
EXHAUSTIVE TESTING
AS A

VERIFICATION TECHNIQUE †

John C. Knight, Kevin G. Wika and Shannon Wrege

(knight | wika | shannon)@virginia.EDU

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Contact Author:

John C. Knight
Department of Computer Science

University of Virginia
Thornton Hall

Charlottesville, VA 22903

(804)982-2216
knight@Virginia.EDU

†. Supported in part by the National Science Foundation under grant number CCR-9213427 and in
part by NASA under grant number NAG1-1123-FDP.

ABSTRACT

For a safety-critical system, i.e., a system whose consequences of failure are very high,
it is not possible to rely upon testing to provide the necessary verification. The difficulties
arise mainly from the shear number of tests that are required to permit statistically mean-
ingful conclusions to be drawn about the system. Other difficulties with testing include
failure to observe erroneous output when it occurs and incorrectly defining the operational
profile from which to select inputs.

Goodenough and Gerhart observed that exhaustive testing of a software system
amounts to a proof of the software. This is an appealing thought for safety-critical systems
because establishing proofs of system properties by more traditional techniques is difficult
at best and often depends on questionable assumptions such as assuming correct transla-
tion by a compiler. Unfortunately, however, if testing that yields a statistical conclusion is
infeasible it would seem that exhaustive testing would be also.

In general, exhaustive testing is infeasible. However, this infeasibility is a direct result
of the goal of testing for overall functional correctness. In considering the general issue of
how safety-critical systems might be tested, we have concluded that a different view of
testing is required. The view we advocate is that testing should be used to show significant
properties of safety-critical software systems rather than overall correctness. This
approach to testing is analogous to the use of formal verification to demonstrate properties
rather that correctness.

When testing is used as a technique to establish a property, the property of interest
determines in large part the number of tests required. This is the case no matter whether
the goal is to establish properties in a statistical sense or in the sense of a proof using
exhaustive testing. By careful definition of the property and by the application of a tech-
nique calledspecification limitation, we have been able to prove a number of significant
properties of a large software system by exhaustive testing.

In this paper we formalize the notion of specification limitation and show how it can
be applied in practice. We present the details of a complex software system and associated
properties that were established by applying the technique.

Exhaustive Testing As A Verification Technique

Page 1

INTRODUCTION

Computing systems in which the consequences of failure can be very high are termed

safety-critical. Many such systems exist in application domains such as aerospace,

defense, transportation, power-generation, and medicine, and public exposure to these

safety-critical systems is increasing rapidly. Since the correct operation of these systems

depends on software, the possibility of serious damage resulting from a software defect is

considerable and growing.

Because of the extreme consequences of failure, the probability of failure of safety-

critical systems has to be very small. In fact, in some cases there are mandated limits on

the probability of failure that is acceptable. The FAA, for example, requires that failure of

flight-critical systems for commercial air transports be “highly improbably”, a term that is

interpreted as a probability of failure of less than 10-9 per hour. Systems requiring such

levels of dependability are sometimes referred to asultra dependable.

Researchers have shown that demonstration of limits such as these by testing for non-

trivial systems is infeasible mainly because of the shear number of tests that would be

required. Although any safety-critical system will be tested before deployment, the result

of this testing is usually informal. The developers’ “confidence” in the system is raised by

the testing but this is not a quality that can be quantified.

With this limitation on testing, researchers have appealed to mathematics to provide an

alternative to testing that can provide a more rigorous approach to assuring software

dependability. Formal methods in general and formal verification in particular provide an

approach to the analysis of software that has the potential for yielding very high levels of

assurance in various software properties.

Typically, however, formal methods are limited in the view that they take of a software

system. Formal methods are usually applied to high-level abstract notations rather than the

machine instructions that constitute the actual software. Similarly, the modern application

of formal methods is usually far short of what is sometimes called a “proof of correct-

ness”. Rather than trying to show the equivalence of two representations, a formal specifi-

Exhaustive Testing As A Verification Technique

Page 2

cation and an implementation for example, formal methods are more easily applied to the

demonstration of certain properties of a software system. A proof might be undertaken, for

example, to show that a software system cannot exceed the capacity of a critical data struc-

ture no matter what sequence of events it processes. This proof ensures that the software

possesses an extremely useful property although, of course, it might still fail for some rea-

son unrelated to the data structure.

The infeasibility of testing as a verification technique is based on the assumption that

testing is being used to demonstrate overall functional correctness. In this paper, we argue

that testing becomes a feasible technology in the verification of safety-critical systems if it

is used to demonstrate limited but significant properties of the software rather than func-

tional correctness. This is in direct analogy with the current successful approach being

pursued with formal verification.

The approach we advocate is to test exhaustively rather than to test a sample of the

input space. This permits the establishment of a proof of the property of interest rather

than merely a statistical conclusion. In order to make exhaustive testing practical, we

argue that safety-critical systems should be designed with the goal of making exhaustive

testing of important properties feasible. We suggest various techniques that permit this

together with various other techniques that deal with other issues in testing.

To explore the potential value of the approaches we propose, we discuss an application

to which the techniques have been applied. We show how a variety of useful properties

have been established by testing for this application.

TESTING SAFETY-CRITICAL APPLICATIONS

Naturally, safety-critical systems are tested before being deployed. In practice, it is

common for a large proportion of the total effort expended during the development of such

systems to be expended on testing. In fact, in some cases 90% of the development effort is

used for testing. Despite this expenditure of resources, the conclusions that can be drawn

from the testing process are usually informal.

Exhaustive Testing As A Verification Technique

Page 3

In attempting to draw rigorous conclusions, researchers have raised a number of issues

about testing safety-critical applications. Specific issues that are of concern are: the diffi-

culty of quantifying reliability from test data; the difficulty of determining the correctness

of the output produced by a program; and the difficulty of determining the operational pro-

file. We elaborate briefly on each of these in turn and then discuss how the issues might be

resolved.

Quantifying Reliability
The quantification of reliability by testing is common in the hardware domain where it

is also referred to aslife testing. In order to apply life testing to software, test inputs are

selected from the assumed operational profile and the software is executed as if it were

operating in production circumstances. In essence this is a form of functional testing.

However, the goal is not to determine traditional functional correctness but to quantify its

reliability, i.e., to determine how reliable the software will be in practice.

The difficulties associated with life testing of safety-critical software were first dis-

cussed in detail by Butler and Finelli [3]. The major issue with quantification based on

testing in this way is the large number of test cases required. It is essential that the quanti-

fication be within a statistical framework in which a bound on the reliability goal of the

software is stated as a null hypothesis and an experiment defined, i.e., the testing, can

establish that the null hypothesis is true with a specific confidence. The large number of

tests derives from the very low bound that is desired on the reliability and the very high

confidence that is required in that bound. In practice, showing, for example, that software

has a probability of failure of less than 10-9 per hour with a confidence of say 99.9%

requires so many tests to be run that this bound with this confidence just cannot be demon-

strated.

Correctness Checking
The difficulties associated with quantifying dependability by testing are just part of the

problem. The analysis given by Butler and Finelli depends upon a critical assumption -

that when the software fails, its failure is detected. In practice, this assumption almost cer-

tainly does not hold.

Exhaustive Testing As A Verification Technique

Page 4

Large software systems are very complicated functions. They are, for the most part,

not continuous functions and often are functions of time. Frequently, they are not even

one-to-one functions. Knowingprecisely what the output of a large software system

should be for any given input is impossible. If it were possible, then, by definition, soft-

ware reliability would be achieved easily since the checking system could replace the soft-

ware.

This observation just makes the problem of testing safety-critical systems worse.

Ammann et al have shown that the number of tests required to show a certain level of reli-

ability (in the sense of Butler and Finelli) either rises rapidly as the number of missed fail-

ures rises or becomes infinite depending on the confidence required and the underlying

distributions [1].

Operational Profile
The operational profile is the probability distribution associated with the various input

values that the software will see. If all input values are equally likely, this distribution will

be uniform. If some input values are more likely than others, then the distribution will be

correspondingly non-uniform.

The difficulty is knowing what the actual probability distribution will be. All that can

be done in practice is to make a well-reasoned guess. The guess can be based on observa-

tion of the expected operational environment, simulation, analysis, and so on, but it will

always be a guess. And since it is a guess it could be arbitrarily far from the actual proba-

bility distribution that the software sees when it enters service.

This possible discrepancy is unimportant if the software operates correctly. No matter

how many input values are presented from some region of the input space, and it is this

number that the probability distribution predicts, the software will deal with all of them

properly if it operates correctly. Unfortunately, this desirable state of affairs will not be

revealed until the software is in operation. In order to make anaccurate reliability estimate

of the system based on life testing before deployment, the tests used must be generated

from an accurate operational profile. If the profile is inaccurate, then so is the reliability

bound.

Exhaustive Testing As A Verification Technique

Page 5

EXHAUSTIVE TESTING

The discussion in the previous section suggests that no useful formal conclusions can

be drawn from testing a safety-critical application. The first limitation is the huge number

of test cases required. Even if large numbers of tests could somehow be run, failures might

not be observed. And even if all failures were observed, the assumed operational profile

might be wrong.

Knowing that a safety-critical software system will operate correctly is extremely

important, however. For this reason and because testing is at best resource intensive, a

great deal of research has been and continues to be conducted into the application of math-

ematics to software verification. The goal in that case, of course, is to permit conclusions

to be drawn about the software without having to execute it.

Despite the merit of this approach to proof, when applied to large software systems the

practical circumstances present usually limit the conclusions that are possible. For exam-

ple, if a proof is established that the output of a sort program produces a valid ordering of

its input, the proof usually makes assumptions such as: (1) that the compiler correctly

translates the program, (2) that the linker and loader operate correctly, (3) that the operat-

ing system executes the program correctly, and (4) that no arithmetic exceptions are raised

during execution. In addition, establishing proofs of significant properties of significant

programs is not a routine activity for most developers at this point. Such proofs are rare

rather than a standard part of development although this situation is improving quickly.

Goodenough and Gerhart pointed out that exhaustive testing of a program also consti-

tutes a proof [4]. If a program has been executed with every input value that it could ever

see and its output found to be acceptable for each of these input values, then clearly noth-

ing more need be done. This is an appealing thought for safety-critical systems given that

rigorous demonstration of dependability is so important and that traditional formal verifi-

cation is quite difficult to apply. Unfortunately, however, if testing that yields a statistical

conclusion is infeasible for systems requiring ultra dependability, it would seem that

exhaustive testing would be infeasible also since it requires even more tests to be run.

Exhaustive Testing As A Verification Technique

Page 6

In general, of course, exhaustive testing is infeasible. However, we claim that it can be

applied to a wide variety of real programs to yield valuable results if:

• testing is used to demonstrate useful but possibly narrow properties rather than
overall functional correctness, and

• the size of the set of values that a software system might read for any given input is
made as small as possible consistent with the demands of the application.

We refer to the first item above asproperty testing and the second asspecification limita-

tion, and we describe them in more detail in the following subsections.

We do not discuss further the difficulty of determining the operational profile that a

system will experience since that difficulty is eliminated trivially by the use of exhaustive

testing. The operational profile is an important input to a life-testing process because the

goal is to establish a statistical bound on dependability. Since exhaustive testing amounts

to a proof, the operational profile is not an issue. In view of the significant impact that the

operational profile has on the statistical models of life testing, the importance of its elimi-

nation should not be underestimated.

Property Testing
The large number of tests implied by the analysis of Butler and Finelli is a direct result

of the goal of testing for overall functional correctness. In considering the general issue of

how safety-critical systems might be tested, we have concluded that a different view of

testing is required. The view we advocate is that testing should be used to show significant

properties of safety-critical software systems rather than overall correctness. This

approach to testing is analogous to the use of formal verification to demonstrate properties

rather that correctness.

When testing is used as a technique to establish a property, the property of interest

determines in large part the number of tests required. This is the case no matter whether

the goal is to establish properties in a statistical sense or in the sense of a proof using

exhaustive testing. By careful definition of the desired property, the number of tests

required can be made tractable. In the limit, the simplest possible property of any system

is that it operates correctly for a single set of input values. Clearly this property can be

Exhaustive Testing As A Verification Technique

Page 7

shown by exhaustive testing since only one test is required. More generally, we hypothe-

size that significant properties can be defined which can be shown by exhaustive testing.

We have defined and proved a number of extremely valuable properties for the example

system that we discuss below.

Although it might be argued that restricting verification by exhaustive testing to spe-

cific properties rather than overall functional correctness is of limited value, we note that it

is directly analogous to the statement and proof of putative theorems about a formal speci-

fication. Putative theorems are used to establish expected properties of a specification

rather than some kind of overall correctness. Their power lies in the fact that they establish

a result or results which the specifier expected and allow him or her to focus on other ele-

ments of the specification. In a similar way, proof by exhaustive testing that a program

possess expected properties ensures that failure will not result from lack of the associated

properties and permits the verifier to focus on other elements of the verification.

Specification Limitation
The input space for a program is the set of all possible input values that a program

might encounter. It is the enormous size of this space for typical applications that is behind

Butler and Finelli’s conclusions on the infeasibility of testing for ultra dependability.

What defines the size of this space and why is it so large? Each input to a software sys-

tem at the point where the software first processes it is a discrete quantity. The possible

values that an input can take, thevalue set of the input, is therefore a finite set but the car-

dinality of the set might be quite large. For systems with several inputs, the input space is

actually the Cartesian product of several separate value sets, and the size grows very rap-

idly as the number of inputs increases.

In theory, the value sets of the individual inputs for a particular software system are

defined by the specification of the system. In practice, the value sets tend to take on default

values that are determined by hardware constraints. An integer input derived from a sen-

sor, for example, is assumed usually to have a value set equal to the hardware representa-

tion produced by an analog-to-digital converter. We claim that this approach to the

definition of value sets leads to a large, undesirable, and unnecessary expansion of the

Exhaustive Testing As A Verification Technique

Page 8

input space. By forcing the definition of the value set to be large enough to accommodate

the needs of the applicationbut no larger, it is possible to reduce the size of the input

space dramatically without affecting the operation of the application. We refer to this

approach asspecification limitation.

As an example of specification limitation, consider a simple control system with a sin-

gle sensor measuring a temperature. For room temperature applications, it is unlikely that

more than eight bits would be needed for temperature representation. However, if a six-

teen-bit signal is presented, this tends to be considered the definition of the value set. By

careful examination of the application, it might be possible to reduce the required preci-

sion to perhaps six bits. If this is possible and inputs are deliberately truncated to six bits,

the value set is reduced from a sixteen-bit integer to a six-bit integer. This is a reduction of

more than three decimal orders of magnitude in the size of the value set.

To be more precise, specification limitation involves the determination of precisely

what the minimal value set is for an input. In some cases, it might be possible to itemize

the specific values that are possible. More generally, however, we have found that restrict-

ing the size of the value set tends to depend on the following two techniques:

• range limitation: by which we mean deliberately restricting the range that an input
value can take, perhaps composing a value set from a set of non-intersecting sub-
ranges, and

• granularity enhancement: by which we mean deliberately forcing elements of the
value set to be regularly spaced across the range with as large a spacing as possible
between elements. The six-bit temperature value discussed above is an example.

If range limitation is applied and the valid range checked at the point of input, then

only values from within the range need be tested. If granularity enhancement is applied

and the granularity used by the hardware is truncated to the enhanced granularity at the

point of input, then only truncated values need be tested.

Specification limitation can be applied to almost all inputs of a software system, and

the result can be a significant reduction in the system’s input space. The effect that this has

on the feasibility of exhaustive testing is, of course, system dependent. We give examples

in the application to which we have applied the technique showing at least one example in

which specification limitation has made exhaustive testing feasible.

Exhaustive Testing As A Verification Technique

Page 9

CORRECTNESSCHECKING

Correctness checking, i.e., determining whether the output produced by a program is

indeed the output that is desired, is a very difficult problem. From the perspective of veri-

fication by testing, it is crucial that it be performed reliably and that it be totally auto-

mated. As noted above, undetected failures affect statistical conclusions very dramatically

and they certainly invalidate a proof by exhaustive testing.

There is no perfect approach to correctness checking for any type of program and cer-

tainly not for complex safety-critical software. Each application must be examined sepa-

rately and all available approaches considered. Rather than discussing the problem in

general, we limit our attention here to a technique,reversal checking, that in our experi-

ence is powerful yet rarely used.

A reversal check is a calculation that takes the output of some computation and regen-

erates the associated input (see Fig. 1). If the regenerated input matches the actual input up

to the limits imposed by numerical error then there are only two possibilities: either the

output is correct or the forward and reverse calculations contain faults that are theinverses

of each other. Even if the latter were the case, it is unlikely that they would be theexact

Fig. 1. Application of a reversal check.

Software
System

Reverse
Calculations

OutputInput

Equal?

Exhaustive Testing As A Verification Technique

Page 10

inverses of each other. By exact inverse, we mean that the faults do not permit a failure to

be detected onany test case whatsoever. In other words, for a fault to go undetected, the

forward computation would have to fail in such a way that when its output is used as the

input for the reverse computation, that computation fails in such a way that its output is

indistinguishable for the original input. And this must occur on every test case for which

the system’s outputs are in fact wrong. This seems unlikely and so provided sufficient test

cases are executed, the probability of detecting the faults can be raised to an acceptable

level [2].

Reversal checking is not a cure-all for the problem of correctness checking. For exam-

ple, nothing of any value can be said about the input operands to an add operation if all

that is known is its output. But in many cases, relatively simple inverses do exist, and,

when they do, they provide an excellent basis for high-quality, automatic error detection.

We describe the extensive use of reversal checks in the application to which this work has

been applied.

EXAMPLE APPLICATION

As part of a process of evaluation, all of the techniques discussed in this paper have

been applied to a prototype software system that we have developed for a safety-critical

application. Since we have looked at only a single application, the evaluation that we

describe is merely a feasibility demonstration.

The application,The Magnetic Stereotaxis System (MSS), is an investigational device

for performing human neurosurgery being developed in a joint effort between the Depart-

ment of Physics at the University of Virginia and the Department of Neurosurgery at the

University of Iowa [7].

The system operates by manipulating a small permanent magnet (known as a “seed”)

within the brain using an externally applied magnetic field. By varying the magnitude and

gradient of the external magnetic field, the seed can be moved along a non-linear path and

positioned at a site requiring therapy, e.g., a tumor. The magnetic field required for move-

ment through brain tissue is extremely high, and, in the MSS, the required field is gener-

Exhaustive Testing As A Verification Technique

Page 11

ated by a set of six superconducting magnets that are located in a housing that surrounds

the patient’s head. Fig. 2 shows how the system is organized.

A key element of the device is the imaging subsystem. It uses two X-ray cameras posi-

tioned at right angles to detect in real time the locations of the seed and of X-ray opaque

markers affixed to the patient’s skull. The X-ray images are not displayed. Instead, they

are processed by the imaging subsystem so as to locate the objects of interest in a canoni-

cal frame of reference, and this information is used to display graphic representations of

the seed and skull markers on pre-operative magnetic resonance (MR) images. The MR

images are the primary source of information used by the operator for making control

decisions.

The application requires several high-resolution graphic displays and these depend

upon extensive computation for data generation. This demand for computation and display

has forced the use of a distributed architecture for our prototype. This in turn has forced

the use of a substantial amount of “off-the-shelf” software to perform routine operating

X ray
source

Phosphor screen

Fig. 2. View of MSS from above patient’s head.

Patient’s head

Camera

Coil

Exhaustive Testing As A Verification Technique

Page 12

system and network functions. The overall software architecture of the prototype system,

shown in Fig. 3, consists of a control program that interfaces with the various peripherals

and two display programs. Communication between these programs is over a local-area

network. Each program executes on a separate computer running Unix and the network

links are Unix socket connections. The graphic user interfaces are implemented using X

Windows.

An unusual feature of our prototype system architecture is the use of asafety kernel

[6]. Its purpose is to ensure that certain required safety policies are enforced irrespective

of the actions of the remainder of the application software.

TEST SYSTEM STRUCTURE

A test harness has been developed that permits testing of the complete prototype soft-

ware system or major subsystems. The test harness operates as a separate program on a

different computer from the rest of the system. It communicates with the software under

test via two socket connections. One of these connections is used to transfer synthetic

Superconducting
Electromagnets

Fig. 3. Distributed MSS software architecture

Network

X-Ray Sources
and Cameras

Operator
Display

Field
Display

Future
Displays

Control
Program

Safety Kernel

Exhaustive Testing As A Verification Technique

Page 13

images to the replacement X-ray device driver. The second is used to transmit to the oper-

ator display operator “commands” that the test harness determines to be part of a test case.

Synthesized X-ray images that are produced as follows. The desired object positions in

the canonical coordinate system are generated initially by the test harness as part of a test

case. The projections of the objects onto the two camera sensing surfaces are then com-

puted and used to place correctly located shadows onto the two digital images. These pro-

jections take into account a multitude of deviations from perfect positioning of the real

equipment. The X-ray sources, for example, are not located precisely on a line perpendic-

ular to the center of the camera. Once the projections have been generated, realistic distor-

tions are applied to the images, and finally the images are mixed with real X-ray

backgrounds to produce extremely high-fidelity synthetic images.

The Control Program’s interface with the synthetic image generator is identical to the

real X-ray system down to the level of the device driver. The synthetic images arrive over

a socket connection whereas the real X-ray images would arrive via a custom communica-

tions system.

To handle operator commands, a relatively small addition has been made to the Opera-

tor Display program. This addition accepts directions from the Test Harness that are in the

form of high-level action requests such as “push the calibrate button”. The modification to

the Operator Display, referred to as thePseudo User, transforms the high-level directions

either into X events that it injects into the event queue, or, if necessary, it calls the associ-

ated call-back functions.

VERIFICATION EXPERIMENTS

In this section we describe the application of property testing and specification limita-

tion to our MSS prototype implementation. This section is worded in the future tense in

part. This is because in most cases we have performed only subsets of the exhaustive test-

ing that is mentioned, and used the resulting information and other analyses to predict both

the feasibility of exhaustive testing and the expected resource requirements. To actually

carry out a complete exhaustive test would be pointless other than to confirm the analyses

Exhaustive Testing As A Verification Technique

Page 14

since our prototype changes frequently and any change would invalidate the verification.

Imaging Subsystem
The MSS imaging subsystem is complex, and knowing that it locates objects correctly

and within required accuracy bounds is useful. The property that we have defined for

proof by testing is:

The imaging subsystem determines the positions of objects within its field
of view to within a predefined tolerance of the correct location assuming
that its functionality is not affected by the background in the images upon
which it operates.

In other words, we seek to show that the object location algorithm and its implementation

works correctly given shadows of objects at any points on the input images. We assume

that the verification is unaffected by the variations in background that are inevitable in

practice.

This property can be established by exhaustive testing. The approach we intend to

undertake is to place an object in the field of view and move it systematically throughout

the entire operating region, i.e., raster scan the object through the operating region.

Although we speak of objects and motion here, recall that the images are synthesized, and

so the raster scanning referred to is in fact performed by a set of nested loops.

Since the images are digital, there is a minimum distance that an object has to move in

order for the move to be detectable. If we move the target object at the resolution limit, we

are guaranteed to achieve exhaustive testing of the imaging subsystem’s ability to deter-

mine the position of an object in the field of view. The estimated time required to perform

these tests is only on the order of 1,500 hours.

Although this is a useful property, it is by no means a complete test of the imaging sub-

system, and it is important to keep this in mind. This set of test cases does not test, for

example, the imaging system’s ability to detect objects in the presence of noise, its ability

to distinguish between multiple objects, and so on. However, exhaustive testing of the

form described above proves that one significant aspect of image processing is being per-

formed correctly.

Exhaustive Testing As A Verification Technique

Page 15

Coil Current Calculation
In a similar fashion to the imaging system testing, we can apply exhaustive testing to

the coil current calculation to show a narrow but useful property. The current calculation is

based on a desired seed movement and present seed location. The property that we have

defined for proof by testing is:

The coil-current subsystem determines the coil currents correctly for any
desired seed movement from any present seed location.

This property can only be proved if specification limitation is applied. Although gen-

erally real-valued quantities, we apply granularity enhancement to the seed location and to

the requested direction and magnitude of seed movement deliberately for the express pur-

pose of permitting exhaustive testing. Details of the specification limitation that is used

are as follows. During testing, the seed is positioned at small intervals (e.g., 1.0 mm) on a

three dimensional grid. During use of the system, the seed position is always rounded so

that it matches these tested locations. In addition, for each possible seed location, a finite

number of movement directions and a similarly limited number of distances have been

established. Thus, the coil currents for all possible combinations of seed location and

requested seed movement can be computed and the total number of tests is bounded.

In our prototype software for the MSS, we have established a grid size of 1.0 mm with

the working volume being approximated by a cube that is 100 mm on a side. The total

number of points in this volume is 106. The symmetry of the coil arrangement permits the

actual number of points tested to be reduced by a factor of 16. The seed movement direc-

tion interval is set at 5.0 degrees over the range of the angular spherical coordinates. The

movement distance is rounded to the nearest 1.0 mm over the range 1.0 to 10.0 mm. These

intervals have been selected on the basis that they permit sufficient operator control of

seed movement with a worst case resolution of approximately 0.5 mm. These intervals

result in approximately 700 directions for each point and 6 x 104 points to be tested. For

this test, the distance of seed movement affects only the magnitude and duration of the

current, so it is acceptable to test just the maximum distance (i.e., 10.0 mm) for each direc-

tion. As a result, the total number of cases to be tested is roughly 4 x 107. Testing 10 cases

per second, the estimated time required to perform these tests is on the order of 1000 hrs.

The result is that all possible movements that can be requested during a surgical procedure

Exhaustive Testing As A Verification Technique

Page 16

can be evaluated during the exhaustive testing. In addition to ensuring that the magnetic

force is consistent with the requested movement, testing will also incorporate other analy-

sis, e.g., checking coil current values to ensure that the seed is not moving into a region

where a rapidly increasing magnetic field would interfere with safe seed movement.

The rounding of the seed position and establishment of discrete movement requests

are certainly not functional requirements of the system, but are design decisions made to

enable exhaustive testing to assure a valuable safety property. The adjustments in the seed

position are on the order of the resolution of the imaging system and are significantly

smaller than the spacing of points used to compute the force on the seed. The discretiza-

tion of the force direction and magnitude is established at a level that permits control of

the seed at a resolution that is on the order of the resolution of the vision system. As a

result, these minor restrictions will have no adverse impact on the functional or safety

properties of the system while permitting the assurance of a significant safety property.

Safety Kernel Verification
Since the safety-kernel architecture is designed to ensure the enforcement of certain

safety policies, its correct operation is crucial to safe operation of the system. Exhaustive

testing has been used as part of the verification of the kernel. Specifically, it has been used

to verify the two properties shown below:

For any safety kernel mode, a command for a device will not be executed if
the command is not permitted in the given mode.

For any safety kernel mode, a command will be executed if a transition to a
valid mode has been specified.

These properties certainly do not imply safety kernel correctness, but they contribute

to the overall verification and are properties that would be difficult to establish with other

techniques. For example, it is likely that random, system testing would not test these prop-

erties exhaustively and that formal verification between the policy specification and the

executable safety kernel would be very complicated.

Using a specification-based test system both of these properties have been tested

exhaustively. For the safety kernel component tested, there were 24 separate modes and in

excess of 20 commands for each mode. Testing required a few minutes for completion.

Exhaustive Testing As A Verification Technique

Page 17

The entire test process is automated, permitting ready application to different and more

complex instances of the safety kernel.

ERROR DETECTION

Somewhat surprisingly, the entire MSS computation sequence that effects coil control

can be covered by reversal checks. It is not possible to discuss this coverage here in detail

and so we describe the reversal checks used in two major subsystems as examples.

Object Location
From the location of objects in the two input X-ray images and using previously-

obtained calibration data, the imaging system determines the location of the objects in the

canonical three-dimensional coordinate system. Recall, however, that in the test system,

the images are synthesized. Synthesis is done from object-location data that is generated

as part of the test case, and this object-location data is with reference to the canonical

coordinate system. Thus, the imaging system is analyzing images in an effort to determine

the very data that was originally part of the test case. The correctness check is, therefore,

merely to compare the output of the imaging system with the initial test case data. The

sequence of steps is shown in detail in Fig. 4.

Coil Current Calculation
The computation of the required currents through the superconducting coils is a sur-

prisingly difficult task. The difficulty arises because the input to the computation is a

required force. The output is a six-element vector, i.e., the six coil currents required. There

is an infinite number of current combinations that could provide a particular requested

force. There is no known way to compute the currents in any optimal sense and so various

complex approximations are used.

Fortunately, the force produced by a set of six currents passing through coils in a

known geometric configuration, i.e. the reverse computation, is easily and exactly com-

putable. Thus, in this case, the reversal check is merely to compute the force that would be

produced by the set of six currents determined by the system and compare the value with

Exhaustive Testing As A Verification Technique

Page 18

the desired force.

We find the application of reversal checks to the entire system to be an appealing

approach to error detection. Determining rigorously whether the systematic use of reversal

checks as an error detection mechanism is indeed an approach with quantifiable benefits is

the subject of ongoing research. We note the additional benefit that many of the reversal

checks could be employed as execution-time assertions. In particular, the reversal check

on the current calculations can provide run-time assurance that the difference between the

actual and requested force on the seed are within a specified tolerance.

CONCLUSIONS

Assurance of dependability in complex safety-critical systems is difficult. No one ver-

ification technique is sufficient, and in particular, testing has been shown convincingly to

be insufficient for demonstrating functional correctness in nontrivial applications. How-

ever, in spite of its limitations, testing can play an important role in demonstrating impor-

Image Generation

Fig. 4. Reversal check testing of imaging system.

Image Analysis X-Ray images

Canonical Coordinates
to

Image Coordinates

Image Coordinates
to

Canonical Coordinates

Computed
Object

Positions

Object
Positions

Comparison of
Actual and

Computed Positions

Exhaustive Testing As A Verification Technique

Page 19

tant properties of safety-critical systems.

We have shown that exhaustive testing can be a practical approach to proving that a

system possesses significant properties. We have introduced the notions of property test-

ing and specification limitation as techniques that can vastly improve the practicality of

exhaustive testing.

Test cases identified for the MSS application will enable the rigorous demonstration of

important properties of the imaging system and current calculation algorithms. The test

cases utilize reversal checks for error detection and rely on exhaustive sets of inputs.

Although the complete set of safety properties of the MSS (or any other system) will need

to be established by a range of verification techniques, we assert that testing can play an

important role in demonstrating a subset of safety properties — properties that might oth-

erwise be very difficult to establish with other verification techniques.

Finally, we note that the proof of a property by exhaustive testing is a proof of the

property for the actually machine representation of a program precisely as it will operate

in practice. The is a valuable characteristic of the technique.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under grant num-

ber CCR-9213427, and in part by NASA under grant number NAG1-1123-FDP.

Exhaustive Testing As A Verification Technique

Page 20

REFERENCES

1. Ammann, P. E., S. S. Brilliant, and J. C. Knight, “The Effect of Imperfect Error
Detection on Reliability Assessment via Life Testing,”IEEE Transactions on Soft-
ware Engineering, Vol. 20-2, February 1994.

2. Brilliant, S. S., J. C. Knight, and P. E. Ammann, “On the Performance of Software
Testing Using Multiple Versions,” inProceedings of Fault-Tolerant Computing:
The Twentieth International Symposium, Newcastle upon Tyne, England, 1990.

3. Butler, R. W. and G. B. Finelli, “The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software,”IEEE Transactions on Software Engineering,
Vol. 19-1, pp. 3 - 12, January 1993.

4. Goodenough, J. B. and S. L. Gerhart, “Toward a Theory of Test Data Selection,”
IEEE Transactions on Software Engineering, SE-1, June 1975

5. Weyuker, E. J., “On Testing Non-Testable Programs,”Computer Journal Vol. 25-
4, November 1982.

6. Wika, K.G., “Safety Kernel Enforcement of Software Safety Policies,” Doctoral
Dissertation, University of Virginia, May 1995.

7. Wika, K. G., “A User Interface and Control Algorithm for the Video Tumor
Fighter,” Masters Thesis, University of Virginia, May 1991.

8. Wika, K. G. and J. C. Knight, “A Safety Kernel Architecture,” Department of
Computer Science, University of Virginia, Technical Report No. CS-94-04, Febru-
ary 1994.

