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1. Preface 
 

“Mereology?  What on Earth is that?” you ask. Well you may ask, since you won‟t 

find the word in the American Heritage dictionary, nor even in the 8-volume 

Encyclopedia of Philosophy.  However, if you look in the more enlightened Cambridge 

Dictionary of Philosophy, you‟ll discover that mereology is “the mathematical theory of 

parts and wholes.”  A very useful word, wouldn‟t you say?  How have we managed all 

these years to get along without it?   

 

In this paper I shall argue that the core of quantum mechanics, by which I mean that 

part of it that is given by the quantum unitary dynamical law (generalized Schrodinger 

equation), the Born probability law, and the projection postulate, really belongs to 

mereology.  More specifically, it belongs to the mereology of relations.  Looking at 

quantum mechanics in this way sorts out many things that are very confusing when we try 

to force it into more traditional molds.  Indeed, it entirely gets rid of one great source of 

confusion, namely “probability waves,” simply by rendering them redundant, just as 

Newton‟s theory of gravity renders the epicycles of Ptolemaic astronomy redundant.  It 

also finally makes sense of quantum measurement, which has always been a great 

muddle. 

 

Assuming that this approach works out and really is the way to go, does it mean we 

must regard physics as at bottom just mathematics?  Wouldn‟t that be a regression to the 

grandiose a-priorism of an earlier age?  At any rate, it would certainly seem to go against 

the grain of empiricism. Yet a little reflection shows that this is not really so.  Let‟s take a 

simpler case: 

 

I trust that the reader will agree that 3 and 4 make 7.  I‟m not now speaking of pure 

mathematics, but of facts like 3 cows and 4 cows make 7 cows; 3 miles and 4 miles make 

7 miles; 3 volts of noise and 4 volts of noise make 7  wait a minute  make what?  

Uh, 5 volts of noise.  Five??!  Oh yes, of course; that‟s because noise adds in quadrature.   

 

We see from this humble example that mathematics, when you actually apply it to the 

world we experience, is as empirical, as liable to error, as “falsifiable," as any so-called 
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empirical theory.  Indeed, when a really great empirical theory like Euclidean geometry or 

Newtonian mechanics gets refuted, it goes straight to Platonic heaven and becomes 

mathematics!   

 

 I believe that quantum mechanics is headed for this same glorious demise. In the case 

of quantum mechanics, however, the axioms from which we can deduce its Platonic soul 

have already made their journey to Platonic heaven, since they are essentially just the 

axioms of finite set theory.  One benefit of this transmigration is that it reveals quantum 

mechanics to be of a piece with every day causal thinking, which at last makes possible a 

coherent account of quantum measurement, as mentioned above.  But another and more 

important benefit is something quite new and unexpected, which is the insight that 

quantum processes and “classical”/causal processes are actually just two small islands in 

a vast sea of other kinds of processes.  Do these other processes actually occur in nature?  

We don‟t know, since before now we have not had the mathematics to even imagine 

them. 

 

 

2.  Relational Databases 
 

“Principia Mathematica” by Russell and Whitehead is one of the most famous books 

of the century, and one of the least read.  In his autobiography Russell complains that only 

four people in the world had ever read his favorite part of the book, which is the part on 

the theory of relations.  Though I am sure that this select company is larger today, it‟s still 

not very large. Fortunately for us, the relational ideas from Principia that we really need 

have found a happy home in the much more accessible language of relational databases. 

 

What I shall present here parallels a much longer paper [Etter, 1996] which I wrote in 

the language of probability because I assumed that scientists are more at home with 

probability theory than with mathematical logic.  But that was before I encountered 

relational databases. This happened serendipitously when the little journal I edit acquired 

Microsoft Access, in the hope of keeping better track of its subscribers.  Browsing 

through the instruction book, I came across the word „linking,' a crucial word in my long 

paper, and to my amazement found it had exactly the same meaning as I had given it 

there!  I quickly realized that this harmony extended to many other relational concepts, 

and that with only a few strokes I could also define the concepts I was using from 

probability theory. To top it all off, database language is practically the mother tongue of 

today‟s young programmers, the fastest growing population on Earth! Perhaps mine is the 

naïve enthusiasm of the new convert, but suddenly databases became IT! 

 

Here let me first briefly introduce database concepts in a context where they already 

keep company with physics, namely in recording the results of an experiment.  Consider 

an experiment to test EPR, like that of Aspect.  The outcome of this experiment is fed 

directly into a computer, where it is registered as a series of records in a database table T.  

T has five fields:  Angle1, Outcome1, Angle2, Outcome2,  and HiddenVar.  Actually, the 

computer only fills in the first four fields  God fills in the fifth, and indeed, only God 
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can see the fifth, but we will sometimes pretend we can look over His shoulder.  The 

computer also runs the experiment, choosing the angles for each trial from among the 

three possibilities 0, 30 and 60 degrees.  The outcome fields are binary, with the two spin 

values Up and Down. 

 

Physically what is happening is that an accelerator is sending out pairs of particles in 

the so-called singlet spin state that are detected almost simultaneously at remote locations 

by devices that measure their up-down spins at one of the three angles mentioned above.  

However, none of the details of this are of any significance for our present purposes 

except the near-simultaneity of the detections, by which is meant that the time difference 

between them is too small to allow a light signal to travel from either remote location to 

the other.  Apart from this one physical fact, which shows that the choice of angle at one 

location can‟t affect the outcome at the other, we shall focus entirely on the pattern of 

data in the database table. 

 

To understand the “paradox” of EPR and the force of Bell‟s theorem, we need first of 

all to put aside all of our common-sense ideas about causality, and describe the situation 

very carefully in terms of five key ideas from probability theory, namely sample space, 

random variable, probability, independence, and conditional independence.  Here are 

these ideas translated into database language: 

 

The sample space is the set of records, e.g., the set of rows in the table on which are 

recorded the successive trials.  Probability will be defined simply as relative frequency in 

this so-called recordset; exactly how this notion of probability relates to likelihood won‟t 

concern us here.  Usually probability will be applied to queries.  Thus the probability p(Q) 

of query Q is defined as the proportion of records selected by Q, while the conditional 

probability  p(Q|P) of Q given P is defined as the proportion of those records selected by 

P that are also selected by Q.  A random variable is defined in probability theory as a 

function on the sample space.  In our table, we‟ll take the fields (columns) to be our 

random variables, i.e., a field F, considered as a random variable, is the function that 

takes each record into the value of F for that record.  For each value v of F, we can create 

a query Q that selects just those records having v, and the set of probabilities of such Q‟s 

is defined as the probability distribution on F.   

 

Queries P and Q are called independent if p(P&Q) = p(P)p(Q). P and Q are called 

conditionally independent, as conditioned by a third query C, if they are independent in 

the recordset selected by C, i.e. if p((P&Q)|C) = p(P|C)p(Q|C).  Conditional independence 

is a very important concept in relational quantum mechanics, and it‟s important to be 

aware that it is equivalent to p(Q|(P&C)) = p(Q|C), better known as the Markov property, 

and also to p(P&C&Q)p(C) = p(P&C)p(C&Q), which I have called separability (for 

further details and proofs see Etter 1996, Chapter 3.) 

 

A commonsense analysis of this experimental situation leads us to conclude two 

things:  First, since there‟s no way to signal location 2 with a message about the choice of 

angle at location 1, the field Outcome2 will be independent of the field Angle1, and 
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similarly Outcome1 and Angle2.  And second, the field HiddenVar, which is the 

supposedly “real” state of the particle pair, both separates Outcome2 from Outcome1 

(separation, in the form of conditional independence, is normally interpreted by 

probability theorists as common cause) and is independent of Angle1 and Angle2.  

Quantum mechanics, on the other hand, has some definite things to say about the 

correlation between the fields Outcome1 and Outcome2 as a function of the angles, 

namely that if the difference between angles is 0 degrees then the correlation is 100%, if 

30 degrees then 75% and if 60 degrees then 25%.   

 

Now there is a piece of simple arithmetic called Bell‟s theorem that shows that this 

particular item of common sense and this particular item of quantum mechanics are in 

blatant contradiction!  There is no set of records in a table that can satisfy them both -- 

one or the other must give.  

 

What does mereology have to say about that?  For a starter, it says let‟s retreat to 

operationalism, always a safe hiding place.  The table, minus God‟s field, is the objective 

truth, or as close as we can come to it.  Whatever created the order in that table is 

something else, for the moment.  What else?  Mereology, while it‟s our companion in our 

foxhole, evades that question entirely and says that the best we can hope for by way of an 

explanation is to represent our table as a composition of simple parts satisfying some very 

general law.  Since tables are relations, we will interpret this to mean lawfully taking 

apart the mysterious 4-term relation that we observe among angles and outcomes into 

simpler and more commonplace relations that characterize the “hidden” parts.  Mereology 

does have a more adventurous side, though.  Eventually there would come a time to 

venture beyond the confines of operationalism and put God‟s field back in the table, this 

time as an act of free imagination rather than classical faith.  But that‟s getting ahead of 

our story. 

 

 

3.  The mereology of relations 
 

In what sense are tables relations?  And what does it mean to take a relation apart? 

 

Consider the relation “nephew."  Let‟s make a table of all instances of this relation in 

the town of Palo Alto.  It would have two fields, first a field of type PERSON called 

„AuntOrUncle,' and second a field of type PERSON called „Nephew‟.  Its records would 

represent just those ordered pairs of people in Palo Alto of which the second is the 

nephew of the first.  The technical term for this recordset is the extension of the nephew 

relation in the set of residents of Palo Alto.  Russell-Whitehead logic is extensional, 

which means that relations are identified with their extensions.  Database logic actually 

does better than this by bringing in the quite subtle intentional notion of type, but such 

subtleties won't concern us here, so we‟ll treat tables simply as relational extensions. 

 

Now a nephew is a son of a sibling.  This shows that there is some sense in which we 

can take apart „nephew of‟ into two relations, „son of‟ and „sibling of‟.  In predicate 
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calculus terms, we say that A is a nephew of B iff there exists a person X such that A is a 

son of X and X is a sibling of B.  We can represent this compound character of „nephew‟ 

by adding a third field called „Sibling‟ to our table; the records of the new table represent 

the ordered triples of people in Palo Alto such that the second is a sibling of the first and 

the third is a son of the second.  We abstract the relation „nephew‟ from this new table 

simply by ignoring the Sibling field. 

 

This operation of hiding the sibling data will give us back our original nephew table 

provided the sibling in each case of the nephew relation is unique.  This is ordinarily what 

we would expect, but it need not always be true, since it‟s biologically possible for one‟s 

nephew to be the son of both one‟s brother and one‟s sister.  Such “double nephews” 

would show up twice in the three-record table, once with their mothers in the sibling field 

and once with their fathers.  Dropping the Sibling field would then produce a table 

differing from the original in that some of the records would occur twice. 

 

Since a double nephew is a pretty special kind of relative, the Palo Alto Bureau of 

Social Statistics decided it would like to distinguish them from ordinary single nephews, 

so they compiled a table with a Sibling field.  But then they realized that they didn‟t want 

to inadvertently stigmatize the double nephews‟ incestuous parents by putting them on 

record as such, so they erased the Sibling field and replaced it by a field called „Count‟ 

that contains not the siblings‟ names but only their number, in this case1 or 2. 

 

It just so happens that there is a standard SQL query called „Group By‟ that performs 

exactly this operation (SQL is the macro-language by which one “questions” the data in 

programs like Access.)  That is, this query hides a specified set of fields, adds a new field 

called „Count‟ which, for each record, is the number of records matching it in the 

unhidden fields, and then gets rid of all the duplicates.  Let‟s call tables produced in this 

way Count tables.  Count tables not only show us the structure of relations in themselves, 

but also tell us something important about the more complicated background relations 

from which these “foreground” relations are abstracted.  It turns out that this makes them 

the just right objects of study for a mereology of relations that bears on physics.  We‟ll 

turn to physics in Section 3 but in this section we‟ll remain pure mereologists.  Here, to 

start us off, is a very important rule of thumb: 

 

THE GOLDEN RULE OF MEREOLOGY.  Always ask the following two questions 

together:   

Q1.)  How do you make the whole out of the parts?   

Q2.)  How do you make the parts out of the whole?   

 

These are two sides of the same question. 

 

Let‟s ask these two questions together about „nephew of‟.  We already have an idea of 

what the parts of „nephew of‟ are, namely „sibling of‟ and „son of‟, so we‟ll start with Q1:  

How do you make the nephews out of siblings and sons?  
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Suppose we compile two tables, a sibling pair table and a parent-son table.  Clearly 

these two tables together contain all the information we need to construct the three-field 

table above, and from that the nephew table.  But just how do we create this three-field 

table?  It turns out that once again SQL has exactly the operation we need, which is called 

inner join, or simply join (there are other kinds of joins, but we won‟t be concerned with 

them here.)  This operation is a crucial one for “database physics”, so let‟s examine it 

carefully. 

 

Let‟s call the fields of the sibling table „Sibling1‟ and „Sibling2‟.  The sibling relation 

is symmetrical, so if the ordered pair (Joe Smith, Mary Smith) is a record, then so is 

(Mary Smith, Joe Smith).  The fields of the son table will be „Parent‟ and „Son‟, which of 

course is not symmetrical.  Now to form the three-field table above, we take three steps:   

 

First we decree that one of the sibling fields, say Sibling2, is going to be equal to the 

Parent field; this is called linking the two fields.  Now not every parent is a sibling and 

not every sibling is a parent, so linking discards records from both tables, namely those 

from the sibling table for which Sibling2 is childless, and those from the son table for 

which Parent is an only child. 

 

Next we create a table T with the four fields Sibling1, Sibling2, Parent and Son whose 

records are all the possible combinations of the values of these four fields that are 

consistent both with the two tables separately and with the link. To put it another way, a 

record of T is any sequence of four field values such that the first two are a record in the 

sibling table, the second two a record in the son table, and the second and third values are 

equal. 

 

Finally, we hide what is now the redundant field Parent.  The resulting three-field table 

is the join.  If we change the name „Sibling1‟ to „AuntOrUncle‟, „Sibling2‟ to „Sibling‟ 

and „Son‟ to „Nephew‟ to reflect their newly-revealed relational status, we obtain the 

three-field table described above.  If we also hide „Sibling‟, the resulting two-field 

nephew table, with duplicate records removed, represents the Russell-Whitehead 

composition of the two component relations  „sibling of‟ and „son of‟. 

 

The general rules for joining tables T1 and T2 are these:  First link a subset (which can 

be null) of the fields of T1 to a subset of the fields of T2.  Next form a table containing all 

records in the Cartesian product of T1 and T2 that are consistent with the link.  Finally, 

discard redundant linked fields.  One can optionally rename other fields to clarify their 

new status, but in the present theory this is only a “cosmetic” change. 

 

I‟ve gone into a lot of detail about joining since it‟s the basic concept of the whole 

theory.  Needless to say, we‟ll have to move on in a much more summary fashion. 

 

The concept of joining can be extended to Count tables in the obvious way:  First you 

make visible those hidden fields whose absence produced duplicate records, then you join 

the resulting tables as above, then you apply „Group By‟ again to hide the hidden fields 
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and supply the appropriate counts.  It‟s easy to see that when you do this, the count in 

each joint record is the product of its counts in its two separated parts.  This product rule 

is essentially what leads to Hilbert space and quantum mechanics.  

 

It turns out that it‟s sometimes useful to add records with counts of 0 to a table.  In a 

sense, these “null” records signify nothing; the 0 says, in effect, “I‟m not here”.  Still, 

these 0 counts are consistent with the product rule for joins, which makes them useful in 

the algebra, like the null set in set theory, and they are otherwise harmless. 

 

Much more serious, though, is the need to sometimes count records negatively!  Like 0 

counts, these don‟t seem to make much difference for the basic mathematics - indeed they 

simplify it, just as negative “dollars” simplify accounting.  Conceptually and 

philosophically though, negative cases, which discretely tiptoed into science about 70 

years ago with the canceling “amplitudes” in the quantum two-slit experiments, are 

probably the most subversive novelty in science since 1600.  Indeed, I‟ll wager that 

before too long they are going to profoundly transform the very nature of science as a 

human enterprise, and scientists in a few hundred years will scratch their heads in utter 

amazement at our superstitious ravings today. Such speculation is out of bounds in this 

paper, though, which will try to remain cheerfully in step with the march of progress as 

we currently understand it. 

 

Back to the golden rule:  What about Q2, the other side of the part-whole question?  

How do we make the parts out of the whole? 

 

How do we make siblings and sons out of nephews?  The simple answer is that we 

don‟t.  There‟s a more complicated answer that we‟ll come to shortly.  But for now let‟s 

take an easier question:  How do we make the sibling table and the son table out of the 

three-field table that has a sibling field?  This one has an easy answer:  Make the sibling 

table simply by hiding the Son field and removing duplicate records, and make the son 

table simply by hiding the AuntOrUncle field and removing duplicate records. 

 

Is this a general answer?  No!  Given a Count table T with fields F1, F2 and F3, there 

does not in most cases exist a Count table T1 with fields F1, F2 and a Count table T2 

with fields F2, F3 whose join is T.  The necessary and sufficient condition for T1 and T2 

to exist is that F2 separates F1 from F3 in the probabilistic sense defined in Section 2.  

This theorem, which is proved in [Etter 1996], shows how intimate is the connection 

between probability and logic! 

 

Even when the separability structure of a complex table allows us to take it apart, its 

parts are in general not unique.  Furthermore, seemingly arbitrary decisions about what 

these parts should be may affect their internal separability structure in various ways, and 

thus bear on our ability to break them into smaller parts.  The situation is really quite 

complicated.  In general the parts of a table are not simply “there” in the table, nor are 

they simply supplied by our imagination.  We are free to choose many aspects of the 

parts, but these choices have consequences, and some choices are much better than 
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others.  It may help here to remind us of the similar complexities and ambiguities 

involved in choosing the “right” coordinate system. 

 

We started with Q1 plus a certain notion of what the parts were.  But suppose we had 

started out cold with Q2; the problem then is not just to find the parts but also to define 

what we even mean by part.  If we didn‟t know about joining, it‟s very unlikely we would 

have thought of the parts of a table as the component tables defined above, and we 

probably would have taken the table apart into more obvious parts like records or fields.  

Indeed, why not?  Let‟s try out fields as table parts. 

 

This brings up a crucial distinction: that between a map and a diagram.  A table is 

essentially a map of a relation, and fields are regions of that map, which is to say, they are 

parts in place.  Notice that the order of records in a table is immaterial. Changing that 

order, which happens all the time in the normal operation of a database program, doesn‟t 

change the relation that the map represents; it gives a different map of the same territory, 

so-to-speak. Thus if we are given a field in isolation, we can have no idea what relation 

that field partially represents.  In effect, an isolated field is simply a heap of values - let‟s 

call it a value-set.  Applying the golden rule, we must now ask: how do we put such 

value-sets back together into a table? 

 

It‟s not easy.  It‟s a bit like putting hamburger back together into a cow.  It requires 

that we know for each value set just how it lines up with all the others, e.g., it requires 

that we re-supply all of the relational information that was in the table!  In this case, the 

whole is indeed more than the sum of its parts, and such is generally true for the parts of a 

map.   

 

On the other hand, the set of components of a table contains almost all of the table‟s 

relational data.  That‟s because we can uniquely define the whole table, modulo the order 

of its records, simply by drawing a “wiring diagram” of these components showing which 

fields are linked to which. Such a diagram is quite close to being a “sum of parts”; it‟s 

that plus the small amount of extra information needed to specify which fields are linked 

to which.  Note that in most cases the table of a link diagram has exponentially more 

records in it than are in all of its components taken together (the exponent being the 

number of components), so taking apart a table into linked tables can enormously reduce 

its redundancy, a point that has not been lost on database designers.  As a rule, natural 

science makes maps, while engineering and theoretical science make diagrams. 

 

Finally, let‟s return to the hard question:  How do we find the components of a two-

field nephew table? We cannot just cut the table in two as it stands; rather, we must 

somehow supply a new field as the cutting place.  Lacking any other data, we have no 

choice but to construct this field as “an act of free imagination," as Einstein once 

described theory making.  Of course we often do have other data.  Given a two-field 

input-output table for a computer, for instance, we can find many of the hidden fields by 

taking the cover off the computer and probing with an oscilloscope.  In the good old days 
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of discrete components, we could even take these hidden fields apart with wire-cutters 

and soldering iron, leaving us with a heap of simple truth tables, so to speak.   

 

This experience of taking apart and putting back together our mechanical artifacts 

leads us to naively imagine a similar possibility for places like the quantum realm.  It‟s as 

if we had spent our lives in a house with a checkerboard tile floor, and naively project the 

existence of such tiles to the whole Earth‟s surface, including water tiles on the ocean.  

Behind this obvious mistake there is a subtle truth, however. Water tiles don‟t actually 

exist, but it turns out that by imagining that they do, we can construct a mathematical 

form called a Reimanian coordinate system that is immensely helpful in describing the 

ocean surface and how it changes.  Let this example give us the courage, or maybe we 

should call it the presumption, to start imagining little database tables in the mysterious 

and watery realm of the quantum. 

 

 

4.  Von Neumann states and linear dynamics 
 

Von Neumann defined a quantum state as a property of an ensemble of quantum 

objects.  Let‟s imagine this ensemble to be a series of particles emitted by some kind of 

laboratory device, and suppose we can test or query the emerging particles for various 

properties. Each such query Q has a probability p(Q) defined as the proportion of particles 

that pass its test.  The set of all these probabilities is what von Neumann called the state 

of the ensemble.  If p(Q) =1, then it‟s safe to say that Q is a property of each individual 

particle; otherwise it may not be clear whether we should regard Q is a property of the 

individuals, or only as a property of the group.  If every particle that passes a query R will 

subsequently pass a query Q, but not vice-versa, we say that R refines Q.  If there is a Q 

such that p(Q)=1 that has no refinement, we say that the state is pure, otherwise mixed. 

 

Von Neumann found a very elegant way to characterize a quantum state, pure or 

mixed, as a matrix of complex numbers that he called the density matrix.  For a pure 

state, the density matrix is the outer product of the wave function vector and its dual, 

while for a mixed state it is a linear combination of orthogonal pure matrices weighted by 

their probabilities.  The way he connects these matrices to the ensemble probabilities is 

beautifully simple.  First of all, he shows that the physically meaningful queries are in 

natural 1-1 correspondence with so-called projection matrices.  To see what he is doing 

here, first note that a projection matrix is a matrix for which there is a basis in which it 

has 0‟s and 1‟s in the diagonal and 0‟s elsewhere, and also note that if several pure states 

pass a certain query, so do all their linear combinations. The matrix associated with a 

query Q is that such that its 1‟s define a basis for the subspace of pure states that always 

pass Q, and its 0‟s define a basis for the subspace of those that always flunk; call this 

matrix Q.  This association leads to the following general rule for p(Q) given a state 

matrix S:  p(Q) = trace(QS).  For pure states this rule is equivalent to Born‟s rule, and for 

all states it is deducible from Born‟s rule.  It can be shown that no matrix besides S will 

give the same p(Q) for every Q, so we see that the S‟s uniquely represent the states as 

originally defined. 
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The state matrix evolves according to another simple law, S’ =TST
-1

, where T is a 

unitary matrix representing the passage of time. Note, and this will be important, if we 

multiply both sides on the left by T we get the law S’T = TS, which is more general in the 

sense that it doesn‟t require that T have an inverse.  From this dynamical law plus the 

above probability law we can reconstruct the entire basic machinery of operators that is 

usually formulated in terms of wave functions. Von Neumann introduced density matrices 

using rather complicated and arcane mathematics, but others have simplified his account 

(see Mackey, 1963 and Jauch, 1968).  Still, the question remains, what does it all mean?  

Why should a state be a matrix?  Why does time produce a linear transformation of that 

matrix?  Why should probability be the trace of a matrix product?  So long as one stays in 

the murky shadow of wave mechanics, and especially so long as one keeps trying to make 

neo-Newtonian models of “probability waves”, these questions have no intelligible 

answers.  But don‟t despair - help is on the way.  Enter the mereology of relations! 

 

Define a closed diagram as a diagram in which every field is linked to another field.  

We say that two diagrams T1 and T2 are equivalent if the join of T1 is the same table as 

the join of T2.  There‟s a way to transform any diagram into an equivalent closed 

diagram, which is to link all its single fields to Zilch tables, defined as single-field Count 

tables in which every field value occurs just once.  When we join the components of a 

closed diagram, the linked pairs in the diagram turn into the individual fields of the 

resulting table, so it makes sense in such a closed table to speak of the link of any field. 

 

Let F be a field of table T  we are now speaking of Count tables.  If we hide all the 

other fields, we get a new Count table V with the single field F (not counting the Count 

field) whose counts define the probability distribution on F. We can think of V as a vector 

indexed by the values of F; call this the state vector of F.  Doing the same with a pair of 

fields F and G leads to a joint count matrix indexed by the values of F and G that defines 

the joint probability distribution on F and G.  Now we are finally in a position to define 

the key concept that ties together quantum mechanics and the theory of relations, which is 

the concept of density matrix.  Informally, the density matrix of F is the count matrix you 

get when you cut the link of F.  More formally: 

 

DENSITY MATRIX.  Let T be a Count table, let F be a field of T, let D be a closed 

diagram of T, let F‟ be the field linked to F in D, and let D‟ be the diagram that results 

from removing that link. The density matrix of F is then the count matrix on F and F‟.  

We‟ll also refer to this matrix as the state matrix of F, or, when we don‟t need to 

distinguish it from the state vector, as simply the state of F. 

 

It‟s easy to see that the state vector V is the diagonal of the state matrix S.  Let Q be a 

query about F; we can represent the selection made by Q as a characteristic function on 

the values of F, i.e. a function that is 1 for values in the selection, 0 for values that are 

not.  Let‟s place this function in the diagonal of a square matrix indexed by the values of 

F; the result is a projection matrix that we‟ll call Q.  It then follows immediately that p(Q) 
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= trace(QS)/N, where N is the total count.  In other words, our state matrices, when we 

normalize them by the total “case count," satisfy the von Neumann probability rule! 

 

Suppose T is a two-field table in a diagram.  The count matrix of T with its links cut 

will be called a transformation, designated by T.  The question now is:  what is the 

relationship between the density matrices S and S’ of the two fields of T?  Answer:  S’T = 

TS.  In other words, the state matrices of any two-field component of a table satisfy the 

von Neumann dynamical rule! 

 

When you link two-field tables, you multiply their matrices.  Now with negative 

counts allowed, it may well happen that a table matrix T’ is the inverse of a table matrix T 

(ignoring normalization), so when you link these tables and hide the linked field you get 

the “identity” table.  In particular, you can always use this construction to take apart a link 

itself.  Suppose we do this to a link whose state is S, and then apply a query Q to the 

“hidden” field linking T and T‟.  Then p(Q) = trace(STQT
-1

) = trace(SQ’), where Q’ is a 

non-diagonal projection matrix.  If we do this for all unitary T‟s, we obtain precisely the 

set of queries that von Neumann used to define the quantum state of an ensemble in terms 

of measurement. 

 

Though these results are suggestive, they don‟t give us quantum mechanics proper. 

Our next step is to carefully distinguish among several kinds of state matrices.  First, let‟s 

remind ourselves of just how general our present conception of state actually is. Database 

tables can represent an immense range of different kinds of things  mailing lists, 

actuarial tables, a logic wiring diagram, computer programs, systems of equations, indeed 

anything at all that involves organized data.  A table is simply a relationship among data.  

The counts in a Count table point beyond the data itself to how it emerges from, and bears 

upon, an otherwise invisible background, but this counting in no way limits what the table 

represents.  State matrices arise from the bare act of taking a Count table apart, so it is not 

surprising that there are states of many kinds other than quantum.  There are only a few 

formal classes of states, though, of which quantum is one. 

 

A distinction that applies to states of all kind is that between pure and mixed states.  A 

state is pure if its field separates its table into two parts.  Any other state is mixed.  Pure 

states are easier to think about than mixed states, but there‟s no way to avoid the latter if 

there are any irreducible cycles in the diagram.  A pure state is always the outer product 

of two vectors; in Dirac notation we have S = |v><w|. 

 

If a diagram is a cycle-free functional composition, with or without “random inputs," 

then all of its states are pure and of the form |v><Z|, where <Z| is the “white” vector of a 

Zilch table. I have called such states causal.  “Statistico-causal” or “Markovian” would be 

more literally accurate, but these are too awkward for a concept that has such a key role in 

our experience of process.  Since linking to a Zilch table does nothing, a causal state is 

completely characterized by the vector |v>, which is in fact the state vector V of its field.  

The notion of link state doesn‟t really belong to causal thinking at all.  Mixed causal link 

states can be used to neatly describe recursion, but underlying the loops of recursion there 
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is always a cycle-free causal substratum. Science has never before clearly recognized any 

notion of process that is not causal in the above sense, and much of the confusion in the 

philosophy of quantum mechanics has come from trying to force quantum states into the 

causal mold. 

 

A pure quantum state is characterized by the property that its constituent vectors are 

equal (this is not quite formally true for complex quantum mechanics, but as Mackey 

shows, complex quantum mechanics is shorthand for real quantum mechanics subject to 

certain symmetry conditions; see Etter, 1996).  The vector v in the state |v><v| is the 

famous, or infamous, probability wave of standard theory.  Notice that v is not a feature 

of the quantum table T itself, but of an imaginary table that results from “cutting a wire” 

in a diagram of T.  Since there is no more hope of physically cutting this wire than there 

is of physically prying loose a “water tile” out of our Riemannian coordinate system, we 

must treat both tile and wire as “free constructions of the imagination”.   

 

Notice also that the ``amplitudes‟„ of this wave v are (normalized) record counts, 

which is to say, they are probabilities in exactly the sense that the values of the table state 

vector V are probabilities. The square law arises simply from the fact that the diagonal 

counts in |v><v| are the squares of the counts in v. There‟s no room at all here for 

deterministic hidden variables, since variables are actual, whereas v is a property of the 

imagined cut ends of the link, which hasn‟t actually been cut.  The wave function is a 

useful enough concept in its place, but it doesn’t exist! 

 

The more general condition defining a quantum state is that it is unchanged by 

reversing rows and columns, and that it has no negative counts in its diagonal.  The 

theory of tables in which all states are quantum, and all transformations are unitary, is 

equivalent to Hilbert space quantum mechanics, or more exactly, approaches it in the 

limit as we let the tables have arbitrarily many records. Actually, it gives quantum 

mechanics minus the von Neumann projection postulate, which can only be proved, 

indeed which only has meaning, after we embed the quantum table in a larger table that 

also has causal states representing what happens in the laboratory.  Analyzing this larger 

context has finally led to a coherent account of quantum measurement, which I count as 

the chief accomplishment of the theory to date [Etter, 1996]. 

 

At the end of Section 2, I mentioned that the way to deal with EPR is to analyze the 

strange data table into simpler and more understandable parts.  The above-mentioned 

relational context that merges quantum and causal enables us to do just that, and it turns 

out that the quantum part of the diagram is almost trivially simple; the hard work is in 

carefully formalizing the “classical” aspects of the situation.  But that‟s another paper. 

 

This has been a very quick run through a lot of material, much of which was 

necessarily over-simplified.  You can take the same tour at a more leisurely pace in [Etter, 

1996], though in a different language.  Let me close on my opening note: Granted that 

this new mathematics could explain quantum mechanics, how do we know that it actually 

does?  Suppose I am looking out the window and see three apples fall out of the tree, 
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followed by four more.  A short while later, I go out and find seven apples on the ground.  

Is this explained by 3+4=7?  Not necessarily. It could be that squirrels carried off the first 

batch and seven more fell while I wasn‟t looking.  The simpler, more reasonable and 

more fundamental explanation is not always the right one. In the quantum case, however, 

it‟s the one I‟ll lay my bets on. 
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