on time or not at all. Since the

30

20

0
0 25 50

Percentage of cheaters c

1

1.5
O

ut
go

in
g

ba
nd

w
id

th

(K
b/

s *
 1

03)

Average bandwidth

10

75 100

D
el

ay
 (h

op
s)

Maximum bandwidth
Average delay

effects of modifying w and p can only be observed when
players have repeated interactions, we simulated 12
players, each with an AoI radius of 200, in a world of size
100 by 100 so that all players are constantly mutually
aware. We simulated the SE with 0 (c=0%), 3 (c=25%),
and 6 (c=50%) cheaters. We use all remaining parameters
from the previous simulation.

Figure 4 shows the average bandwidth and delay of the
simulation. The figure also includes a worst-case base line,
i.e., w=0, p=100%, c=0%. With no cheaters, it is obvious
that increasing w and reducing p greatly reduce the
referee’s outgoing bandwidth and average game delay
(highest vs. lowest plots in the figure).

The figure shows that RACS is highly tolerant to loss.
Irrespective of the number of cheaters, loss rates below
20% do not impact the outgoing bandwidth and the average
delay; beyond 20%, RACS performance degrades rapidly.
We believe that the critical point is caused by the values of
p and w, and therefore further investigation is required for
tuning the parameters. However, the results show that
increasing numbers of cheaters has a greater impact on
performance than loss rate; as more peers revert to PRP
mode. Nevertheless, the upper bound of RACS delay is two
hops (as in C/S), below SEA’s three-hop bound. In
addition, as discussed in Section 4.2, its overall bandwidth
never exceeds that in C/S and SEA.

Figure 4.RACS with increasing message loss and cheaters.

5. CONCLUSION
We have extended the cheat classification in [6] and

proposed RACS, which has the following benefits: (i) it
provides security equal to C/S, while reduces delay and the
server/referee’s outgoing bandwidth; (ii) it is more
effective and efficient than existing cheat solutions [2-4,6],
as it is secure against the IC, IE, undo and BO cheats with
lower cost; (iii) it allows peers with poor connections to
play using PRP, unlike [3,6], and (iv) its centralised
algorithm calculates d more accurately, faster and with
lower bandwidth than the distributed algorithms in [3,6].

As with PP-CA, RACS reduces only the outgoing
bandwidth; it does not address the scalability issues of
incoming bandwidth and referee processing requirements.
We are investigating the use of multiple referees in a server

cluster (similar to Federated C/S) and/or in peers to reduce
the referee’s incoming bandwidth and processing
requirements; hence, improving RACS scalability.
Distributing referees to peers increases scalability;
however, this raises issues of referee trust, selection, load
balancing, and synchronization. These issues require
further investigation.

6. REFERENCES
[1] Abadi, M., and Needham, R. Prudent Engineering Practice

for Cryptographic Protocols. IEEE Trans. Software
Engineering 22, 1 (1996), pp. 6-15.

[2] Baughman, N. E., Liberatore, M., & Levine, B. N. Cheat-
Proof Playout for Centralized and Peer-to-Peer Gaming.
IEEE/ACM Trans. Networking 22, 1 (2007), pp. 1-17.

[3] Corman, A. B., Douglas, S., Schachte, P., & Teague, V. A
Secure Event Agreement (SEA) protocol for peer-to-peer
games. in Proc. ARES'06, pp. 34-41.

[4] Cronin, E., Filstrup, B., & Jamin, S. Cheat-Proofing Dead
Reckoned Multiplayer Games. in Proc. Int. Conf Appl.
Development of Computer Game. 2003.

[5] DeLap, M., et al., Is runtime verification applicable to cheat
detection? in Proc. ACM NetGames '04, pp. 134-138.

[6] GautheierDickey, C., Zappala, D., Lo, V., & Marr, J. Low-
Latency and Cheat-proof Event Ordering for Distributed
Games. in Proc. NOSSDAV '04, pp. 134-139.

[7] Hu, S. Y., Chen, J. F., & Chen, T. H. Von: A Scalable Peer-
to-Peer Network for Virtual Environments. IEEE Network
20, 4 (2006), pp. 22-31.

[8] Kabus, P., Terpstra, W. W., Cilia, M., & Buchmann, A. P.
Addressing cheating in distributed MMOGs. in Proc.
NetGames '05, pp. 1-6.

[9] Knutsson, B., Lu, H., Xu, W., & Hopkins, B. Peer-to-Peer
Support for Massively Multiplayer Games. in INFOCOM
'04, Hong Kong, 1: pp. 7-11.

[10] Li, K., Ding, S., McCreary, D., & Webb, S. Analysis of state
exposure control to prevent cheating in online games. in
Proc. ACM NOSSDAV '04, pp. 140-145.

[11] Li, J., & Kang, X. mSSL: Extending SSL to Support Data
Sharing Among Collaborative Clients. in Proc. ACSAC'05,
pp. 397-408.

[12] Mulligan, J., & Patrovsky, B. Developing Online Games: An
Insider's Guide. 2003: New Riders Publishing.

[13] Pellegrino, J. D. & Dovrolis, C. Bandwidth requirement and
state consistency in three multiplayer game architectures. in
Proc. NetGames '03, pp. 52-59.

[14] Pritchard, M., How to Hurt the Hackers, in Game Developer
Magazine, Jun. 2000. pp. 28-30.

[15] Valve, Source Multiplayer Networking.
http://developer.valvesoftware.com/wiki/Source_Multiplaye
r_Networking, Dec. 2006.

[16] Webb, S. D., Lau, W., & Soh, S. NGS: An Application
Layer Network Game Simulator. in Proc. Australasian conf.
IE'06, pp. 15-22.

[17] Yan, J. Security Design in Online Games. in Proc. IEEE
ACSAC '03, pp. 286-295.

[18] Yan, J. & Randell, B. A systematic classification of cheating
in online games. in Proc. ACM NetGames '05, pp. 1-9.

300

200

0
0 25 50

Loss rate
(%)

1

1.5

2

O
ut

go
in

g
ba

nd
w

id
th

(K

b/
s)

w=0, p=100%

100 D
el

ay
 (h

op
s)

c=0%
c=25%

c=50%

c=0%

w=6, p=94%
Bandwidth
Delay

