Age at onset and cognition in schizophrenia: meta-analysis

T. K. Rajji, Z. Ismail and B. H. Mulsant

Background
The relationship between cognition and age at onset of schizophrenia is largely unknown.

Aims
To compare cognitive deficits in individuals with youth-onset and late-onset schizophrenia with those in adults with first-episode schizophrenia.

Method
Twenty-nine databases (including EMBASE, MEDLINE and PsycINFO) were searched from 1980 to 2008. Selected publications had to include healthy controls and analyse separately individuals diagnosed with schizophrenia or a related disorder and individuals with first-episode, youth-onset or late-onset schizophrenia. Descriptive and cognitive data were extracted and the latter aggregated into 22 cognitive measures. Cohen’s effect size raw and weighted means of cognitive deficits were generated and compared in the three groups.

Results
Individuals with youth-onset and first-episode schizophrenia demonstrate large deficits (mean effect size ≥ 0.8) on almost all cognitive measures. Individuals with youth-onset schizophrenia demonstrate larger deficits than those with first-episode schizophrenia on arithmetic, executive function, IQ, psychomotor speed of processing and verbal memory. In contrast, those with late-onset schizophrenia demonstrate minimal deficits on arithmetic, digit symbol coding and vocabulary, but larger ones on attention, fluency, global cognition, IQ and visuospatial construction.

Conclusions
Individuals with youth-onset schizophrenia have severe cognitive deficits, whereas those with late-onset schizophrenia have some relatively preserved cognitive functions. This finding supports the view that severity of the disease process is associated with different ages at onset. In addition, the cognitive pattern of people with late-onset schizophrenia suggests that their deficits are specific rather than solely as a result of ageing and related factors.

Declaration of interest
None.

Schizophrenia is a diverse disorder. One facet of its diversity is the age at onset. The incidence of schizophrenia peaks between 10 and 25 years for men and between 25 and 35 for women. Another peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40. In a small group of people, schizophrenia has its peak, particularly among women, occurs in mid-life: about 23% of people with schizophrenia experience their first episode after the age of 40.
with different age at onset (i.e. childhood, adolescence, adult or late-onset) were not analysed separately or if those with adult-onset schizophrenia included people who were not in their first episode. Publications reporting on treatment trials were excluded if there were no available baseline data to compare between patients and controls. Publications reporting on the same sample were counted as a single study.

Classification of studies

If a publication met the above criteria, individuals were classified into one of three groups: first-episode schizophrenia, youth-onset schizophrenia and late-onset schizophrenia. To be classified into youth-onset schizophrenia, individuals with schizophrenia had to have a maximum age at onset of 19 years. To be classified into late-onset schizophrenia, people with schizophrenia had to have a minimum age at onset of 40 years. For any other age at onset, a selected publication was classified into the first-episode schizophrenia category provided that the study included and analysed separately those individuals with first-episode schizophrenia. Age at onset is defined differently in different studies. It is used to refer to age at first behavioural changes (e.g. DeLisi et al[24]) or age at first manifestation of positive symptoms (e.g. White et al[19]) or age at first admission to hospital (e.g. Bellgrove et al[27]). However, these different stages have been shown to be correlated and typically within 6–18 months of each other. Thus, when classifying a study, we accepted the definition of age at onset as described in each individual study.

Extracted variables

After the selection and classification of a publication, the following variables were extracted and recorded: journal name, title, first author and year of publication. In addition, the following variables were recorded for patients and controls separately: number of participants and mean (s.d.) age. Some studies only provided an age threshold (e.g. ‘onset before age 14’); when mean (s.d.) age at onset was provided, it was recorded and mean duration of illness was estimated based on the difference between mean age at onset and mean age. Finally, the cognitive data were recorded as follows.

Cognitive measures

The data from each cognitive test were extracted and classified into one of 22 cognitive measures (see Online supplement). The selection of these 22 measures followed a seminal quantitative review of cognitive deficits in schizophrenia. As noted in that review, ‘organizing the myriad of neurocognitive test variables reported in the literature into a coherent classification [is] a major challenge’. We adopted the strategy employed in that review because it accounts for two opposing yet complementary approaches. The first approach is to avoid aggregating cognitive tests and to report results of individual tests. This approach is supported by the fact that most individual tests are mediated by multiple cognitive processes and tap into more than one cognitive function. Thus, aggregation into a single cognitive measure could result in misleading effect sizes that do not correspond to a specific cognitive function. This is also relevant to our review considering that in different groups (first-episode, youth-onset and late-onset schizophrenia), different cognitive tests have been used to assess particular cognitive measures. Consequently, contrasting effect sizes that correspond to these cognitive measures could be problematic. Thus, whenever possible, results of individual tests were reported separately. The second approach is to aggregate cognitive tests into a single measure based on theoretical or factor-analytical underpinnings. This approach facilitates the management of data based on various tests that tap into the same cognitive function (e.g. both California Verbal Learning Test and Rey Auditory Verbal Learning Test assess verbal memory). It also adds to the weight of effect sizes by increasing the number of individual scores contributing to a mean effect size. This is particularly relevant to our review considering the relatively small number of participants in some studies.

Calculation and comparison of effect sizes

Individual Cohen's effect sizes (d_i) were calculated for each cognitive test as the difference between the means of the schizophrenia and control groups divided by the pooled standard deviation. In some studies the groups’ means and standard deviations were not available and d_i-values were calculated based on the reported inferential statistics. Effect size raw means (d-values) and their 95% confidence intervals (CIs) were generated for each cognitive measure based on the individual d_i-values aggregated in this measure. Finally, effect size weighted means (weighted d-values) and their standard errors (s.e.) were generated for each cognitive measure by calculating the mean of individual d_i-values weighted by the inverse of their individual variance. Weighted means were also generated for age, age at onset and duration of illness. We used the $Q_{between}$ test to compare the three groups’ weighted d-values statistically. When $Q_{between}$ was significant, we compared each of the weighted d-values of each pair separately using $Q_{between}$ with Bonferroni’s adjustment. We also used two different cut-offs to compare effect sizes qualitatively: 0.3 and 0.6. Following well-established conventions, an effect size <0.2 is considered small, an effect size of 0.2–0.8 is considered medium and an effect size above 0.8 is considered large. Thus, a difference of 0.3 separates a small effect size (0.2) and a typical medium effect size (0.5) or a typical medium effect size (0.5) and a large effect size (0.8). A difference of 0.6 separates a small effect size and a large effect size.

Results

The 913 retrieved publications and their relevant cited and citing references were reviewed by one of the authors (T.K.R.). A total of 78 first-episode schizophrenia, 23 youth-onset schizophrenia and 9 late-onset schizophrenia publications were included in the analysis (Fig. 1; see also the Online supplement for a full list of publications included in the analysis). Age at onset was operationally defined in all of the late-onset schizophrenia and 12 of the youth-onset schizophrenia publications. The remaining 11 youth-onset schizophrenia publications did not define age at onset operationally. However, in all these publications, individuals met DSM–III or later diagnostic manual criteria for schizophrenia before the age of 19. In first-episode schizophrenia publications, the first episode was always operationally defined: 61 did not define age at onset operationally. Descriptive data of participants are reported in Table 1. The mean effect sizes (d-values) of cognitive deficits, the 95% CIs and the contributing number of studies are described in Fig. 2. Adults with first-episode schizophrenia demonstrate large deficits ($d\geq 0.8$) on most cognitive tests and measures. Deficits are most pronounced on performance IQ, followed by digit symbol coding, Tower of London and similar tests, visual and verbal memory, vocabulary, arithmetic and fluency. Deficits on most of these functions also rank high among individuals with youth-onset schizophrenia. However, these people demonstrate comparatively larger deficits on visuospatial construction, Stroop test and Trail Making Test B. This pattern is in contrast to that observed in
individuals with late-onset schizophrenia where auditory and visual attention, fluency and visuospatial construction are relatively more impaired than arithmetic, digit symbol coding, verbal memory and vocabulary.

The Q_{between} test revealed statistical differences in the weighted mean effect sizes (weighted d-values) of the three groups for 19 of the 22 measures (there was no statistical difference for verbal general memory and verbal IQ in the three groups, and for continuous performance test between first-episode schizophrenia and youth-onset schizophrenia, Table 2). On these 19 measures, post hoc Q_{between} tests with Bonferroni’s adjustment showed that:

(a) individuals with youth-onset schizophrenia are more impaired than individuals with first-episode schizophrenia on full-scale IQ, psychomotor speed of processing, Trail Making Tests A and B, verbal special memory, and Wisconsin card sorting and similar tests;

(b) individuals with youth-onset schizophrenia are more impaired than those with late-onset schizophrenia on arithmetic, digit symbol coding, vocabulary, and Wisconsin card sorting and similar tests, but less impaired on auditory and visual attention; and

(c) individuals with first-episode schizophrenia are more impaired than those with late-onset schizophrenia on digit symbol coding, but less impaired on auditory attention, fluency, full-scale IQ, global measure of cognition and visual attention.

This differential pattern of cognitive deficits is also demonstrated when comparing the magnitudes of the corresponding weighted d-values in first-episode, youth-onset and late-onset schizophrenia (Fig. 3 and Table 2). When comparing youth-onset schizophrenia with first-episode schizophrenia, the weighted d-values are within 0.3 points for 16 of the 22 cognitive measures. The weighted d-values are larger in the youth-onset schizophrenia than in the first-episode schizophrenia group by 0.3 points or more for four measures: arithmetic, full-scale IQ, Trail Making Test B, and Wisconsin card sorting and similar tests, and smaller for performance IQ. When comparing youth-onset schizophrenia with late-onset schizophrenia, the weighted d-values are within 0.3 points for 7 of the 22 measures and they differ by more than 0.3 for 11 measures. Furthermore, weighted d-values are larger in the late-onset schizophrenia than in the youth-onset schizophrenia group by 0.6 points or more for four measures: auditory attention, performance IQ, Stroop test and visual attention. Conversely, weighted d-values are smaller in the late-onset schizophrenia than in the youth-onset schizophrenia group by 0.6 points or more for four other measures: arithmetic, digit symbol coding, vocabulary and Wisconsin card sorting and similar tests. When comparing first-episode schizophrenia with late-onset schizophrenia, the weighted d-values are within 0.3 points for only 5 of the 22 measures and they differ by more than 0.3 for 13 measures. Furthermore, weighted d-values are larger in the late-onset schizophrenia than in the first-episode schizophrenia group by 0.6 points or more for six of these measures: auditory attention, fluency, full-scale IQ, global measure of cognition, Stroop test and visual attention. Conversely, weighted d-values are smaller in the late-onset schizophrenia than in the first-episode schizophrenia group by 0.6 points or more for three measures: arithmetic, digit symbol coding and vocabulary.

Discussion

We meta-analysed the results of 109 published studies that have compared cognitive functions of 5010 people with schizophrenia with that of healthy controls. To our knowledge, this is the first meta-analysis that addresses the relationship between age at onset and cognition in schizophrenia. When individuals were classified based on their age at onset into those with adult-onset at their first episode of schizophrenia, youth-onset schizophrenia and late-onset schizophrenia, the weighted d-values were larger in the youth-onset schizophrenia than in the first-episode schizophrenia group by 0.3 points or more for four measures: arithmetic, full-scale IQ, Trail Making Test B, and Wisconsin card sorting and similar tests, and smaller for performance IQ. When comparing youth-onset schizophrenia with late-onset schizophrenia, the weighted d-values are within 0.3 points for 7 of the 22 measures and they differ by more than 0.3 for 11 measures. Furthermore, weighted d-values are larger in the late-onset schizophrenia than in the youth-onset schizophrenia group by 0.6 points or more for four measures: auditory attention, performance IQ, Stroop test and visual attention. Conversely, weighted d-values are smaller in the late-onset schizophrenia than in the youth-onset schizophrenia group by 0.6 points or more for four other measures: arithmetic, digit symbol coding, vocabulary and Wisconsin card sorting and similar tests. When comparing first-episode schizophrenia with late-onset schizophrenia, the weighted d-values are within 0.3 points for only 5 of the 22 measures and they differ by more than 0.3 for 13 measures. Furthermore, weighted d-values are larger in the late-onset schizophrenia than in the first-episode schizophrenia group by 0.6 points or more for six of these measures: auditory attention, fluency, full-scale IQ, global measure of cognition, Stroop test and visual attention. Conversely, weighted d-values are smaller in the late-onset schizophrenia than in the first-episode schizophrenia group by 0.6 points or more for three measures: arithmetic, digit symbol coding and vocabulary.

Table 1 Descriptive data

<table>
<thead>
<tr>
<th>Group</th>
<th>Total, n*</th>
<th>Age, years: weighted means (s.d.)</th>
<th>Age at onset, years: weighted means (s.d.)</th>
<th>Duration of illness, b years: weighted means (s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-episode schizophrenia</td>
<td>4057</td>
<td>24.0 (0.6)</td>
<td>23.7 (1.5)</td>
<td>0.3 (0.4)</td>
</tr>
<tr>
<td>Youth-onset schizophrenia</td>
<td>692</td>
<td>16.0 (0.3)</td>
<td>13.6 (0.7)</td>
<td>2.3 (0.2)</td>
</tr>
<tr>
<td>Late-onset schizophrenia</td>
<td>261</td>
<td>68.4 (2.6)</td>
<td>60.7 (4.2)</td>
<td>7.7 (2.3)</td>
</tr>
</tbody>
</table>

* a. For first-episode, youth-onset and late-onset schizophrenia the total number of individuals for whom age at onset was reported was 850, 187 and 74 respectively.

b. Duration of illness was calculated by subtracting age at onset from age at time of assessment.
consider childhood-onset schizophrenia to be merely a more severe form of, and on a clinical and neurobiological continuum with, adult-onset schizophrenia. The results of our analysis are consistent with this view. In contrast, the inclusion of very-late-onset schizophrenia-like psychosis under the broader category of late-onset schizophrenia is controversial because very-late-onset schizophrenia-like psychosis appears to have less genetic underpinnings, to be associated with more sensory deficits, and to have different phenomenology.

Second, as stated above, we based our classification of age at onset on the definition used in each individual study even though these definitions differed. We believe this approach is sound because these different definitions have been shown to yield age at onsets that are highly correlated and within a few months of each other. Furthermore, it would not be possible to apply retrospectively a single definition of age at onset to a large number of samples characterised with different variables.

Third, the number of studies of late-onset schizophrenia compared with those of first-episode schizophrenia or youth-onset schizophrenia is small. This limitation impedes the consideration in the analysis of factors such as duration of illness, education level, premorbid intellectual abilities or comorbid diseases.

Fourth, some cognitive tests that may not be equivalent were aggregated into a single cognitive measure. However, such aggregation was based on theoretical or factor-analytical grounds. It also enabled the capture of a large quantity of data generated by related cognitive tests and the reduction of the number of comparisons.

Finally, we used control groups of the different studies to generate the effect sizes. The cognitive profiles of these various control groups were naturally different. However, the normal controls were typically matched to the participants with schizophrenia, supporting the validity of comparing effect sizes.

Notwithstanding these limitations, our results extend the large literature on cognitive deficits in schizophrenia, in particular five recent meta-analyses and they need to be considered in this context. The diversity of individuals with schizophrenia is likely to be a reflection of multiple pathological processes. Understanding this diversity is critical to the development of personalised treatment interventions. Age at onset and cognition of individuals with schizophrenia are two aspects of the illness where diversity manifests itself. Age at onset can range from childhood to very late in life. Cognitive function can vary from normality to severe impairment.

Our analysis reports large cognitive deficits in most cognitive measures in first-episode schizophrenia. The magnitudes of these deficits are consistent with the magnitudes reported in other meta-analyses. However, the deficits we report in verbal memory, and to a lesser extent executive function and attention, are smaller than those reported in other meta-analyses. In these other analyses, participants were not restricted to those presenting during their first episode. Thus, the larger deficits reported in these previous analyses could reflect the harmful impact of chronicity of psychosis on cognition, especially on verbal memory. Psychosis in another neuropsychiatric disorder (Alzheimer’s disease) has also been associated with acceleration of cognitive decline. The potential impact of chronicity on cognition emphasises the importance of age at onset and its corollary, duration of illness.

Individuals with youth-onset schizophrenia have cognitive deficits that are larger than those with first-episode schizophrenia in arithmetic, executive function, full-scale IQ, psychomotor speed of processing and verbal memory. In contrast, they have deficits that are comparable in magnitudes with those in first-episode schizophrenia in the other measures. These findings are in agreement with Tuulio-Henriksson et al who reported an
Table 2: Cognitive deficits effect sizes: weighted mean (s.e)

<table>
<thead>
<tr>
<th>Cognitive measure</th>
<th>First-episode schizophrenia (FES)</th>
<th>Youth-onset schizophrenia (YOS)</th>
<th>Late-onset schizophrenia (LOS)</th>
<th>Q<sub>between</sub></th>
<th>FES v. YOS v. LOS<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scale IQ</td>
<td>0.89 (0.04)</td>
<td>1.77 (0.07)</td>
<td>1.61 (0.15)</td>
<td>121.64***</td>
<td>FES < YOS, FES < LOS, YOS = LOS</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>1.31 (0.08)</td>
<td>1.19 (0.13)</td>
<td>1.34 (0.16)</td>
<td>0.75</td>
<td>–</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>1.73 (0.09)</td>
<td>1.25 (0.15)</td>
<td>2.07 (0.23)</td>
<td>11.75**</td>
<td>FES = YOS = LOS</td>
</tr>
<tr>
<td>Global measure of cognition</td>
<td>0.67 (0.10)</td>
<td>–</td>
<td>1.67 (0.11)</td>
<td>45.74***</td>
<td>FES < LOS</td>
</tr>
<tr>
<td>Digit symbol coding</td>
<td>1.46 (0.05)</td>
<td>1.46 (0.09)</td>
<td>0.29 (0.22)</td>
<td>27.18***</td>
<td>FES = YOS, LOS < FES, LOS < YOS</td>
</tr>
<tr>
<td>Tower of London and similar tests</td>
<td>0.78 (0.05)</td>
<td>0.57 (0.08)</td>
<td>0.97 (0.15)</td>
<td>8.18*</td>
<td>FES = YOS = LOS</td>
</tr>
<tr>
<td>Visual memory</td>
<td>0.83 (0.03)</td>
<td>0.95 (0.10)</td>
<td>1.12 (0.09)</td>
<td>9.46**</td>
<td>FES = YOS = LOS</td>
</tr>
<tr>
<td>Verbal general memory</td>
<td>1.03 (0.03)</td>
<td>0.98 (0.07)</td>
<td>1.11 (0.13)</td>
<td>0.86</td>
<td>–</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>1.02 (0.05)</td>
<td>1.18 (0.11)</td>
<td>0.42 (0.19)</td>
<td>11.75**</td>
<td>FES = YOS, FES = LOS, LOS < YOS</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>0.99 (0.07)</td>
<td>1.37 (0.12)</td>
<td>0.24 (0.26)</td>
<td>17.74***</td>
<td>FES = YOS, FES = LOS, LOS < YOS</td>
</tr>
<tr>
<td>Fluency</td>
<td>0.87 (0.03)</td>
<td>0.96 (0.10)</td>
<td>1.47 (0.14)</td>
<td>17.50***</td>
<td>FES = YOS, FES < LOS, YOS < LOS</td>
</tr>
<tr>
<td>Visual attention</td>
<td>0.72 (0.03)</td>
<td>0.64 (0.08)</td>
<td>1.51 (0.15)</td>
<td>26.72***</td>
<td>FES = YOS, FES < LOS, YOS < LOS</td>
</tr>
<tr>
<td>Stroop test</td>
<td>0.86 (0.04)</td>
<td>1.14 (0.13)</td>
<td>1.76 (0.27)</td>
<td>14.20**</td>
<td>FES = YOS = LOS</td>
</tr>
<tr>
<td>Continuous Performance Test</td>
<td>0.83 (0.04)</td>
<td>0.73 (0.08)</td>
<td>–</td>
<td>1.17</td>
<td>–</td>
</tr>
<tr>
<td>Visuospatial construction</td>
<td>0.83 (0.03)</td>
<td>0.98 (0.08)</td>
<td>1.41 (0.18)</td>
<td>12.97**</td>
<td>FES = YOS = LOS</td>
</tr>
<tr>
<td>Trail making test B</td>
<td>0.77 (0.05)</td>
<td>1.12 (0.10)</td>
<td>–</td>
<td>9.82**</td>
<td>FES < YOS</td>
</tr>
<tr>
<td>Verbal special memory</td>
<td>0.94 (0.03)</td>
<td>1.18 (0.06)</td>
<td>1.20 (0.12)</td>
<td>15.04***</td>
<td>FES < YOS, FES = LOS, LOS < YOS</td>
</tr>
<tr>
<td>Trail making test A</td>
<td>0.66 (0.04)</td>
<td>0.70 (0.10)</td>
<td>–</td>
<td>8.82*</td>
<td>FES < YOS</td>
</tr>
<tr>
<td>Wisconsin card sorting and similar tests</td>
<td>0.76 (0.03)</td>
<td>2.00 (0.08)</td>
<td>1.13 (0.12)</td>
<td>231.41***</td>
<td>FES < YOS, FES = LOS, LOS < YOS</td>
</tr>
<tr>
<td>Psychomotor speed of processing</td>
<td>0.65 (0.02)</td>
<td>0.92 (0.06)</td>
<td>1.01 (0.21)</td>
<td>19.68***</td>
<td>FES < YOS, FES < LOS, LOS < YOS</td>
</tr>
<tr>
<td>Auditory attention</td>
<td>0.61 (0.08)</td>
<td>0.53 (0.12)</td>
<td>1.95 (0.27)</td>
<td>23.47***</td>
<td>FES < YOS, FES < LOS, YOS < LOS</td>
</tr>
<tr>
<td>Digit span</td>
<td>0.64 (0.04)</td>
<td>0.85 (0.10)</td>
<td>0.87 (0.12)</td>
<td>6.69*</td>
<td>FES = YOS = LOS</td>
</tr>
</tbody>
</table>

^a Q_{between}: comparison when there are only two groups; post hoc pairwise comparison using Bonferroni adjustments when there are three groups and Q_{between} is statistically significant. =, no significant difference between the weighted-mean effect sizes, X < Y, X weighted mean effect size is smaller than Y weighted mean effect size.

*P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 3: Qualitative comparison of weighted mean effect sizes (weighted d-values) of cognitive deficits of participants with first-episode, youth-onset schizophrenia and late-onset schizophrenia compared with healthy controls.

FSIQ, full-scale IQ; VIQ, verbal IQ; PIQ, performance IQ; GLOBAL, global measure of cognition; DIG SY, digit symbol coding; TOWER, Tower of London and similar tests; VGM, visual memory; VER GM, verbal general memory; VOCAB, vocabulary; ARTH, arithmetic; FLUEN, fluency; VIS ATT, visual attention; STROOP, Stroop test; CPT, continuous performance test; VS, visuospatial construction; TMB, trail making test B; VER SM, verbal special memory; TMA, trail making test A; WISC, Wisconsin card sorting and similar tests; PSY MOT, psychomotor speed of processing; AUD ATT, auditory attention; DIG SP, digit span.
association between younger age at onset (range 13–44 years) and larger deficits in verbal learning and memory, and semantic clustering, an executive function, but an absence of such an association in attention (verbal and visual), visuospatial function and vocabulary. Basso et al.9 also reported more severe deficits in executive function and memory in individuals with adolescent-onset schizophrenia (age at onset < 21) compared with those with adult-onset schizophrenia (age at onset > 24). However, our findings are in conflict with the absence of an association between age at onset and deficit in psychomotor speed of processing reported by Tuulio-Henriksson et al.19 This discrepancy could be because they included participants with chronic schizophrenia and excluded those with age at onset less than 13 years. White et al.16 did report a more severe impairment in psychomotor speed in participants with adolescent-onset schizophrenia (range 12–19 years) when compared with adults with first-episode schizophrenia. Further, Hoff et al.8 study that included participants with chronic schizophrenia but with age at onset as young as 7 (range 7–29 years) also found an association between younger age at onset and larger deficits on Trail Making Test B and psychomotor speed of processing, in agreement with our findings. However, in contrast with our findings, Hoff et al.8 did not find such an association in verbal memory or Wisconsin card sorting test. This is probably because of their small sample size, hence the advantage of a meta-analysis. Overall, our comparison of individuals with youth-onset schizophrenia or first-episode schizophrenia is consistent with the conceptualisation of age at onset as a surrogate measure of severity of disease process: an earlier onset reflects a more severe illness. In our analysis, this is the case even though individuals with youth-onset schizophrenia had a brief duration of illness (2.3 years at time of testing on average). These larger deficits suggest a high disease burden consistent with the high rate of chromosomal abnormalities, higher familial rates of schizophrenia-spectrum disorders,30,40 and early and progressive cortical grey matter loss observed in the frontal lobes of individuals with childhood-onset schizophrenia (e.g. Vidal et al.41).

Also consistent with this conceptualisation, individuals with late-onset schizophrenia seem to have some relatively preserved cognitive functions such as arithmetic, digit symbol coding and vocabulary. This is consistent with a less severe disease process, even though the duration of their illness is longer than the duration of those with youth-onset schizophrenia (7.7 v. 2.3 years on average at the time of testing). Assessing semantic organisation, Paulsen et al.48 reported that individuals with late-onset schizophrenia (age at onset > 45 years) were preserved compared with people with an early onset. In contrast, our analysis reveals that participants with late-onset schizophrenia are severely impaired on measures of auditory and visual attention, fluency, global measure of cognition, IQ and visuospatial construction, and more so than individuals with youth-onset schizophrenia or first-episode schizophrenia on most of these measures. These findings are in conflict with those by the University of California, San Diego group14,20 and Sachdev et al.11 who showed no difference between participants with late-onset schizophrenia (age at onset > 45);14,20 age at onset > 49;11 and early-onset (age at onset ≤ 45);14,20 age at onset < 35;11 schizophrenia on any cognitive measure. A number of factors could have resulted in these discrepancies. First and foremost, the absence of any detected differences may be a result of the small sample sizes, a limitation of any single study of late-onset schizophrenia. This limitation highlights the contribution of a meta-analysis. Second, in the University of California, San Diego studies, participants with early-onset schizophrenia included some people with age at onset as late as 45. Such a high range may have prevented the detection of differences between early-onset schizophrenia and late-onset schizophrenia that we observed in our analysis. In fact, when the University of California, San Diego group assessed the relationship between cognition and age at onset (range 6–64 years) as a continuous variable in the same participants,17 younger age at onset was associated with a more severe deficit in executive function in agreement with our findings. Third, in the University of California, San Diego and Sachdev et al.21 studies, individuals with early-onset schizophrenia had significantly longer duration of illness than those with late-onset schizophrenia (e.g. about 30 years for early-onset v. 6 years for late-onset schizophrenia in the study by Lee & Park).36 Thus, the effect of chronicity on individuals with an early onset could have contributed to the absence of differences between the two groups. In the same vein, in our analysis, the relatively longer duration of illness in individuals with late-onset schizophrenia as compared with those with youth-onset or first-episode schizophrenia may be contributing to the observed larger deficits on some measures.

The large impairment in attention, fluency and visuospatial construction function in participants with late-onset schizophrenia compared with age-matched healthy controls suggests specific deficits in these cognitive functions in the context of minimal impairment in arithmetic, digit symbol coding and vocabulary. These large deficits could be underlying the similarly observed large impairment in global cognition and IQ. The small deficit on digit symbol coding is of particular interest. Performance on this task is thought to depend on non-specific and ubiquitous neurological processes42 and correlates with broad prefrontal and temporal grey matter volumes.43 Thus, a lesser impairment on this task suggests specific rather than generalised cognitive deficits in late-onset schizophrenia. However, the number of studies contributing to these effect sizes is small (e.g. only one study contributed to arithmetic, auditory attention and digit symbol coding in late-onset schizophrenia). Further, performance on a specific task is likely to involve multiple cognitive mechanisms.44 Thus, a more impaired performance in visuospatial construction than in digit symbol coding, for example, does not necessarily imply that the disease process is specific to a single cognitive mechanism underlying visuospatial construction. It could merely suggest that some of several cognitive mechanisms underlying digit symbol coding are less affected by the disease process than some of those underlying visuospatial construction. Such a less pervasive disease process results in the relative preservation of a particular cognitive function compared with another.

Another possible model is that the disease-related cognitive deficits observed in late-onset schizophrenia could be as a result of an interaction between the disease process and ageing: these deficits could have been present but less prominent prior to the onset of the clinical syndrome. Then, the ageing process and associated allostatic factors such as cerebrovascular disease, diabetes and hypertension, could amplify these deficits resulting in larger deficits compared with younger people with first-episode schizophrenia, even after correcting for the pure effect of ageing observed in older controls.

Longitudinal and controlled studies will be necessary to address these questions of specific deficits v. preserved cognitive functions, and to advance our understanding of the relationship between the disease process underlying schizophrenia, cognition, age at onset, duration of illness, ageing and associated allostatic factors. Such studies would need to target individuals at their first episode or in their prodromal phase, or high-risk people across the life cycle. A more feasible study that would focus on older individuals and controls and follow them longitudinally could disentangle the cognitive deficits or changes that are a result of the illness from those resulting from normal ageing or certain allostatic factors. Characterising such pathological relationships
will help towards the development of personalised interventions to enhance cognition or prevent its decline.

T. K. Rajji, MD, FRCP, Z. Ismail, MD, FRCP, B. H. Mulsant, MD, MS, FRCP.
Department of Psychiatry, University of Toronto and Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Canada

Correspondence: B. H. Mulsant, Geriatric Mental Health Program, CAMH, 1001 Queen Street West, Toronto, Ontario M5H 1H4, Canada. Email: benoit_mulsant@camh.net

First received 20 Oct 2008, final submission 17 Jan 2009, accepted 3 Mar 2009

Funding

T.K.R. is supported by the Centre for Addiction and Mental Health (CAMH) and the Canadian Institutes of Health Research (CIHR180087).

Acknowledgements

We thank Dr Dilip V. Jeste for his encouragement to conduct this review.

Appendix

Literature search: databases and search terms

A literature search of 29 databases was performed using CINAHL, EMBASE, and the multi-database search engine, Scholars Portal that includes MEDLINE, PsycARTICLES, PsycINFO, Psychology: A SAGE Full-Text Collection, and the following AGRICOLA, Aqualine, ASFA: Aquatic Sciences and Fisheries Abstracts, Biological and Agricultural Index, Biological Sciences, Biology Digest, Biotechnology and Bioengineering Abstracts, Compendex, Conference Papers Index, Digital Dissertations, E-Journals, EIS: Digests of Environmental Impact Statements, Environmental Sciences and Pollution Mgmt, General Science Abstracts, Geobase, Georef, GeoRef In Process, Meteorological & Geoastrophysical Abstracts Oceanic Abstracts, Pharmaceutical News Index, Physical Education Index, Plant Science, Science Citation Index Expanded, Scopus Natural Sciences, TOXLINE and Zoological Record Plus.

The following search terms were used: schizophrenia, schizo-affective, psychotic disorder, age of onset, age at onset, childhood onset, adolescent onset, late onset, first episode, cognition, neuropsychology, memory, learning, Wechsler, complex figure, face recognition, spatial perception, line orientation, Purdue, motor dexterity, finger tapping, motor disorder, Stroop test, digit span, continuous performance test, backward masking, trails, trail making, Wisconsin card sorting test, IQ, vocabulary, block design, word fluency, token, comprehension, affect recognition, dichotic listening.

References

33. Henry JD, Crawford JR. A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cogn Neuropsychol 2005; 10: 1–33.
The essa zarah, the strange women of the Book of Proverbs

George Stein

The word zarah means strange, but it originally referred to being married to someone outside the tribe, beyond the geographical border. More recently, essa zarah has been translated as a loose woman. She is sexually provocative (7:10 ‘Then a woman comes towards him decked out like a prostitute, wily of heart’) and quite dramatic (11 ‘She is loud and wayward’). Here the Hebrew word for loud is ishomiyyah which also means ‘clamorous, noisy, or boisterous’.

She also displays an inner restlessness and is desperate for male company and affairs: ‘11 Her feet do not stay at home; 12 now in the street, now in the square and at every corner she lies in wait’. She is impulsive and is visibly angry in her face: 13 ‘She seizes him and kisses him and with an impudent face she says to him – (she then goes on to seduce the man) – 17 ‘I have perfumed my bed with myrrh aloes, and cinnamon,’ 18 ‘Come let us take our fill of love until morning: let us delight ourselves in love until morning’. 19 ‘For my husband is not at home; he has gone on a long journey’. Adultery in those days was punishable by death and having repeated affairs would have been a highly risky type of behaviour.

Though seductive, her relationships are brief and the love soon becomes bitter: 5:3 ‘For the lips of the strange woman drip honey, for her speech is smoother than oil’. 4 ‘But in the end she is bitter as wormwood, sharp as a two edged sword’.

She leads a chaotic life and possibly has some kind of identity disturbance: 5:6 ‘She does not keep straight to the path of life, her ways wander, and she does not know it’.

This seems to be quite a good description of borderline personality disorder; the woman displays many DSM–IV borderline and histrionic features. Other scholars suggest she may be an allegorical figure, a foreign prostitute, a diatribe against inter-marriage, or a mythological femme fatale.
Cognitive measures and associated tests

1. Auditory attention (AUD ATT): Auditory Consonant Trigrams; Auditory Discrimination; Dichotic Listening; Letter–Number Sequencing; Monotone Counting Test; Numerical Attention Test; Paced Auditory Serial Addition Task; Seashore Rhythm Test; Span of Apprehension.

2. Arithmetic (ARTH): Wechsler Adult Intelligence Scale (WAIS)–Revised arithmetic; Wechsler Memory Scale Mental Control.

4. Digit span (DIG SP): DIG SP backward; DIG SP forward; DIG SP (forward and backward).

5. Digit symbol coding (DIG SY): DIG SY.

6. Fluency (FLUEN): Category Fluency; Controlled Word Association Task (FAS); Multilingual Aphasia Examination–oral; Word Association Subtest.

7. Full-scale IQ (FSIQ): FSIQ.

8. Global measure of cognition (GLOBAL): CAMCOG; Mini-Mental Status Examination (MMSE).

9. Performance IQ (PIQ): PIQ.

10. Psychomotor speed of processing (PSY MOT): Alpha Tree and Alpha Curved Tests; Color Naming; Finger Tapping Test; Grooved Pegboard Test; Motor Time (CANTAB, Cambridge Neuropsychological Test Automated Battery); Reaction Time (CANTAB); Thumb Finger Sequential Touch; WAIS–III processing speed; Wechsler Intelligence Scale for Children (WISC)–III processing speed.

12. Trail Making Test A (TMA): TMA.

13. Trail Making Test B (TMB): TMB.

15. Verbal general memory (VER GM): California Verbal Learning Test (CVLT) trials 1–5; Logical Memory I; Mental Test; Rey Auditory Verbal Learning Test (RAVLT) trials 1–5; trial 7; Verbal Paired Associates; Wechsler Memory Scale–Revised (WMS–R) list immediate recall.

16. Verbal special memory (VER SM): CVLT short- and long-delay free recall, cued recall, recognition and intrusions; Hopkins Verbal Learning Test–Revised (HVLT–R) delayed recall; Logical Memory II; RAVLT delayed free recall; Rivermead Behavioural Memory Test delayed recall; Source Memory Task; Warrington Recognition Memory Test for Words; WMS–R list delayed free recall; WMS–R verbal paired associates.

17. Verbal IQ (VIQ): VIQ.

18. Visual attention (VIS ATT): Cancellation Task: letter, symbols, circle A letter; Computerized Executive Golf Task; Computerized Dual Task; Mesulam–Weintraub Cancellation; N-back; Rapid Visual Information Processing (CANTAB); Span of Apprehension Test; Spatial Span; Spatial Working Memory (CANTAB); Visual Vigilance Task.

19. Visual memory (VISM): Benton Facial Recognition Test; Benton Visual Retention Test–Revised; Delayed Matching to Sample (CANTAB); Kimura Recurring Figures; Paired Associates Learning (CANTAB); Pattern Recognition Memory (CANTAB); Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) visual memory; Rey–Osterrieth Complex Figure Test; Trigram Recall with Interference Test; Warrington Recognition Memory Test for Faces; WMS–R visual memory; WMS–R visual paired associates memory.

21. Visuospatial construction (VS): Block Design; Judgment of Line Orientation; Mental Rotation; Object Assembly; RBANS copy; Rey–Osterrieth Complex Figure Test–Copy; WAIS–R picture completion; WISC–III perceptual organization.

Oie M, Sundet K, Rund BR. Contrasts in memory functions between adolescents with schizophrenia or ADHD. Neuropsychologia 1999; 37: 1551–8.

*, listed also in the main references list.
Age at onset and cognition in schizophrenia: meta-analysis
T. K. Rajji, Z. Ismail and B. H. Mulsant
Access the most recent version at DOI: 10.1192/bjp.bp.108.060723

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2009/10/01/195.4.286.DC1.html

References
This article cites 37 articles, 5 of which you can access for free at:
http://bjp.rcpsych.org/content/195/4/286#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;195/4/286

Downloaded from http://bjp.rcpsych.org/ on November 4, 2016
Published by The Royal College of Psychiatrists