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Abstract

Most proteins show changes in level across growth conditions. Many
of these changes seem to be coordinated with the growth rate rather than
the specific environment or the protein function. Although cellular growth
rates, gene expression levels and gene regulation have been at the center
of biological research for decades, there are only a few models using the
value of the growth rate to partially predict protein levels.

We present a simple model that predicts a widely coordinated increase
in the concentration of many proteins proportionally with the growth rate.
The model reveals how passive redistribution of resources, due to active
regulation of only a few proteins, can have quantitatively predictable pro-
teome wide effects. Our model provides a potential explanation for why
and how such a coordinated response of a large fraction of the proteome
to the growth rate arises under different environmental conditions. The
simplicity of our model can also be useful by serving as a baseline null hy-
pothesis in the search for active regulation. We exemplify the usage of the
model by analyzing the relationship between growth rate and proteome
composition for the model microorganism E.coli as reflected in two recent
proteomics data sets spanning various growth conditions. We find that the
cellular concentration of a large fraction of the proteins, and from different
cellular processes, increases proportionally with the growth rate. Notably,
ribosomal proteins are only a small fraction of this group of proteins. De-
spite the large fraction of proteins that display this coordinated response,
this response only accounts for a relatively small fraction of the overall
variability in the proteome across different growth conditions, possibly
due to experimental noise. We suggest that, although the concentrations
of many proteins change with the growth rate, such changes could be part
of a global effect, not requiring specific cellular control mechanisms.

1 Introduction

Many aspects of the physiology of microorganisms change as a function of the
growth environment they face. A fundamental system biology challenge is to
predict and understand such changes, and specifically, changes in gene expres-
sion as a function of the growth environment.
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Early on it was found that the expression of some genes is coordinated with
growth rate, rather than with the specific environment. Classic experiments in
bacteria, by researchers from what became known as the Copenhagen school,
have shown that ribosome concentration (inferred from the RNA to protein ratio
in cells) increases in proportion to growth rate [28]. The observed increase in
concentration has been interpreted to indicate that, given that translation rates
and the fraction of active ribosomes remain relatively constant across conditions,
a larger fraction of ribosomes out of the proteome is needed in order to achieve
faster growth [22, 8, 32]. The search for mechanisms in E.coli that underlie
this observation yielded several candidates. Specifically, coordination between
ribosome production and growth rate was attributed both to the pools of purine
nucleotides [12, 9], and the tRNA pools through the stringent response [6, 2].
For a more thorough review see [23].

In the last two decades, with the development of the ability to measure
genome-wide expression levels, it was found that changes in gene expression
(measured through mRNA levels and promoter-reporter libraries) as a func-
tion of growth rate is not limited to ribosomes and ribosomal genes. In E.coli,
the expression of catabolic and anabolic genes is coordinated with growth rate,
and suggested to be mediated by cAMP [27]. In S.cerevisiae, it was shown
that a surprisingly large fraction of the genome changes its expression levels
in response to environmental conditions in a manner strongly correlated with
growth rate [17, 10, 5, 11]. Studies examining the interplay between global and
specific modes of regulation, suggested that global factors play a major role
in determining the expression levels of genes [10, 19, 29, 1, 17, 11]. In E.coli,
this was mechanistically attributed to changes in the pool of RNA polymerase
core and sigma factors [18]. In S.cerevisiae, it was suggested that differences
in histone modifications around the replication origins [26] or translation rates
[10] across conditions may underlie the same phenomenon. Important advance-
ments in E.coli were achieved by analyzing measurements of fluorescent re-
porters through a simplified model of gene expression built upon the empirical
scaling with growth rate of different cell parameters (such as gene dosage, tran-
scription rate and cell size)[19]. These studies suggest that the expression of
all genes changes with growth rate, with different architectures of regulatory
networks yielding differences in the direction and magnitude of these changes.

Despite these advancements, many gaps remain in our understanding of the
connection between gene expression and growth rate. Primarily, it is unclear
what is the scope of interconnection between gene expression and growth rate.
Is it unique to specific groups of genes or is it a more global phenomenon shared
across most genes in the genome? What fraction of the variability observed in
gene expression patterns across different growth conditions results from active
adaptation to the specific condition, and how much results from global, gene
and condition-independent, response. Genome-wide proteomic data sets, such as
those generated by mass-spectrometry, which probe the proteome composition
at different growth rates, offer potential insights into these questions.

In this work we present a parsimonious model, which does not require
condition-specific parameters, that quantitatively predicts the relationship be-
tween protein abundance and growth rate in the absence of gene-specific changes
in regulation. Our model provides a baseline for the behavior of endogenous
genes in conditions between which they are not differentially regulated, on top
of which different regulatory aspects can be added. The model predicts an in-
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crease in protein concentration with growth rate as an emerging property that is
the result of passive redistribution of resources, without need for specific regula-
tion mechanisms. In order to exemplify and expore the scope of validity of the
model, we analyzed two recently published proteomic data sets of E.coli under
different growth conditions [31, 13]. We find a statistically significant, coordi-
nated, positive correlation between growth rate and the protein concentration
of many genes, from diverse functional groups. However, this response accounts
for a relatively small fraction of the total variability of the proteome across
the different growth conditions for which these data sets were obtained. Our
analysis suggests that experimental noise may underly this relatively poor ex-
planatory power, concluding that more data will be required in order to support
or refute the model we present.

2 Results

2.1 Simple considerations predict passively driven increase
in the concentration of proteins as a function of the
growth rate

What is the simplest way to model the differences in the proteome composi-
tion of two populations of cells, one growing in a permissive environment, and
the other facing a more challenging growth condition? In an attempt to parsi-
moniously analyze such differences, we have constructed a minimalistic model
that predicts the behavior of non-differentially regulated genes across different
growth conditions. Before presenting the model mathematically, we give a brief
intuitive depiction.

The model assumes that, under favorable growth conditions, the cell actively
down-regulates some proteins that were needed in harsher conditions but not
needed in the favorable condition, as illustrated in Figure 1. As a result, the
fraction of each of the rest of the proteins out of the proteome is increased com-
pared with the harsh condition, as long as there is no gene-specific regulation.
All those proteins increase their levels but are expected to show the same relative
ratios among each other after the increase as they were before. The growth rate
is also expected to increase in comparison with the harsh condition, as the ratio
of bio-synthetic machinery to the rest of the proteome is higher, as depicted in
Figure 1B. The growth rate is dependent on the amount of bio-synthesis a cell
needs to perform in order to synthesize the proteins needed under its growth
environment. To demonstrate the idea concretely, one could think about the
down regulation of the lac operon in the presence of Glucose. This situation
alleviates the need to transcribe and translate lactose metabolism genes and
leads to faster growth.
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Figure 1: A minimalistic model predicts down regulation of environmental genes
increases the concentration of other proteins (Panel A). As a result, the ratio
of bio-synthesis machinery genes to the rest of the proteome increases, resulting
in faster growth (Panel B).

2.1.1 The concentration of a protein is determined by both gene
specific control, and global expression machinery availability

For every protein, the model separately considers the resulting concentration as
the product of two control mechanisms:

1. Protein/gene specific controls such as the gene associated promoter se-
quence, 5’-UTRs, ribosomal binding site sequence, and factors affecting
the specific expression of the gene such as transcription factors and ri-
boswitches that react with the relevant gene. While some of these con-
trols (such as, for example, the ribosomal binding sites) are static, and
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therefore condition independent, others are dynamic and will differ under
different environmental conditions (such as transcription factors state).

2. The global availability of bio-synthetic resources in the cell, including
availability of RNA polymerase, co-factors, Ribosomes concentration, amino-
acids etc. All of these factors can potentially differ across different envi-
ronmental conditions.

For simplicity, the model refers to the fraction of a specific protein out of
the proteome, and not to the concentration of that protein in the biomass. The
concentration of a specific protein in the biomass can be calculated given this
fraction and the concentration of total protein in the biomass, which is known
to be relatively constant [3, 30] (for further discussion see 4.1.2).

According to the model, every gene, under every environmental condition, is
given an ’affinity-for-expression’ (or ’intrinsic-strength’) score that encapsulates
its gene-specific control state under the condition considered. We denote the
affinity of gene i under growth condition c by wi(c) (the notion of affinity for
expression is not new, and was first suggested in [20]). Our model assumes that
the bio-synthetic resources of the cell (Ribosomes, RNA polymerases, etc.) are
distributed among the genes according to their affinities under the condition at
hand. The notion of affinities can thus reduce the number of parameters needed
to predict expression levels markedly.

For example, given that an organism expresses 1000 genes across 10 different
growth conditions, one could imagine that characterizing the expression pattern
of all genes across all conditions will require 10000 parameters, (the expression
level of every gene under every condition), each of which can potentially vary
continuously across some predefined range. According to our model, each gene
has only a finite set of affinities, possibly only one or two, and thus the expression
pattern under every condition can be characterized by only specifying which,
out of the total gene-specific small set of possible affinities, each gene acquires
under every condition. Moreover, given that the selection of expression level
for a given gene is driven by some specific environmental cues, one needs only
to know what cues are present at each condition in order to fully specify the
affinities all genes acquire under that condition, and thus predict the resulting
proteome composition.

The model calculates the resulting protein fraction of a gene, under a specific
condition, as the specific affinity of that gene under the condition, divided by
the sum of all the affinities of all of the genes under that same condition. Thus,
if two genes have the same affinity under some condition, they will occupy
identical fractions out of the proteome under that condition. If gene A has
twice the affinity of gene B under a given condition, then the fraction protein
A occupies will be twice as large as the fraction occupied by protein B under
that condition, etc.

This relationship can be simply formulated as follows:

pi(c) =
Pi(c)

P (c)
=

wi(c)∑
j wj(c)

(1)

where pi(c) denotes the fraction of protein i under condition c out of the pro-
teome, Pi(c) denotes the mass of protein i under condition c per cell, P (c)
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denotes the total mass of proteins per cell under condition c, and the sum,∑
j wj(c), is taken over all the genes the cell has.
This equation implies that the observed fraction of a protein is determined

by two factors, already, obviously, its own specific affinity that is present in
the nominator, but second, and less intuitive and commonly thought of, the
affinity of all of the other genes under the growth condition, as reflected by the
denominator.

2.1.2 A change in growth condition triggers changes in expression
of specific proteins that indirectly affect all of the proteome

Different environmental conditions require the expression of different genes in
order to achieve growth. For example, comparing two growth media, one that
includes amino-acids, and one that does not, it can be assumed that when
amino-acids are present, no need exists for the cell to express amino-acids syn-
thesizing enzymes, whereas when amino-acids are absent, these enzymes must
be expressed. Therefore, ideally, the cell will be able to sense the presence or
absence of amino-acids in the growth media and, for the amino-acids synthesiz-
ing genes, down or up regulate their affinities accordingly. If we now consider
some unrelated gene i, whose specific affinity is unaltered between these two
conditions, we suggest that its concentration will still change between the two
conditions as the affinities of at least some of the other genes (the amino-acids
synthesizing enzymes) change, changing the denominator in equation 1 and thus
affecting the distribution of resources between all of the expressed genes.

Generalizing this notion, for every group of conditions, one could divide the
proteins into those whose intrinsic affinity remains constant across all of the con-
ditions, and to those whose intrinsic affinity changes (meaning their expression
is actively regulated by the cell) between at least some of the conditions, as is
shown in Figure 1A. An interesting consequence of the formulation in Equation 1
is that proteins whose intrinsic affinities remain constant across different growth
conditions, also maintain their relative concentrations across these conditions
with respect to each other.

2.1.3 The observed growth rate is an outcome of proteome compo-
sition and environmental conditions

While it is sometimes implied that different cellular components are regulated
by the growth rate, here we consider the growth rate as an outcome of the
environmental conditions that affect the proteome composition. Specifically,
the doubling time is proportional to the ratio of the total amount of proteins
per cell and the amount of bio-synthesis machinery in that cell. The larger the
ratio of total proteins to bio-synthesis proteins is, the longer these bio-synthesis
proteins will have to operate in order to duplicate the proteome, and thus the
longer the doubling time of the cell will be.

To illustrate this assumption concretely, one could think about the synthesis
of polypeptides. If a cell has R actively translating ribosomes, each of which
synthesizing polypeptides at a rate of η ≈ 20 amino acids per second, it follows
that the cell synthesizes ≈ ηR amino acids per second. If the total amount of
protein in that same cell is P (measured in amino acids count), it follows that
the time it will take the actively translating ribosomes to synthesize the proteins
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for an identical daughter cell is τ ≈ P
ηR (up to a ln(2) factor resulting from the

fact that the ribosomes also synthesize more ribosomes during the replication
process and that these new ribosomes will increase the total rate of polypeptides
synthesis) as is illustrated in Figure 1B.

Theoretically, the fastest doubling time a cell may have is the doubling time
achieved when all of the proteome of the cell is the bio-synthetic machinery.
We denote this minimal doubling time by TB . If the bio-synthetic machinery is
only half of the proteome, the doubling time will be 2TB etc.

To integrate the notion of total protein to bio-synthetic protein ratio into our
model, we make the following simplifying assumption: There is a group of bio-
synthetic genes (e.g. genes of the transcriptional and translational machineries)
the affinities of which remain constant across different growth conditions, that
is, these genes are not actively differentially regulated across different condi-
tions. Furthermore, we assume that the machineries these genes are involved
at, operate at relatively constant rates and active to non-active ratios across
conditions (which is known to be true for ribosomes [3]).

Under these assumptions we can define this group of bio-synthesis genes,
GB , such that, for every gene that belongs to this group, k ∈ GB , its affinity,
wk(c) is constant regardless of the condition, c.

wk(c) = wk (2)

To keep our notations short, we will define the (condition independent) sum
over all of these bio-synthesis genes as the constant:

WB =
∑
k∈GB

wk

As these genes form the bio-synthesis machinery, and according to the as-
sumptions presented above, it follows that the doubling time under a given
condition, τ(c) will be proportional to the ratio of total protein to bio-synthesis
protein under that condition, with the proportionality constant being TB :

τ(c) = TB
P (c)∑

k∈GB
Pk(c)

= TB

∑
j wj(c)

WB
(3)

Therefore, the model implies that for conditions that require the expression of
larger amounts of non-bio-synthetic genes (i.e. higher values in the sum over wj
that are not in WB), the resulting doubling time will be longer, i.e., the growth
rate will be lower.

2.1.4 The concentration of a non-differentially regulated protein is
expected to increase with the growth rate

Recalling that the connection between the growth rate and the doubling time

is: g(c) = ln(2)
τ(c) , we now combine Equation 1 with Equation 3 to get that:

pi(c) =
wi(c)∑
j wj(c)

=
wi(c)

WB

WB∑
j wj(c)

=
wi(c)

WB

TB
ln(2)

g(c) (4)

Incorporating all the condition-independent constants (WB , TB , ln(2)) into
one term, A, we get that the predicted fraction of protein i out of the proteome
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under condition c is:
pi(c) = Awi(c)g(c) (5)

which implies that, for every two conditions between which gene i maintains its
affinity, (wi(c1) = wi(c2)), the fraction protein i occupies out of the proteome
scales in the same way as the growth rate does between these two conditions.

To summarize, the simplified model we have constructed predicts that, under
no specific regulation, the fraction a protein occupies out of the proteome should
scale with the growth rate. A group of such proteins should therefore maintain
their relative concentrations across conditions.

2.1.5 Protein degradation differentiates between measured growth
rate and biomass synthesis rate

The model we have developed predicts that when the growth rate approaches
zero, the concentration of every protein with constant affinity also approaches
zero. This approach to zero applies specifically to the biosynthesis genes, that
have constant affinities according to our assumptions. However, it is known
that the concentration of these proteins, and specifically of ribosomal proteins
does not drop to zero when the growth rate approaches zero. Expanding our
model to account for the expected effects of proteome degradation affects the
predicted concentration of non-differentially regulated proteins at zero growth
rate.

Simplifying the analysis by assuming that protein degradation acts on all
proteins in the same way, and that it is not dependent on the growth condition,
the effect of protein degradation can be understood as follows: at any time, some
fraction of the entire proteome is degraded. Therefore, the observed growth rate,
g, is, in fact, the amount of proteins produced minus the amount of proteins
degraded. To illustrate, if a cell does not grow, the implication is not that no
proteins are produced, but rather that proteins are produced at exactly the
same rate as they are degraded.

Integrating this notion into the model means that, where the equations previ-
ously referred to the cellular growth rate, g, as the indicator of protein synthesis
rate, they should in fact refer to the cellular growth rate plus the degradation
rate, as that is the real rate of protein synthesis. Therefore, if we denote by
α the degradation rate (assuming for now equal degradation rates for all genes
and under all conditions), Equation 5 should be rewritten as:

pi(c) = Awi(c)(g(c) + α) (6)

This equation predicts linear dependence of the concentration of unregulated
proteins on the growth rate, with an intercept with the horizontal axis occurring
at minus the degradation rate. Degradation can thus explain why concentrations
of non-differentially regulated proteins do not drop to zero when the growth rate
is zero.

2.1.6 Slower biological processes rates at slower growth affect the
relation between proteome composition and growth rate

The simplified model assumes that the doubling time is proportional to the ratio
of total protein to bio-synthetic protein. This assumption fails if the rate at
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which each biosynthetic machine operates changes across conditions. Replacing
this assumption by a dependence of bio-synthesis rate with growth rate (such
that, the faster the growth, the faster the synthesis rates, per machine), will
affect the resulting predictions as well. Slower bio-synthesis rates under slower
growth rates imply that, compared with the model prediction, higher fraction
of bio-synthesis proteins is needed to achieve a given growth rate. Thus, lower
synthesis rates under slower growth rates will be reflected by a lower slope and
higher interception point for non-regulated proteins than those predicted by the
constant-rate version of the model.

2.2 Analysis of proteomic data sets

To assess the extent to which the predictions of our model are reflected in ac-
tual proteome compositions, we analyzed two published proteomics data sets
of E.coli, [31] and [13]. These data sets use mass spectrometry to evaluate the
proteomic composition of E.coli under 5 different growth rates using a chemo-
stat, in [31], and 19 different growth conditions, spanning both different carbon
sources and chemostat-controlled growth rates, in [13]. The data set from [13]
contains more conditions than those analyzed below, see section 4.1.3 for further
details.

2.2.1 A large fraction of the proteome is positively correlated with
growth rate

In each data set, the growth rate and proteome composition were measured
for several conditions. We calculated the Pearson correlation of every protein
with the growth rate, conducting the analysis separately for each data set. A
histogram of the distribution of the correlations is shown in Figure 2. We find
that more than a third of the proteins (628 out of 1656 measured in the data
set from [13], hereafter referred to as H, and 378 out of 919 in the data set
from [31], hereafter referred to as V) have a strong positive (> 0.5) correlation
with the growth rate. Further discussion of the choice of threshold for defining
strong correlation with the growth rate is in section 6.1. Further comparison and
analysis of the causes underlying the differences between the two data sets as
reflected in Figure 2 are in section 6.2. Notably, in both data sets, the proteins
that have a high correlation with the growth rate are involved in many and
varied cellular functions and span different functional groups (See tables S1 and
S2).

Previous studies already found that ribosomal proteins are strongly posi-
tively correlated with growth rate [25, 15, 18]. Our analysis agrees with these
findings as we find the concentration of the vast majority of the 56 ribosomal
proteins to be strongly positively correlated with growth rate. However, we
also find that the group of proteins strongly positively correlated with growth
rate includes many more proteins than the ribosomal proteins. Importantly, the
proteins that we find to be strongly positively correlated with growth rate are
not generally expected to be co-regulated, and their behavior does not seem to
be the result of any known transcription factor or regulation cluster response.
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Figure 2: A strong positive Pearson correlation of the concentration with the
growth rate is observed for a large fraction of the proteins in the two data sets
analyzed (thresholds used for high correlation are marked in dashed lines and
further discussed in 6.1). These proteins span many functional groups.

2.2.2 Proteins positively correlated with growth rate share a similar
response

Following the identification of the group of proteins strongly positively corre-
lated with growth rate, we examined how similar is the behavior with growth
rate for these different proteins. We note that similar correlation with growth
rate for different proteins does not imply that such proteins share the same
scaling with growth rate, that is, they may have very different slopes or fold
changes with an increasing growth rate.

In order to compare the responses of different proteins across conditions,
we therefore, for every protein, divided its concentration under every condition
by its average concentration across all of the conditions (see 4.1.1 for further
details). This normalized concentration across conditions represents the con-
centration of the specific protein under every condition, relative to its mean
concentration across all conditions. We note that, under this metric, sharing
similar responses among a group of proteins implies that proteins in that group
maintain their relative ratios, ratios that are determined by the average concen-
tration of each of these proteins across the different environmental conditions.
We refer to proteins that share a similar normalized response across different
conditions as being coordinated or coordinately regulated. Note that our model
suggests a mechanism for this coordinated expression changes that is not based
on shared transcription factors but rather is a result of passive redistribution of
resources.

To assess the coordination between the proteins that were found to be
strongly positively correlated with growth rate we therefore calculated the slope
of a linear regression line for the normalized concentration vs. the growth rate
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for every one of these proteins and plotted the result in Figure 3. The result-
ing distribution reveals that, not only is a significant fraction of the proteome
strongly positively correlated with the growth rate, but that this response is
also coordinated between the different proteins.

Quantitatively, a protein with a normalized slope of 0.5 will change in con-
centration from 7

8 of its mean concentration at the slowest growth rate measured
(µ ≈ 0.1), to 9

8 of its mean concentration at the fastest growth rate (µ ≈ 0.6),
whereas a protein with a normalized slope of 2 will have concentrations in the
range 1

2 to 3
2 of its mean concentration across the same range of growth rates.

We note that such changes are relatively small compared with the known levels
of noise in MS whole proteome measurements. Therefore, the ratio between
proteins with such slopes of 0.5 and 2 lies in the relatively narrow range of
3
4 to 7

4 of the ratio between their mean concentrations, implying their relative
amounts will change by at most just over 2-fold over the range of growth rates
measured.

Our results, showing that a large number of proteins maintain their relative
concentrations across different growth conditions thus extend the scope of sim-
ilar results obtained for S.cerevisiae in [17] and for expression levels in E.coli
under stress conditions in [16].

Next we examined how the response of the strongly correlated proteins re-
lates to the well-studied response of ribosomes concentration. To that end, we
performed the same analysis of slopes, restricting it to ribosomal proteins alone,
as is shown by the stacked green bars in Figure 3. We find that, on average,
strongly correlated proteins scale in the same way as ribosomal proteins do (see
also Figure S5), implying that the observed response of ribosomal proteins to
growth rate is not unique and is coordinated with a much larger fraction of the
proteome, thus encompassing many more cellular components.

To investigate the effect of noise in determining the range of slopes observed,
we calculated, for every protein, the standard error with respect to the regression
line that best fits its concentrations. Given these standard errors we generated
the expected distribution of slopes that would result by conducting our analysis
on proteins that share a single, identical slope, but with the calculated noise in
measurement. The expected distribution is shown in gray line in Figure 3.
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Figure 3: Histogram of the slopes of regression lines for every protein that is
highly correlated with growth, for the two data sets analyzed (628 and 378 pro-
teins in the left and right panels respectively). Ribosomal proteins are stacked
in green on top of the non ribosomal proteins, marked in blue. Proteins con-
centrations were normalized to account for differences in slopes resulting from
differing average concentrations (See text and section 4.1.1). The expected dis-
tribution of slopes given the individual deviations of every protein from a linear
regression line, assuming all proteins are coordinated, is plotted in gray. Left
panel - data from [13], right panel - data from [31]. High correlation proteins
share similar normalized slopes, implying they are coordinated, maintaining
their relative ratios across conditions (see text for further details). Ribosomal
proteins, shown in green, scale with growth rate in a manner similar to the rest
of the high correlation proteins (see also Figure S5).

2.2.3 Changes in the proteome across environmental conditions are
dominated by proteins that are positively correlated with growth
rate

Lastly, we assessed the significance of the positive correlation of proteins with
growth rate, out of the total change in proteome composition across conditions.
To that end, we summed the concentrations of all of the proteins that are
strongly correlated with growth rate across the conditions measured and plotted
their total concentration against the growth rate in Figure 4. Both data sets
show that the concentration of these proteins change ≈ 2 fold across an ≈ 5 fold
change in the growth rate under the different growth conditions. Moreover, most
of the variability of the total concentration of these proteins can be explained
by the growth rate (R2 of 0.8 in the data set from [13] and > 0.99 in the data set
from [31]). For further analysis of the differences between the two data sets see
section 6.2. Importantly, the strongly correlated proteins form a large fraction of
the proteome, exceeding 50% of the proteome, mass-wise, at the higher growth
rates measured. Thus, when considering the changes in proteome composition
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across conditions, we find that, at higher growth rates, more than 50% of the
proteome composition is affected by the coordinated response of the same group
of proteins with growth rate.

However, despite the magnitude of this phenomena, when calculating the
fraction of the total variability in the proteome that is accounted for by this
linear response, we observe that only ≈ 9% of the change in the proteome
composition across conditions results from linear scaling with growth rate of
the proteins that share a coordinated, positive response with the growth rate in
the data set from [13] and this fraction is even lower in the data set from [31] as
can be seen in Figure S1. A lot of this seeming difference results from the fact
that a single linear response captures only a fraction of the variability of these
proteins across the different growth conditions, possibly due to measurement
noise. Further discussion of the fraction of variability explained can be found
in 6.1. The noise in current whole proteome measurement techniques make it
difficult to distinguish between proteins that scale coordinately, as is predicted
by our model, and proteins that scale differentially, but within measurement
uncertainty. Thus, it is unclear to what extent the effect we predict affects
actual protein concentrations versus their possible individual up regulation with
growth rate. We expect future improvements in the accuracy of whole proteome
measurements to quantitatively reveal the importance of passive coordinated
scaling with growth rate in shaping the proteome composition. These coming
improvements in accuracy will enable better testing of the scope and validity of
the model presented here.
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Figure 4: Fraction of the proteome occupied by proteins that are strongly pos-
itively correlated with growth rate. The accumulated sum of the proteins that
are strongly positively correlated with growth rate (defined as having a corre-
lation above 0.5), as a fraction out of the proteome, with linear regression lines
is shown. These proteins form a large fraction (≥ 50%) out of the proteome at
higher growth rates. The accumulated concentration of the strongly correlated
proteins doubles as the growth rate changes by about 5-fold. Assuming constant
degradation rates, the trend lines correspond to protein half life times of ≈ 1.7
hours.

2.2.4 The statistical features we find do not naturally rise in ran-
domized data sets

We performed two tests to verify that the trends we find, namely, the large
fraction of proteins with a strong correlation with growth rate, the coordination
among these proteins, their large accumulated fraction out of the proteome and
the fraction of variability explained by a single linear regression approximation
of their concentrations are all non-trivial characteristics of the data set that do
not naturally rise in randomly generated data but that do arise if our model is
correct. To this extent we repeated our analysis on two simulated data sets:

• A data set at which the amount of every protein was shuffled across the
different conditions.

• A synthetic data set assuming half the proteome being perfectly coordi-
nated and linearly dependent on growth rate, with the parameters we find
in our analysis, and the other half having no correlation with growth rate,
and with a simulated normally distributed measurement noise of 20%.

We find that in the shuffled sets the number of proteins being significantly
positively correlated with growth rate is much smaller than found in the real
data sets (43 vs. 628 in the data set from [13] and 152 vs. 378 in the data
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set from [31]) as is shown in Figure 5. As a consequence, these proteins now
occupy a much smaller fraction out of the proteome mass-wise (< 5% and 20%
on average across conditions vs. 35% and 50% in the data sets from [13] and [31]
respectively) as is shown in Figure 6. Finally, the fraction of variability in the
proteome that can be explained by a single linear regression to these proteins is
smaller for the data set from [13] than that obtained for the real data set (1%
vs. 9% for a threshold of R ≥ 0.5), as is seen in Figure S6.

We find that the simulated (second) set does display similar characteristics
to those we find in the real data, confirming that if, indeed, our model is valid,
experimental measurements would overlap with those that we obtained.
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Figure 5: The Pearson correlation with growth rate of the concentration of
proteins for a shuffled concentration across conditions. In each data set, the
amount of every protein was shuffled across the different growth conditions.
The shuffling procedure creates a data set that has much fewer proteins that are
significantly positively correlated with growth rate, compared with the original
data sets.

15

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/015180doi: bioRxiv preprint first posted online Feb. 13, 2015; 

http://dx.doi.org/10.1101/015180
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Growth rate [h−1 ]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
St

ro
ng

ly
 c

or
re

la
te

d 
pr

ot
ei

ns
 fr

ac
tio

n 
ou

t o
f p

ro
te

om
e

data from Heinemann et. al
Heinemann Trend,R2 =0.88
data from Valgepea et. al
Valgepea Trend,R2 =0.98

Figure 6: The fraction out of the proteome of the proteins that are highly
correlated with growth rate in shuffled data sets. In each data set, the amount
of every protein was shuffled across the different growth conditions. As much
fewer proteins are strongly positively correlated with the growth rate in the
shuffled data set, their total fraction out of the proteome is also much smaller
compared with the original data sets.

3 Discussion

We construct a parsimonious model connecting protein concentration levels and
the growth rate as an outcome of the limited bio-synthesis resources of cells.
We re-introduce the notion of intrinsic affinity for expression, first presented
in [20], and rarely used ever since, as a key determinant for the differences
in expression of different proteins under a given growth condition. We show
that integrating the notion intrinsic affinity for expression with the limited bio-
synthesis capacity of cells results in a simple mechanism predicting increased
concentration of many proteins with the growth rate, without assuming the
existence of specific transcription factors regulation.

The framework we present emphasizes the importance of accounting for
global factors, that are reflected in the growth rate, when analyzing gene ex-
pression and proteomics data. Specifically, we suggest that the default response
of a protein (that is, the change in the observed expression of a protein, given
that no specific regulation was applied to it) is to linearly increase with growth
rate. We point out that, as non-differentially regulated proteins maintain their
relative abundances, one can deduce the parameters of the linear increase with
growth rate of any non-differentially regulated protein by observing the scaling
of other such proteins and fixing the ratio between the protein of interest and
the reference proteins, as is demonstrated in Figure S4.

We analyze two recent whole proteome data sets to explore the scope and
validiy of our model. We characterize a coordinated response in E.coli between
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many proteins and the growth rate. This response spans proteins from various
functional groups and is not related to the specific medium of growth. A similar
phenomena is observed for S.cerevisiae as was reported in [17] and may thus be
conserved across various organisms and domains of life. Our analysis suggests
that, while changes in the proteome composition may seem complex, for a large
number of proteins and under many conditions, they can be attributed to a
linear, coordinated, increase with growth rate, at the expense of other, down-
regulated proteins. The well studied scaling of ribosomes concentration with
growth rate can be considered one manifestation of the more general phenomena
we describe here. We find that this response is not unique to ribosomal proteins
but is, in fact, shared with many other proteins spanning different functional
groups.

Interestingly, our model suggests that a linear correlation between ribosomal
proteins and the growth rate might be achieved without special control mecha-
nisms. Nonetheless, many such mechanisms have been shown to exist [23]. We
stress that the existence of such mechanisms does not contradict the model.
Mechanisms for ribosomal proteins expression control may still be needed to
achieve faster response under changing environmental conditions or a tighter
regulation to avoid unnecessary production and reduce translational noise. Fur-
thermore, such mechanisms may be crucial for synchronizing the amount of
rRNA with ribosomal proteins as the two go through different bio-synthesis
pathways. Nevertheless, the fact that many non-ribosomal proteins share the
same response as ribosomal proteins do, poses interesting questions regarding
the scope of such control mechanisms, their necessity and the trade-offs involved
in their deployment.

3.1 Relation to previous studies

The findings in this study support and broaden the findings in other recent
studies. Specifically, for S.cerevisiae a few recent studies found that the concen-
tration of the majority of the proteins is coordinated across conditions [17, 10, 2]
and increases with growth rate. In principle, the model we suggest here can be
applied to any exponentially growing population of cells and may thus also
serve as a potential explanation for the phenomena observed in these studies
and others.

Other recently published studies in E.coli have suggested different models
and in some cases have results and predictions that do not coincide with those
presented in this study. Notably, in [19] the opposite behavior for unregulated
genes is predicted. A few differences can explain this seeming discrepancy. The
modeling in [19] relies on data collected under different growth rates than those
observed in our work. The predictions of the model are based on the deduced
dependence of various bio-synthesis process rates and physiological properties
of the cells on the growth rate, properties that are, in turn, used to calculate
the expected protein concentration for unregulated proteins under the different
growth rates. This approach is markedly different than the approach we take,
which assumes relatively small changes in bio-synthetic rates as a function of
growth rate and focuses on the limited bio-synthesis resources as the main driver
of changes in the resulting concentration of proteins. As the model in [19] was
only tested against a handful of proteins, it is impossible to decide which of the
two models better describes the global effects of growth rate on the proteome
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composition.
Many studies monitored the ribosome concentration in cells and its inter-

dependence with growth rate [29, 28, 4, 32, 3]. While in all of these studies a
linear dependence of ribosome concentration with growth rate was observed, in
some cases different parameters were found to describe this linear dependence,
compared with the observations in our study. A discussion of various reasons
that may underlie these differences is given in section 6.4. Conducting similar
analysis on the data sets used in this study reveals that, while a linear relation
exists, it is not unique to ribosomal proteins but is in fact shared among many
more genes. Furthermore, the linear dependence slope and explained variability
of concentration levels of proteins explained by linear correlation with growth
rate is similar among the ribosomal proteins versus all the proteins with high
correlation with the growth rate as is shown in Figure S5.

The expected availability of increasing amounts of whole proteome data sets,
with higher accuracy levels, will enable further investigation of the details of cel-
lular resource distribution. The analysis of such future data sets will shed more
light on the relative roles of carefully tuned response mechanisms versus global,
passive effects in shaping the proteome composition under different growth en-
vironments.

4 Materials and Methods

4.1 Data analysis tools

All data analysis was performed using custom written software in the Python
programming language. The data analysis source code is available through
github at: http://github.com/uriba/proteome-analysis Analysis was done using
SciPy [24], NumPy [7] and the Pandas data analysis library [21]. Charts where
created using the MatPlotLib plotting library [14].

4.1.1 Normalizing protein concentrations across conditions

Our analysis aims at identifying proteins that share similar expression patterns
across the different growth conditions. For example, consider two proteins, A
and B measured under two conditions, c1 and c2. Assume that the measured
fractions out of the proteome of these two proteins under the two conditions
were 0.001 and 0.002 for A under c1 and c2 respectively, and 0.01 and 0.02 for
B under c1 and c2 respectively. These two proteins therefore share identical
responses across the two conditions, namely, they double their fraction in the
proteome in c2 compared with c1.

The normalization procedure scales the data so as to reveal this identity in
response. Dividing the fraction of each protein out of the proteome by the av-
erage fraction of that protein across conditions yields the normalized response.
It the example, the average concentration of A across the different conditions is
0.0015 and the average concentration of B is 0.015. Thus, dividing the concen-
tration of every protein by the average concentration across conditions of that
same protein yields:

A′c1 =
Ac1
Ā

=
0.001

0.0015
=

2

3
=

0.01

0.015
=
Bc1
B̄

= B′c1
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for c1 and:

A′c2 =
Ac2
Ā

=
0.002

0.0015
=

4

3
=

0.02

0.015
=
Bc2
B̄

= B′c2

for c2 showing A and B share identical responses across c1 and c2.
The general normalization procedure thus divides the concentration of pro-

tein i under condition c, pi(c) by the average concentration of protein i across
all of the conditions in the data set, p̄i, to give the normalized concentration

under condition c, p′i(c) = pi(c)
p̄i

.
This normalization procedure has been applied prior to calculating the slopes

of the regression lines best describing the change in fraction out of the proteome
of every protein as a function of the growth rate. Furthermore, when analyzing
the variability explained by linear regression on the sum of concentrations of all
proteins presenting a high correlation with the growth rate, the same normaliza-
tion procedure was made in order to avoid domination by the high abundance
of a few proteins in that group.

4.1.2 Calculation of protein concentration

In this study, we use the mass ratio of a specific protein to the mass of the
entire proteome, per cell, as our basic measure for the bio-synthetic resources
a specific protein consumes out of the bio-synthetic capacity of the cell. We
find this measure to be the best representation of the meaning of a fraction a
protein occupies out of the proteome. However, we note that if initiation rates
are limiting (e.g. if RNA polymerase rather than ribosomes become limiting),
and not elongation rates, then using molecule counts ratios (the number of
molecules of a specific protein divided by the total number of protein molecules
in a cell) rather than mass ratios may be a better metric. We compared these
two metrics and, while they present some differences in the analysis, they do
not qualitatively alter the observed results.

There are different, alternative ways to assess the resources consumed by a
specific protein out of the resources available in the cell. On top of the measures
listed above, one could consider either the total mass or molecule count of a
specific protein out of the biomass, rather than the proteome, or out of the dry
weight of the cell, both of which vary with the ratio of total protein to biomass
or dry weight which was neglected in our analysis. Moreover, one can consider
specific protein mass or molecule count per cell, thus reflecting changes in cell
size across conditions. Our analysis focuses on the relations between different
proteins and resource distribution inside the proteome, and thus avoids such
metrics.

4.1.3 Filtering out conditions from the Heinemann data set

The [13] data set contains proteomic data measurements under 19 different
environmental conditions. However, some of these conditions violate some of
the assumptions we make in our model, assumptions that are at the heart of the
connection between the proteome composition and growth rate. Specifically, our
model assumes constant ribosome translation rate (and bio-synthesis rates in
general) which are known to vary with temperature. We therefore excluded the
42◦C condition from our analysis. Additionally, our model assumes exponential
growth, implying that measurements taken at stationary phase are expected
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to differ from simple extrapolation of the model to zero growth rate, the two
measurements of stationary phase proteomics were thus also excluded.

Out of the conditions measured in the [13] data set, growth in LB media
presented a much faster growth rate than the rest of the conditions measured
(1.6 vs a range of 0.12− 0.65 for the other conditions). This asymmetry in the
distribution of growth rates caused LB growth to dominate the analysis due to
its effect on the skewness of the distribution of growth rates (γ1 = −0.4 for the
growth rates excluding LB vs. γ1 = 2.4 with LB) reducing the statistical power
of the other conditions. While including the data on growth in LB does not
qualitatively change the observed results, such analysis is much less statistically
robust. We have therefore omitted LB growth data in the main analysis. We
present the analysis with growth data on LB in section 6.3.

Including LB growth results in a much smaller set of proteins with a strong
positive correlation with growth, as many of the proteins in that group in the
slower conditions get down-regulated in LB, significantly reducing their Pearson
correlation with growth rate. For example, the Pearson correlation with growth
rate of gapA, involved in glycolisys, drops from 0.73 to 0.35 when LB is included.
Another such example is glyA, involved in serine and threonine metabolism, that
has a correlation with growth rate of -0.12 when LB is included in the analysis
vs. a correlation of 0.7 without it.

On the other hand, the proteins that remain strongly positively correlated
with growth rate when LB is included in the analysis show a higher correla-
tion compared with the analysis shown without LB. Furthermore, despite the
decrease in the number of proteins that are strongly positively correlated with
growth when LB is included in the analysis (532 vs. 628), these proteins occupy
> 50% of the proteome under LB due to the increase in their concentration with
growth rate.
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6 Supplementary figures and data

6.1 Threshold selection for defining strong correlation with
growth rate

The data we use includes the concentrations of proteins under different growth
conditions, and the growth rate for every condition. We select a threshold
correlation with growth rate to define the group of highly positively correlated
with growth rate proteins.

We calculate the explained variability by the growth rate, given a threshold,
by taking the difference between the total variability of the group of proteins
with a correlation higher than the threshold, and the variability remaining, when
assuming these proteins scale with the growth rate according to the calculated
linear response. Dividing the explained variability by the total variability of the
entire data set quantifies what fraction of the total variability in the proteome
is explained by considering a coordinated linear scaling with growth rate for all
the proteins with a correlation with growth rate higher than the threshold.

The choice of threshold is thus influenced by two contradicting factors.
Choosing a low threshold results in defining many proteins as being highly
positively correlated with growth rate. In this case, the correlation with growth
rate of these proteins spans a large range. Therefore, applying a linear regres-
sion trend to the sum of these proteins only accounts for a small fraction of the
variability of them and, as a consequence, only accounts for a small fraction of
the total variability of the proteome.

On the other hand, choosing a high correlation threshold results in defining
only a small number of proteins as being highly positively correlated with growth
rate. A common linear regression line may thus explain a large fraction of the
variability for the chosen proteins but, as their number is small, will only account
for a small fraction of the total variability of the proteome.

For simplicity, we chose a threshold value of 0.5 for the two data sets analyzed
in this study. Figure S1 shows how the choice of threshold affects the fraction
of explained variability in the proteome by the linear dependence on growth
rate of the proteins that have a correlation with growth rate that is higher than
the threshold (blue line). The figure also shows the fraction of proteins that
have a correlation with growth rate that is higher than the threshold out of the
proteome (red line), and the fraction of explained variability by linear regression
for these proteins (green line).
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The optimal threshold is defined as the threshold maximizing the fraction of
total variability explained (maximum of the blue line). As can be seen in Figure
S1, our choice of threshold of 0.5 is relatively close to the optimum value that
is 0.25 for the data set from [13], and 0.8 for the data set from [31]. Moreover,
as Figure S1 illustrates, the different plotted statistics do not change markedly
due to this sub-optimal choice of threshold and thus this choice does not affect
our results significantly.

As different proteins have very different average concentrations, the afore-
mentioned calculation may be biased towards proteins with higher average con-
centrations. To avoid this effect, the analysis presented was performed on the
normalized concentrations as defined in 4.1.1.
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Figure S1: Statistics on the explained variability in the normalized data set as a
function of the threshold used for defining strong correlation with growth rate.
An optimal threshold is a threshold that maximizes the fraction of explained
variability in the proteome by linear regression on proteins that have a corre-
lation with growth rate that exceeds the threshold (blue line). The maximal
explained variability is 10% for the data set from [13] and is obtained given a
threshold of 0.25. For the data set from [31] the maximal explained variability
is 5% and it is obtained by choosing a threshold of 0.8.

6.2 Differences between the correlations found in the two
data sets

The lower correlation and higher variability found in the data set from [13]
partially results from the variability in the conditions it contains as well as
the higher number of conditions measured across a similar range of growth
rates. Specifically, as this data set includes measurements under different carbon
sources, as opposed to the data set from [31], that uses the same carbon source
on all measurements, a larger variability in expression patterns is expected.
Restricting the analysis of the data set from [13] only to chemostat conditions
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supports this suggestion and shows much less variability as is shown in Figure
S2.
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Figure S2: Restricting the analysis of the Heinemann data set to chemostat
conditions yields similar results to those of the Valgepea data set.

6.3 Analysis including LB condition

Due to the fast growth rate under LB, compared with the other conditions
measured in the data set from [13] it was not included in our primary analysis
as was noted in section 4.1.3. Figure S3 shows the implications of including
LB in the analysis. As can be seen, many proteins are now less correlated with
growth rate due to down regulation under LB. However, despite having fewer
proteins being strongly positively correlated with growth (525 vs. 628) and
despite the accumulated fraction of these proteins being lower under the slower
growth conditions (≈ 20% vs. ≈ 25%), these proteins do occupy > 50% out of
the proteome under fast growth in LB.
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Figure S3: Including growth in LB media in the analysis of the data set from
[13]. Fewer proteins are not strongly positively correlated with growth but these
proteins form more than 50% of the proteome in LB growth.

6.4 Discussion of reasons for differing ribosome concen-
tration relation to growth rate

Differences in ribosome concentration across growth rates as reported in different
studies can result from a few factors:

1. Different growth rates and conditions monitored.

2. Usage of different strains.

3. In many studies the amount of ribosomes is deduced by measuring the
RNA to protein ratio, assuming a relatively fixed portion of the RNA is
rRNA. In our study, in contrast, ribosomal proteins are used as a proxy for
estimating ribosomes concentration and, moreover, the RNA to Protein
ratio is assumed to be constant. Therefore, and as it is known that ribo-
somes can operate even in the absence of some ribosomal proteins, such
differences in manner of inference can account for some of the differences
encountered.
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6.5 The concentration of proteins that are not differen-
tially regulated between conditions can be predicted
by referencing other such proteins
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Figure S4: A selection of random predictions of protein concentrations from the
highly correlated with growth rate fraction, taken from the data set of [13]. Each
panel shows the average concentration of 10 random proteins that are highly
correlated with growth (blue dots), a regression line that best fits the data, and
the concentration of a different random protein (green dots). The R2 value for
the trend line and the different protein is given.
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6.6 Breakdown by function of proteins strongly correlated
with growth rate

Function Number of proteins % of proteome Correlated proteins Correlated % of proteome
Transcription 68 2.5 25 1.07
Carbohydrate Metabolism 129 18.52 44 4.67
Folding, Sorting and Degradation 96 6.8 40 2.95
Amino Acid Metabolism 99 9.05 66 6.71
Membrane Transport 74 7.68 14 0.16
Nucleotide Metabolism 61 4.85 37 3.25
Translation 112 10.74 82 9.37
NotMapped 645 24.43 171 8.5
Energy Metabolism 35 3.85 19 1.19
Lipid Metabolism 25 2.05 7 0.69
Metabolism of Other Amino Acids 21 1 12 0.76
Cytoskeleton 5 0.5 3 0.36
Metabolism of Cofactors and Vitamins 67 0.95 28 0.35
DNA maintenance 55 1.18 23 0.43
Cell Motility 5 0.73 0 0
Signal Transduction 33 0.98 7 6.01 · 10−2

Other enzymes 82 3.46 28 0.52
Glycan Biosynthesis and Metabolism 15 0.35 3 4.78 · 10−2

Xenobiotics Biodegradation and Metabolism 4 0.13 3 0.12
Not mapped 9 0.11 5 1.48 · 10−2

Metabolism of Terpenoids and Polyketides 16 0.16 11 0.11

Table S1: Breakdown by function of strongly positively correlated with growth
rate proteins in the data set from [13]

Function Number of proteins % of proteome Correlated proteins Correlated % of proteome
Translation 102 20.49 86 17.2
DNA maintenance 33 1.62 5 0.29
Signal Transduction 32 0.75 3 4.53 · 10−2

Amino Acid Metabolism 102 11.79 67 9.54
Carbohydrate Metabolism 130 24.71 30 6.16
Membrane Transport 88 8.88 17 2.01
Nucleotide Metabolism 61 6.48 38 4.75
Transcription 40 1.98 12 1.02
Other enzymes 57 2.23 16 0.64
Metabolism of Cofactors and Vitamins 51 1.93 25 1.1
Folding, Sorting and Degradation 88 6.95 39 2.66
Metabolism of Other Amino Acids 22 1.14 5 0.51
Glycan Biosynthesis and Metabolism 12 0.5 3 0.14
Energy Metabolism 38 4.5 14 1.16
NotMapped 3 0.24 1 7.95 · 10−2

Cytoskeleton 5 0.36 1 3.84 · 10−3

Cell Motility 8 0.91 1 0.39
Xenobiotics Biodegradation and Metabolism 4 9.25 · 10−2 1 5.98 · 10−2

Lipid Metabolism 29 3.08 6 0.78
Metabolism of Terpenoids and Polyketides 8 0.15 6 0.12
Vesicular transport 4 1.03 1 0.14
Signaling Molecules and Interaction 1 1.77 · 10−3 0 0
Cell Growth and Death 1 0.19 1 0.19

Table S2: Breakdown by function of strongly positively correlated with growth
rate proteins in the data set from [31]

6.7 Ribosomal proteins scale similarly to non-ribosomal
proteins that are strongly positively correlated with
growth rate

Comparing the normalized sum of ribosomal proteins to the normalized sum
of the positively correlated with growth rate proteins that are non-ribosomal
shows that these two groups scale in the same way with the growth rate, as is
seen in Figure S5
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Figure S5: The scaling with growth rate of ribosomal proteins and non-
ribosomal, but highly correlated with growth rate proteins is shown. Trend
lines for the two groups of proteins are plotted. The scaling with growth rate is
similar between the two groups of proteins.

6.8 Additional figures of simulated and randomized data
sets

The maximal explained variability in data sets with shuffled protein abundances
is significantly smaller than in the real data sets as is seen in figure S6.

A simulated data set, assuming half of the proteins scale linearly with growth
rate with normalized intercept at 0.5, similar to the intercept found in the data
analysis, and with simulated normally distributed noise levels of 25%, result in
distributions similar to those found in the original data analysis (Figure S7
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Figure S6: Fraction of explained variability by linear regression on the group
of strongly positively correlated with growth rate proteins for the shuffled data
sets.
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Figure S7: A simulated data set, assuming half of the proteins are prefectly
correlated with growth rate and half are fixed, with simulated noise level of
25%. Average protein concentrations, growth rates and normalized slope of the
correlated proteins are based on the data set from [13]. The normalized intercept
of the correlated proteins was set to 0.5 in accordance with the intercept found
in the original data analysis. The results are similar to those obtained for the
real data set, showing that, given the experimental noise, identical coordination
with growth rate of half of the proteins would result in similar outcomes to those
observed in the data sets we use.
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