
molecules

Article

Insect Protein Content Analysis in Handcrafted Fitness Bars by
NIR Spectroscopy. Gaussian Process Regression and Data
Fusion for Performance Enhancement of Miniaturized
Cost-Effective Consumer-Grade Sensors
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Abstract: Future food supply will become increasingly dependent on edible material extracted from
insects. The growing popularity of artisanal food products enhanced by insect proteins creates
particular needs for establishing effective methods for quality control. This study focuses on de-
veloping rapid and efficient on-site quantitative analysis of protein content in handcrafted insect
bars by miniaturized near-infrared (NIR) spectrometers. Benchtop (Büchi NIRFlex N-500) and three
miniaturized (MicroNIR 1700 ES, Tellspec Enterprise Sensor and SCiO Sensor) in hyphenation to
partial least squares regression (PLSR) and Gaussian process regression (GPR) calibration methods
and data fusion concept were evaluated via test-set validation in performance of protein content
analysis. These NIR spectrometers markedly differ by technical principles, operational characteristics
and cost-effectiveness. In the non-destructive analysis of intact bars, the root mean square error
of cross prediction (RMSEP) values were 0.611% (benchtop) and 0.545–0.659% (miniaturized) with
PLSR, and 0.506% (benchtop) and 0.482–0.580% (miniaturized) with GPR calibration, while the
analyzed total protein content was 19.3–23.0%. For milled samples, with PLSR the RMSEP values
improved to 0.210% for benchtop spectrometer but remained in the inferior range of 0.525–0.571%
for the miniaturized ones. GPR calibration improved the predictive performance of the miniaturized
spectrometers, with RMSEP values of 0.230% (MicroNIR 1700 ES), 0.326% (Tellspec) and 0.338%
(SCiO). Furthermore, Tellspec and SCiO sensors are consumer-oriented devices, and their combined
use for enhanced performance remains a viable economical choice. With GPR calibration and test-set
validation performed for fused (Tellspec + SCiO) data, the RMSEP values were improved to 0.517%
(in the analysis of intact samples) and 0.295% (for milled samples).

Keywords: near-infrared (NIR) spectroscopy; miniaturized sensor; handheld; protein analysis;
partial least squares regression (PLSR); Gaussian process regression (GPR); data fusion; insect protein;
artisanal food

1. Introduction

Insect-based food supply is projected to become widely adopted in the near future [1].
In particular, high-quality proteins can be obtained from insect sources, far superior to those
of vertebrates and in many ways being better than those derived from plant products [2–4].
However, counterfeiting foods to appear richer in protein than advertised has occurred
numerous times across the globe [5,6], with the infamous melamine adulteration scandal
being the most publicly recognized worldwide [7]. Furthermore, maintaining adequate
food quality is one of the key issues identified globally as the goal of contemporary
analytical chemistry [8–10]. Therefore, developing effective quality control techniques for
insect-based food products seems essential to help establishing insect protein as a credible
source of healthy food. It lies in keen interest for the public, as in the western world insect
products often evoke disgust and rejection [11,12]. A shift in eating habits can lead to a
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change in the food industry, reduce greenhouse gas emissions and help with improving
the environmental footprint [13,14].

Current focus in developing modern analytical methods for foods is oriented at spec-
troscopic methods [15,16]. Near-infrared (NIR) spectroscopy is a highly potent tool in such
role, owing to its fundamental suitability to be used without sample preparation, resulting
in its ability to perform rapid, cost-effective, flexible yet reliable analyses in which multiple
parameters of foodstuff describing its quality may be determined [17]. NIR spectroscopy is
a vibrational spectroscopic technique typically ascribed to the wavelength range between
800 and 2500 nm, corresponding to 12,500–4000 cm−1 range on the wavenumber axis
of the electromagnetic spectrum, i.e., located between the visible (VIS) and the infrared
(IR) regions [18]. The absorption of the radiation in NIR region results from excitations
of non-fundamental vibrational modes of molecules, overtones and combinations. This
sets NIR spectroscopy apart from the IR technique, which is focused on fundamental
modes [19]. Since the molar absorptivity values corresponding to overtones and combina-
tions bands are significantly lower than those of the fundamentals [18], bulk samples may
be directly measured. By contrast, IR spectroscopy typically requires diluting the sample
in a non-absorbing medium, e.g., KBr powder, to acquire a properly resolved spectrum,
unless the attenuated total reflection (ATR) technique is used [20]. The latter limits the
sensing of the sample to its immediate surface and requires a contact mode (i.e., sample
directly deposited on the ATR crystal), while NIR spectroscopy features deeper radiation
penetration depth and delivers the information from a larger volume of the sample in
non-contact mode. Moreover, NIR spectroscopy is well-suited to interrogate wet materi-
als [21]. Hence, non-invasive measurements of intact inhomogeneous samples constituting
complex matrix, features common for agri-food items, can be performed. This circumstance
is accompanied by the beneficial fact that a manifold of structural information is captured
as the non-fundamental excitations are significantly more numerous than the fundamental
ones and thus NIR signal carries remarkably rich information on the sample [22].

Through those values of the physicochemical and practical nature, NIR spectroscopy
has become well established in several fields, and in agri-food sector in particular. Rich liter-
ature has appeared demonstrating the potential of NIR spectroscopy in analyzing a variety
of raw materials and shelf products, e.g., grains [23,24], fruits [25,26], vegetables [27–29],
rice [30,31], dairy products [32–34], meat [35,36], juice [37], or beverages [38,39] among
bountiful other studies reported in this field [17].

Food production and supply chain is inherently complex and multi-staged. With accel-
erating increase in the world food trade and diversification of the supplies, the risk of food
quality compromises becomes greatly enhanced. Thus, the development of flexible analyti-
cal methods applicable on-site, i.e., at any stage of the supply chain, is prioritized [40]. In
this context, the appearance of miniaturized NIR spectrometers in the past decade marked
a decisive step up in the potential of this technique [41]. These portable sensors find partic-
ular usefulness in the analysis of agri-food items [42]. However, miniaturization imposes
use of the technology and engineering solutions that are radically different from those used
in benchtop NIR spectrometers. The generic design of a Fourier transform NIR (FT-NIR)
spectrometer employs a Michelson or, less often, polarization interferometer in the role of
the wavelength selector. By contrast, miniaturized instruments implement diverse wave-
length selection principles. While some of these instruments employ the FT-NIR principle,
many other solutions have been proved to be competitive in the regime of miniaturiza-
tion. Popular examples of handheld NIR spectrometers using the Hadamard-transform
principle, Fabry–Perot filter, dispersive grating combined with digital micro-mirror device
(DMD) can be given for the optical configurations employing single-element detectors [42].
Further, miniaturized NIR instruments designed as multi-channel spectrometers equipped
with array detectors are found on the market [42]. Dictated by the limitations of the chosen
optical configuration, the size of the spectrometers can range from over 1 kg (and more
for certain suitcase-format spectrometers, e.g., portable FT-IR/FT-NIR spectrometers [43])
to pocket-size devices such as NIRONE Sensor S weighing ca. 15 g [42]. New genera-
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tion of ultra-miniaturized NIR sensors reach less than 1 g of weight [42]. Furthermore, a
cost-per-unit of such instruments varies widely from the levels typical for scientific-grade
equipment to inexpensive sensors oriented at the consumer market [41,42]. Attention
should be given in particular to the latter class, as their potential suitability for consumer
use in everyday food quality assessment fits very well the criteria discussed above.

However, the diversity in the employed technology as well as in the unit price leads to
a profound instrumental difference manifested among the miniaturized NIR spectrometers,
primarily manifested in the operational wavelength regions, spectral resolution and signal-
to-noise ratio (SNR). Importantly, this directly translates to marked differences in analytical
performance as well as applicability to a particular analytical scenario [41,42]. Therefore,
systematic feasibility studies aimed at assessing the limits of applicability and analytical
performance, measured by the statistical metrics describing the calibration and prediction
accuracy [44–46], are in keen interest of the contemporary analytical NIR spectroscopy [41].

The aim of this work is to develop an NIR spectroscopic method for the on-site non-
destructive quality control of handmade protein-rich fitness bars in which edible material
derived from insects is used. Such products are advertised as modern, healthy and envi-
ronmentally friendly and are expected to become remarkably popular in the nearest future.
Such artisanal food items are suitable to be produced by smaller manufactures and meet
the current culinary market trends and are sought by customers [47,48]. However, the
quality control of such handcrafted fitness bars with respect to protein content may be
seen as economically challenging. Current standard analytical method for protein analysis,
the Kjeldahl method, is extremely time and resource inefficient and entirely unsuitable
for wider use by smaller manufactures. In this role, NIR spectroscopy offers considerable
potential, particularly with the availability of cost-effective miniaturized sensors. Such
devices, offered for sub USD 1000 price, are controlled via smartphone and include oper-
ating software with pre-calibrated chemometric models that are intended to be operated
by untrained personnel [41,42]. As the time-to-result of a single analysis performed by
these sensors is measured in seconds, highly affordable quality control could potentially be
feasible even for small-scale production lines, provided that satisfactory robustness of the
analysis can be maintained by those instruments. To date, no literature studies oriented
at the assessment of the analytical performance of miniaturized NIR spectrometers in
analyzing insect protein content in oat-based fitness bars have been reported.

The presented investigation included one benchtop FT-NIR (Büchi NIRFlex N-500)
and three handheld NIR spectrometers (MicroNIR 1700 ES, Tellspec Enterprise Sensor, and
SCiO Sensor) that were systematically evaluated and optimized in their performance in
quantitative analysis of protein content in hand-crafted fitness bars based on edible material
derived from insects. The considered NIR spectrometers significantly differ by technical
principles, operational characteristics and cost-effectiveness. Therefore, evaluating their
applicability to this analytical scenario is particularly interesting. Special attention was
given to the applicability of consumer-oriented miniaturized NIR spectrometers (Tellspec
and SCiO sensors) to this analysis, which could be used by public for the assessment of
food products containing proteins derived from insects. These fitness bars feature chocolate
coating of uneven thickness across the bar surface. Hence, the samples were analyzed intact
and after preparation, to assess whether any differences in the accuracy of quantification
appear between the non-destructive and destructive approach. Spectra pretreatments
and chemometric algorithms were systematically evaluated towards the best performance
for each of the examined sensors. Calibration and external (i.e., test-set) validation were
performed using partial least squares regression (PLSR) and Gaussian process regression
(GPR) separately for intact and milled samples and for each of the used spectrometers.
Finally, the suitability of the data fusion concept was evaluated, in which the spectral data
sets obtained by Tellspec and SCiO sensors were combined and used simultaneously in the
calibration and prediction. This concept is promising, as the fused spectra cover largely
complementary wavenumber regions, and the high cost-effectiveness of Tellspec and SCiO
sensors makes their simultaneous use economically feasible.
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2. Discussion
2.1. Sensor Suite

The benchtop instrument used in this study was NIRFlex N-500 (Büchi, Flawil, Switzer-
land), a FT-NIR spectrometer equipped with a polarization interferometer. Three portable
handheld instruments (MicroNIR 1700 ES (Viavi, Milpitas, CA, USA); Enterprise Sensor
(Tellspec, Toronto, Canada); SCiO Sensor (Consumer Physics, Tel Aviv, Israel)), each based
on a different optical principle, were employed as well. Table 1 summarizes the main
technical parameters of these spectrometers.

The benchtop instrument (NIRFlex N-500) offered the widest operational spectral
region and the highest resolution. Additionally, as demonstrated in numerous previous
studies, it offers very high stability and tends to achieve the highest analytical accuracy
in quantitative analyses performed in complex organic matrices characteristic of natural
products [42,44–46]. Further, the NIRFlex N-500 is equipped with a suite of interchangeable
accessories to perform measurements; in this study, the fiber probe accessory (Büchi ‘Fiber
Optic Solids’) was employed to perform the surface scan for intact and single-cut bars.
The accessory for measuring powder solids (Büchi ‘Solids XL’) in an optical glass cell
(cylindrical, Ø 25 mm) was used for the measurement of ground samples. In the latter
mode, a sample rotation accessory was used, which is intended to achieve better averaging
of the spectra over the volume of the interrogated sample. These features offered the best
optimized measuring conditions, maximizing the performance of the analysis performed by
the NIRFlex N-500 spectrometer. Given these advantages, the benchtop spectrometer was
considered to be the reference NIR instrument, against which the performances delivered
by the handheld sensors were evaluated.

MicroNIR 1700 ES is a very compact spectrometer designed with a decisively dif-
ferent optical principle [41,42]. It uses an array detector combined with a linear variable
filter (LVF), creating a multi-channel spectrometer in which 128 wavebands are measured
simultaneously. Thus, markedly rapid scanning times are offered by this instrument. It
constitutes a temperature correction function, which increases its stability of operation
over time. Given the very low weight, and thus thermal capacity of this sensor, this
function is an essential improvement compared with earlier variants of the spectrome-
ter [49]. Despite a narrower operational spectral region and inferior spectral resolution
in relation to those featured by benchtop spectrometers, MicroNIR 1700 ES offers consis-
tently good performance levels in most analyses [42,44–46]. While compact, the device
still requires constant connection with a host notebook PC to operate, as both the power
delivery and control commands and data transfer are handled through the USB interface.
However, autonomous, self-powered variants with the essential components shared with
this instrument are available as well [50].

The Tellspec Enterprise Sensor is based on InnoSpectra NIR-S-G1 design, which
belongs to a different class of instruments oriented at a much wider market with its price
per unit being roughly ten times lower than MicroNIR 1700 ES. Thus, it represents the
sensors that may be particularly attractive for small manufactures producing artisanal
foods. Its operating principle is based on the generic scheme of the conventional dispersive
grating spectrometer. However, the wavelength selection is performed using the digital
micromirror device (DMD) engineered in micro-scale through micro-electro-mechanical
systems (MEMS) technology. The DMD element enables the use of a stationary dispersive
grating, resulting in very compact, mechanically robust sensor. It is equipped with a
Li-ion battery of 1000 mAh (3.7 V) capacity and is controlled by a dedicated mobile
application (iOS and Android variants), while maintaining connection with the host device
(i.e., smartphone or tablet) via a Bluetooth low energy (BLE) interface. The measured
spectral data is automatically uploaded to a cloud service, from which it can be downloaded
for further use.
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Table 1. Technical parameters of the spectrometers used in this study.

Spectrometer (Vendor)
Key Components Spectral Region Resolution

[nm]
Connectivity

(Data Transfer)
Dimensions

[cm]
Weight

[g]Source Wavelength Selector Detector [nm] [cm−1]

NIRFlex N-500
(Büchi)

Tungsten
halogen

(duplicated)

Polarization
interferometer (TiO2

wedges)

InGaAs
(single-element,
thermoelectric

cooling)

800–2500 12,500–4000 ~2 Ethernet 45 × 35 × 25 ca. 35,000

MicroNIR
1700 ES
(VIAVI)

Tungsten
halogen

(duplicated)
LVF

InGaAs
(array; 128
elements)

908–1676 11,013–5967 12.5
USB—control

and power
delivery

5.0 × 4.6 (Ø) 58

Enterprise
Scanner

NIR-S-G1
(Tellspec)

Tungsten
halogen

(duplicated)

Stationary dispersive
grating and MEMS

DMD

InGaAs
(single-element) 900–1700 11,111–5882 10 Bluetooth

(Cloud service) 8.2 × 6.3 × 4.0 136

SCiO
(Consumer

Physics)
LED Bandpass

filter

Si photodiode
(CMOS)

array (12 elements)
740–1070 13,514–9346 Not disclosed Bluetooth

(Cloud service) 6.8 × 3.9 × 1.5 35

Abbreviations: CMOS—Complementary Metal–Oxide–Semiconductor; DMD—Digital Micromirror Device; InGaAs—Indium Galium Arsenide; LED—Light Emitting Diode; LVF—Linear Variable Filter;
MEMS—Micro-Electro-Mechanical System; USB—Universal Serial Bus; Si—Silicon, NIR—near-infrared.
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In some aspects similar, the SCiO sensor is an even more compact and inexpensive
‘pocket size spectrometer’ intended for wide consumer use. These characteristics were
accomplished by implementing a simple optical design based on an array of 12 comple-
mentary metal–oxide–semiconductor (CMOS) photodiodes coupled with simple optical
bandpass filters as the detector, yielding a simple 12-channel spectrometer. Furthermore,
a light emitting diode (LED) is used as the radiation source. While entirely avoiding any
moving parts and achieving incomparable cost-efficiency, the sensitivity of the chosen
detector and the emission properties of LED source dictate the operational spectral region
of the sensor, limited to the visible/short-wave NIR (VIS/SW-NIR) region (13,514–9346
cm−1). Importantly, the instrument measures only 12 distinct wavebands, which is dis-
tinctly inferior to the spectral resolution levels offered by other spectrometers considered
here. SCiO is equipped with an inexpensive and compact Li-ion 150 mAh (3.7 V) battery,
which is sufficient given the power efficiency of the optical components implemented
in the sensor. Operation of the SCiO also requires the spectra first to be automatically
deposited in a cloud service, from which these can be then accessed by the logged in user.
Its primary role intended by the vendor is food analysis by ordinary consumers, for which
role the control software includes a number of pre-calibrated models aimed to predict
key properties of foods, e.g., the content of sugar, fat, proteins or moisture, as well as
related quality marker indicating freshness or energetic value. The performance of SCiO
in the analysis of food items and natural products may vary greatly, depending on the
particular sample and analyzed property [41,45]. The specific spot that SCiO occupies in
the market, and also the engineering solutions that need to be implemented to achieve
its cost-effectiveness, make it particularly interesting to critically evaluate this sensor’s
performance in the analytical scenario considered in the present study.

2.2. Spectra Pretreatment and Chemometrics

Prior to the analysis, spectral pretreatment procedures were systematically evaluated
to develop the best performing approach for each of the spectrometer and sample con-
ditions considered in this study. Universally applied as the first step, the spectra were
converted from reflectance R into log 1/R, i.e., the spectral intensity scale linearly depen-
dent on the amount of absorbing matter [51]. Prior to proceeding with the subsequent steps
of the analysis, we performed PCA to confirm the uniformity of the processed spectral data
sets (Figure S1 in Supplementary Material).

For each used spectrometer, various spectral pretreatments were evaluated and the
optimal set of pretreatments resulting in the best prediction performance was selected. The
considered pretreatments included Savitzky–Golay (SG) smoothing and differentiation
(first and second derivative) with varying number of smoothing points (SP), standard
normal variate (SNV), multiplicative scatter correction (MSC) and detrending, as well as
the combinations of those procedures. These optimal pretreatments for each analysis are
presented in Section 2.4.

PLSR is a frequently used regression method in quantitative analysis by NIR spec-
troscopy [52,53]. Nonetheless, the predictive performance of PLSR models may be limited
in some cases [54]. As demonstrated recently, while PLSR calibration leads to very good
results when applied to the spectra datasets obtained with a benchtop instrument, it may
offer sub-optimal performance in the case of miniaturized sensors [46]. By contrast, nonlin-
ear quantitative methods, such as GPR, show significant potential for their applicability in
more difficult NIR spectroscopic analysis scenarios such as the analysis of complex matrix
samples with miniaturized spectrometers [54,55]. Despite that potential, so far relatively
little literature data exist on the application of the GPR method to perform analysis of the
spectral data acquired by miniaturized NIR sensors. In particular, systematic performance
studies taking into account different handheld and laboratory instruments are needed.
Therefore, the aim of this work was to conduct a systematic feasibility study that com-
pares the predictive performance of a benchtop and three miniaturized instruments while
hyphenated to PLSR and GPR calibration and test-set prediction.
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The spectral sets acquired for intact and milled samples were randomly divided into
the calibration and validation (i.e., test) sets, with the split ratio of 80:20% in each case,
respectively. In the PLSR calibration, a nonlinear iterative partial least squares (NIPALS)
algorithm was applied to find the principal components of the analyzed data sets. To
minimize the tendency of model overfitting, full (CV) cross validation by means of leave
one-out (LOO) framework was performed. The robustness of the calibrated PLSR models
was controlled via the root mean square error of cross validation (RMSECV) and validated
through external validation by monitoring the root mean square error of cross prediction
(RMSEP) value [52].

Gaussian process regression (GPR) calibration and prediction were performed using
the rational quartic kernel function of the GPR method, with rational quadratic (RQ)
isotropic kernel function and constant basis function. To minimize the overfitting, an
out-of-fold CV procedure was applied. Systematic evaluation of the parameters used for
CV showed that, above a certain level, negligible improvement is offered by the finer
partitioning of the calibration set. The partitioning of each dataset into 15 disjoint subsets
was deemed fully adequate for the miniaturized instrument, while 50 subsets were applied
in the case of the spectral sets from the benchtop spectrometer. The robustness of the
trained model was verified through monitoring RMSECV and RMSEP values.

2.3. NIR Spectra of Intact and Prepared Insect Protein Bars
2.3.1. NIR Spectra of Intact Samples

The NIR spectra of intact bars were measured in the surface scan mode at six spots at
the sample by each spectrometer used in this study. The presence of the chocolate coating of
variable thickness and uneven surface introduce understandable difficulties in quantitative
analysis, which will be discussed in detail in Section 2.4. Here, a brief look will be made
into the features observed in NIR reflectance spectra as well as the differences between the
spectral line shapes measured by the benchtop and the three miniaturized spectrometers
(Figure 1 and Figures S2 and S3 in Supplementary Materials).

Figure 1. Unpretreated NIR (near-infrared) spectra of exemplary intact samples measured by the
spectrometers involved in this study.
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The benchtop spectrometer, Büchi NIRFlex N-500, is able to acquire the entire NIR
region (i.e., 12,500–4000 cm−1; 800–2500 nm) with the highest resolution, and hence, may
be considered to be the reference when dissecting the fine differences by which the spectra
obtained by the other sensors are distinguished. The wavenumber region dominated
by binary combination bands, between ca. 6000–4000 cm−1, can only be acquired by
the benchtop spectrometer in the present case. That region of NIR spectrum shows the
strongest spectral intensity. However, meaningful absorption bands can be also observed
in the 9000–6000 cm−1 region of these spectra, which can be acquired by two of the used
miniaturized spectrometers as well (Figure 1).

The MicroNIR 1700 ES and Tellspec Enterprise Sensor, which operate in similar
spectral regions and with comparable resolutions, demonstrate a large similarity between
the measured spectra of the protein bars as well. When compared with the spectra acquired
by the benchtop spectrometer, the significantly lower spectral resolution of these two
instruments seems not to be noticeable, given the broadness of the absorption features
manifested in the examined spectra. The sole easily distinguishable distinction between
these spectra appears at ca. 6960 cm−1, where the presence of a sharp peak can be properly
acquired by the benchtop instrument. The lower resolution of the handheld spectrometers
does not allow them to precisely capture the shape of that peak.

The SCiO Sensor operates at a noticeable higher wavenumber spectral region (i.e.,
VIS/SW-NIR) than the other two handheld instruments, and to a lesser extent, also the
benchtop one. However, the N-500 spectrometer provides gradually decreasing S/N levels
of the spectra above ca. 10,000 cm−1, while rather consistent S/N level in the spectra
measured by SCiO across its operational spectral region can be noticed. Furthermore, the
fragment of the spectrum of the protein bars observed by SCiO device is relatively flat with
absence of any well-resolved peaks. Therefore, the significance of the spectral resolution
offered by this instrument (undisclosed by the manufacturer) is less critical than it is for
the spectrometers focused on the lower wavenumber parts of the NIR spectrum. Thus,
it will be particularly interesting to evaluate the performance of SCiO Sensor against the
remaining instruments in this analysis.

The general appearance of the NIR spectral line shape of the protein bars resem-
bles well the typical spectrum of oats or grains [56–58]. The chemical similarity of the
matrix in this case is anticipated, as oat is one of the major substrates used in the pro-
duction of the bars. Understandably, common organic matter present in foodstuff, i.e.,
carbohydrates, fats and moisture, among others should be anticipated to contribute to
the measured NIR spectra as well. Following the literature, the absorption features up
to the third overtones observed in the spectra can be roughly assigned to these common
constituents [59]. Albeit, to an extent depending on the matrix, the signal corresponding to
the protein content may be expected to be located in the following wavenumber regions:
8500–8400–8100, 6700–6600, 5950–5800, 5250–5100, 4800–4650, around 4500, 4400–4200 and
around 4050 cm−1. Carbohydrates mostly contribute to the spectral intensity at 9000–8000,
7100–6000, 5250–5150, 4800–4600, around 4500 and 4300–4200 cm−1. The signal from lipids
is manifested in NIR spectra at: 9000–8000, 7400–6800, around 6200, 5900–5700, 5250–5200,
4900–4400 and 4350–4000 cm−1 [59]. Less apparent is the spectral signature of water
present in the samples, as their moisture levels is relatively low; however, one should
expect that the typical absorption regions of water, with prominent bands at 7000–6950
and 5200–5100 cm−1 [59,60], contribute to the strong spectral intensity of the present spec-
tra (Figure 1). As expected, the complex organic matrix yields highly convoluted NIR
spectrum, in which the absorption bands of the major constituents overlap. Typically, it is
not a critical issue, as MVA calibration can successfully elucidate the spectral information
correlated just with the quantified contents. Towards the upper part of the spectra, i.e.,
above ca. 9000 cm−1, the scattering effects manifested by the elevation of the baseline can
be observed, which likely result from the granularity of the interrogated sample. This effect
is easily corrected by the spectra pretreatments.
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2.3.2. NIR Spectra of Milled Samples

The NIR spectra of milled samples retain in majority the features observed in the
spectra of intact bars (Figure 2). For clarity, the differences in the spectra of the protein bars
resulting from milling will be discussed on the example of the measurements performed by
the benchtop spectrometer, as it offers the widest spectral region and the highest resolution
(Table 1). As shown in Figure 2, the change in the sample state and the measurement
conditions lead to noticeable differences in the respective NIR spectra.

Figure 2. Exemplary spectra (prior any pretreatments) of intact and milled insect protein bars
measured by the benchtop spectrometer Büchi NIRFlex N-500.

The visible differences in the spectral line shape should be primarily associated with
the spectral footprint of the chocolate coating that strongly contributes to the spectra
measured for intact bars (Figures S2 and S3 in Supplementary Materials). The most
apparent features related to the coating can be observed at ca. 6960–6300 cm−1, where
the shape of the observed broad absorption band and an outstanding peak appears in the
spectra of intact samples. In this region, the strong presence of the first overtone of OH
stretching vibration is known [61]. A slightly less pronounced change in the spectral line
shape is visible at ca. 4900–4800 cm−1, where a distinct peak at 4824 cm−1 appears in the
spectra of intact samples. In this region, the manifestation of the strong combination bands
involving OH stretching vibration is expected [61], also known to be clearly visible in the
NIR spectra of sugars and sucrose in particular [37,62]. Hence, the observed difference may
be associated with the high sugar content present in the chocolate coating, as anticipated.

2.4. Comparison of the Analytical Performance of the Benchtop and Miniaturized NIR
Spectrometers in the Prediction of the Total Protein Content in Insect Protein Bars
2.4.1. Intact Samples

Table 2 presents the results for the optimized analytical procedure for the prediction of
the total protein content in intact protein bars by the considered benchtop and miniaturized
NIR spectrometers. The resulting performance unveils that the rapid non-destructive
analysis is feasible, with RMSEP values not exceeding 0.659% for the PLSR analyzed
protein concentration range. However, it may be noticed that the model fit quality reflects a
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relatively high random sample-to-sample variance, resulting from the presence of chocolate
coating of strongly varying thickness across the bar’s surface.

Table 2. The parameters of the best performing regression models for the analysis of protein content (range: 19.3–23.0%
(w/w)) in intact bars.

PLSR

Benchtop Miniaturized

NIRFlex N-500 MicroNIR 1700 ES Tellspec Enterprise Sensor SCiO Sensor

Pretreatment SG2 (29 SP) SNV, SG2 (3 SP) SNV, SG2 (25 SP) SNV, SG2 (25 SP)
R2 (Cal) 0.43 0.57 0.38 0.55
R2 (CV) 0.35 0.47 0.30 0.38

RMSEC [%] 0.641 0.557 0.668 0.568
RMSECV [%] 0.687 0.624 0.716 0.671

R2 (TSV) 0.49 0.46 0.40 0.59

RMSEP [%] 0.611 0.620 0.659 0.545

GPR

Benchtop Miniaturized

NIRFlex N-500 MicroNIR 1700 ES Tellspec Enterprise Sensor SCiO Sensor

Pretreatment SG2 (29 SP) SNV, SG2 (3 SP) SNV, SG2 (25 SP) SNV, SG2 (25 SP)
R2 (Cal) 0.99 1.00 0.54 1.00
R2 (CV) 0.42 0.53 0.33 0.52

RMSEC [%] 0.083 0.00015 0.579 0.00014
RMSECV [%] 0.65 0.59 0.70 0.60

R2 (TSV) 0.65 0.68 0.56 0.54
RMSEP [%] 0.506 0.482 0.578 0.580

SG—Savitzky–Golay (1, 2—first, second derivative); SP—Smoothing Point; SNV—Standard Normal Variate, PLSR—partial least squares
regression, RMSEP— the root mean square error of cross prediction, GPR—Gaussian process regression.

The performance of the calibration and prediction was noticeably improved with
the use of the GPR method, with the exception of the SCiO sensor. For the remaining
instruments, the improvement of roughly 21%, 29% and 14% for, respectively, N-500,
MicroNIR 1700 ES and Tellspec Enterprise Sensor was noted with GPR calibration.

The similarity of the RMSEP values among all evaluated spectrometers as well as
the level of improvement between the PLSR and GPR calibrations also suggest that the
primary limiting factor was related to the sample property and less attributed to the
instrumental differences. Furthermore, the spectral sets required rather considerable extent
of pretreating. In particular, relatively strong smoothing had a clearly positive effect on the
performance, with the exception of MicroNIR 1700 ES, which did not suffer much from
this scanning mode.

2.4.2. Milled Samples

Successful analysis of the total protein content in chocolate-coated insect protein
bars was deemed feasible through the coating in the non-destructive way. However, the
observed features of the calibration models suggested that such sample presentation is
a limiting factor for the potential optimal performance of each of the considered NIR
spectrometers. Therefore, milled samples were analyzed as well, with the resulting per-
formance summarized in Table 3. Noteworthy, the best performance as evidenced by
RMSEP values decreased decisively in each case for the milled samples. Furthermore,
the quality of the measured spectra improved markedly, and the spectral sets required
relatively less excessive pretreatments. With the intrinsic properties of the samples becom-
ing relatively less meaningful for the optimal performance of each sensor, this analysis
provides better ground for the assessment of the instrumental difference as well as the
MVA calibration method.
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Table 3. The parameters of the best performing regression models for the analysis of protein content (range: 19.3–23.0%
(w/w)) in milled bars.

PLSR

Benchtop Miniaturized

NIRFlex N-500 MicroNIR 1700 ES Tellspec Enterprise Sensor SCiO Sensor

Pretreatment SG (5 SP) SG1 (7 SP) SG1 (11 SP) SG1 (11 SP)
R2 (Cal) 0.96 0.89 0.65 0.54
R2 (CV) 0.88 0.80 0.52 0.46

RMSEC [%] 0.182 0.286 0.505 0.581
RMSECV [%] 0.309 0.382 0.591 0.630

R2 (TSV) 0.94 0.62 0.55 0.55

RMSEP [%] 0.210 0.525 0.571 0.568

GPR

Benchtop Miniaturized

NIRFlex N-500 MicroNIR 1700 ES Tellspec Enterprise Sensor SCiO Sensor

Pretreatment SG (5 SP) SG1 (7 SP) SG1 (11 SP) SG1 (11 SP)
R2 (Cal) 1 0.99 0.99 0.99
R2 (CV) 0.87 0.99 0.84 0.93

RMSEC [%] 0.0011 0.0006 0.0002 0.0003
RMSECV [%] 0.3150 0.0782 0.3397 0.2248

R2 (TSV) 0.91 0.94 0.87 0.84
RMSEP [%] 0.266 0.230 0.326 0.338

SG—Savitzky–Golay (1, 2—first, second derivative); SP—Smoothing Point, PLSR—partial least squares regression, RMSEP— the root mean
square error of cross prediction, GPR—Gaussian process regression.

With the PLSR calibration, the benchtop spectrometer (NIRFlex N-500) performed
better in analyzing milled samples compared with intact ones; the RMSEP improved to
0.210% (from 0.611% for intact samples), i.e., 2.9 times. This demonstrated the general
improvement achievable in NIR spectral analysis when eliminated are the limitations that
resulted from the randomness of the chocolate coating and possible internal inhomogeneity
in the bars. However, the PLSR calibration did not improve as much for the miniaturized
sensors, with the best performing handheld instrument (MicroNIR 1700 ES) achieving
RMSEP of 0.525% vs. 0.620% for the intact samples.

In the previous study [46], we demonstrated that PLSR calibration did not allow
to maximize the performance of the miniaturized spectrometers, while more advanced
non-linear MVA methods, such as GPR or artificial neural networks (ANN), demonstrated
higher potential to elucidate the correlated information from the spectral sets acquired
by miniaturized instruments. In particular, GPR calibration showed promising results,
reconciling very high accuracy and straightforward applicability. In the present case, the
analysis of milled samples with GPR has resulted in the noticeable improvement of the
prediction performance of the handheld instruments, with the fit quality of the model
to the calibration set comparable to that of the benchtop spectrometer (the example of
MicroNIR 1700 ES is given in Figure 3). MicroNIR 1700 ES also offered the best prediction
performance with the lowest RMSEP, surpassing that of the benchtop spectrometer. In
that case, the improvement in RMSEP to 0.230% from 0.525% (i.e., ca. 2.3 times) was
demonstrated. Tellspec Enterprise Sensor and SCiO Sensor also yielded decisively higher
accuracy as manifested by, respectively, RMSEP values of 0.326% and 0.338%, i.e., 1.75 and
1.68 times lower than those offered by PLSR.
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Figure 3. The fit of the GPR model to the calibration set of milled samples for (A,B) benchtop and (C,D) miniaturized
MicroNIR 1700 ES spectrometer. (A,C): response plot; (B,D): predicted vs. true response plot.

Thus, in the present analytical scenario, hyphenation of miniaturized NIR spectrome-
ters with GPR calibration yields measurable gains in their analytical performance.

2.5. Performance Enhancement of the Cost-Effective Miniaturized NIR Spectrometers by
Data Fusion

As discussed in the Introduction Section, the analytical application explored in this
study would potentially benefit from the maximized applicability of cost-effective NIR
miniaturized spectrometers oriented at the consumer market, such as Tellspec and SCiO
sensors considered here. While the predictive performance of these two instruments
was fully satisfactory in every case presented here, when the instrument-independent
conditions for the analysis were assured (that is, the sample preparation and optimal MVA
calibration method, i.e., analysis of milled samples using GPR), these two sensors offered
the performance levels evidently inferior not only to the benchtop NIRFlex N-500 but also
to the miniaturized MicroNIR 1700 ES instruments (Section 2.4.2 and Table 3). Hence, it is
likely that the performance limits governed by the instrumental difference were exposed in
that case. This is entirely understandable, considering the vastly disparate markets and
affordability levels of the compared spectrometers. However, this also shows the potential
for further improvements.

Tellspec and SCiO sensors operate in largely complementary spectral regions, with
only moderate overlap between 11,111–9346 cm−1 (Figure 1). Combined, these two sensors
cover considerably wider spectral region of 13,514–5888 cm−1. Therefore, a calibration and
prediction procedures performed for a fused spectral data set provided by these two sensors
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is a promising concept worth evaluating towards the prediction performance. In this case,
the spectral sets fused from the Tellspec and SCiO sensors (Figure 4A,C) were analyzed
with the use of the pretreatments determined as optimal for both sensors, separately for
the case of the intact (Figure 4B) and milled samples (Figure 4D). The fused spectral sets
were subsequently used for PLSR and GPR calibration and test-set validation (Table 4).

As demonstrated, the prediction performance offered by GPR applied to the fused
data (Tellspec + SCiO) is measurably improved for both the intact and the milled sample
analysis. In the case of the former, the RMSEP value was decreased to 0.517% (Table 4) from
the values of 0.578% and 0.580% achieved by each of these sensors separately (Table 3). In
the case of the milled samples, the RMSEP for the GPR prediction from the fused spectral
set was improved to 0.295% (Table 4) compared with 0.326% and 0.338% offered by these
instruments separately (Table 3). In both cases the ratio of the performance enhancement
was above 10%. Thus, future considerations of applying the data fusion concept when
using more than one miniaturized NIR spectrometers seem viable further systematic
developments towards the performance of the analysis. It should be noted that the price
per unit of these two sensors combined is still decisively lower than that of e.g., MicroNIR
1700 ES.

Figure 4. The fused spectra from the two cost-effective miniaturized NIR spectrometers (Tellspec Enterprise Sensor and
SCiO Sensor) for intact (A,B) and milled (C,D) samples. A and C: unpretreated fused spectra. (B,D): fused spectra after
pretreatments (SNV + SG2 with 25 SP and SG1 with 11 SP).
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Table 4. Regression models constructed for the fused spectra from the miniaturized NIR spec-
trometers (Tellspec Enterprise Sensor and SCiO Sensor) for the analysis of protein content (range:
19.3–23.0% (w/w)) in intact and milled bars.

Intact Milled

PLSR GPR PLSR GPR

Pretreatment SNV, SG2
(25 SP)

SNV, SG2
(25 SP)

SG1
(11 SP)

SG1
(11 SP)

R2 (Cal) 0.41 0.9 0.53 0.99
R2 (CV) 0.28 0.55 0.48 0.9

RMSEC [%] 0.654 0.272 0.580 0.0002
RMSECV [%] 0.723 0.574 0.620 0.263

R2 (TSV) 0.38 0.64 0.51 0.89
RMSEP [%] 0.671 0.517 0.596 0.295

SG—Savitzky–Golay (1, 2—first, second derivative); SP—Smoothing Point; SNV—Standard Normal Variate,
PLSR—partial least squares regression, RMSEP— the root mean square error of cross prediction, GPR—Gaussian
process regression.

With PLSR calibration, the fused spectral sets (Tellspec + SCiO) did not offer an
improvement in prediction of the test-set, with RMSEP values remaining slightly inferior to
the analysis performed for these two sensors independently (Table 4). Therefore, it seems
that the potential of the GPR method to tackle with more challenging spectral data sets,
as evidenced in the previous study [46], makes it suitable to better elucidate the intended
information from fused spectra as well.

3. Materials and Methods

The fitness bars based on insect protein were purchased from the producer located
in Germany. The bars are hand-crafted and contain oat flakes, insect and pea protein,
nuts, and honey, and are coated in Belgian chocolate. They are available in four flavors:
peanut-cranberry (EC), hazelnut-cocoa (HK), macadamia-salted caramel (MS) and cashew-
blueberry (CB), as well as in the limited winter edition ‘Omas Apfelstrudel’ (OA). In total
40 bars, 8 of each flavor, were acquired for the purpose of this study. Depending on the
variety, the bars nominally contain 23.5–24.0% (w/w) protein with 12% being the protein
derived from buffalo worm. According to the manufacturer, the buffalo worms used for
the protein production are grown under their natural living conditions without the use of
pesticides, hormones, antibiotics or preservatives.

The spectra of each of the 40 samples were recorded with the four NIR spectrometers
(Section 2.1). The measurements of intact bars were performed in diffuse reflectance mode
at 6 different locations on the bar’s surface; 3 measuring points were on the top of the
bar, followed by 3 measuring points on the bottom, which resulted in a total of 6 spectra
acquired per sample. The chocolate coating of the bars varied in thickness of the layer and
in the amount of the covered area. Therefore, a method of spectra acquisition involving
sample preparation (grinding) was evaluated as well to enable measuring the spectra of the
bars without the influence of the chocolate coating of uneven thickness. The grinding of
the samples to high fineness was performed using Retsch ZM 200 (Retsch, Haan, Germany)
centrifugal mill, at 10,000 rpm with additional cooling to prevent overheating of the ground
material. For the ground samples, the measurements were performed in in an optical glass
cell (Hellma GmbH & Co. KG, Müllheim, Germany) of 25 mm diameter. Automatic sample
rotation accessory was used with NIRFlex N-500 while for the miniaturized spectrometers,
the cell was manually rotated between the measurements; 6 spectra per sample on each
spectrometer were acquired. Effectively, 240 spectra were acquired in each case.

The spectral measurements on the benchtop spectrometer NIRFlex N-500 were per-
formed in 12,500–4000 cm−1 region, with 32 scans collected per each spectrum at 8 cm−1

spectral resolution interpolated to 2126 data points. Intact bars were measured in surface
scan mode using a fiber probe accessory—‘Fiber Optic Solids’ (Büchi, Flawil, Switzerland)
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while ‘Solids XL’ accessory with sample rotation accessory was used for milled samples
placed in the cell.

The measurements with MicroNIR 1700 ES were performed with 7.5 ms integration
time and 1000 scans accumulated per each spectrum; each spectrum constituted 125 spec-
tral points between 11,013–5967 cm−1, with average data spacing of 37 cm−1. During
the measurements, the temperature correction function implemented in the instrument
was active.

The control software for both Tellspec Enterprise Sensor and SCiO Sensor offer no
possibility to adjust any of the operational parameters of the instruments; thus, the factory
default options were applied. Tellspec Enterprise Sensor presents to the user the spectra
in 256 data points, covering 11,111–5882 cm−1 region with an average data spacing of
13 cm−1. In the case of SCiO Sensor, the spectra presented to the user consist of 331 spectral
points, spanned over 13,514–9346 cm−1 range.

For the purpose of the calibration of the quantitative MVA models, reference analysis
of the total protein content present in the samples was performed by means of the Kjeldahl
method [63].

Spectral pretreatments and PLSR calibration and prediction were carried out using
“The Unscrambler X Version 10.5”. The calibrations and predictions using Gaussian process
regression (GPR) were performed in MATLAB R2018b environment (The MathWorks Inc.,
Natrick, MA, USA), using the Statistics and Machine Learning Toolbox.

The final performance and the robustness of all developed calibration models (PLSR
and GPR) was evaluated through the test set validation (TSV) procedure applied to an
independent set. The split of the spectra into calibration and TSV sets was conducted in a
200:40 ratio.

4. Summary

Benchtop (Büchi NIRFlex N-500) and three miniaturized (MicroNIR 1700 ES, Tellspec
Enterprise Sensor and SCiO Sensor), in hyphenation to PLSR and GPR calibration methods,
were evaluated and optimized towards their applicability to perform protein content
analysis in insect protein fitness bars. NIR spectroscopy, both with the use of benchtop
and miniaturized handheld instruments, can be successfully applied for performing rapid,
non-destructive analysis of the total protein content. When accepting the destructive
way of analysis, further gains in analytical accuracy can be gained. When hyphenated to
the PLSR method, the handheld instruments showed a clear inferiority in the prediction
performance, evaluated through the RMSEP values determine for independent test-set
data. The application of the non-linear GPR method for the calibration improves decisively
the accuracy of the miniaturized spectrometers, with MicroNIR performing on par with
the benchtop instrument, and Tellspec and SCiO sensors being only moderately inferior.

While the analyzed protein content was between 19.3–23.0% in the calibration set, the
RMSEP values for the non-destructive analysis of the intact bars were 0.611% (benchtop)
and remained in the range of 0.545–0.659% (miniaturized) for PLSR, and 0.506% (benchtop)
and 0.482–0.580% (miniaturized) for GPR analysis. When considering milled samples, the
respective RMSEP values for PLSR prediction improved to 0.210% for benchtop spectrom-
eter but remained in the inferior range of 0.525–0.571% for the miniaturized ones. The
RMSEP values for GPR prediction based on the miniaturized spectrometers were improved
to 0.230% (MicroNIR 1700 ES), 0.326% (Tellspec) and 0.338% (SCiO). Considering that
Tellspec and SCiO sensors cover largely complementary regions of VIS/SW-NIR and NIR
wavelengths, an attempt to perform data fusion from these sensors was made. With the
GPR calibration and test-set validation performed for fused (Tellspec + SCiO) data, the
RMSEP values were improved to 0.517% (in the analysis of intact samples) and 0.295% (for
milled samples). Considering that the Tellspec and SCiO sensors are consumer-oriented
devices, their combined use for enhanced performance remains a viable economical choice.
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Supplementary Materials: The following are available online, Figure S1: (Left) PCA score plot for
PC1 vs. PC2 and (Right) the explained variance for the spectral set of milled bars (spectrometer: Büchi
NIRFlex N-500). Figure S2: exemplary spectra (prior any pretreatments) of intact and milled bars as
well as isolated chocolate coating (spectrometer: Büchi NIRFlex N-500). Figure S3: the exemplary
spectra of an intact bar and chocolate coating after baseline offset correction (spectrometer: Büchi
NIRFlex N-500).
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