BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 10, Number 2, April 1984

AN ELEMENTARY INTRODUCTION
TO THE LANGLANDS PROGRAM

BY STEPHEN GELBART!

TABLE OF CONTENTS

Preface
I. Introduction
I1. Classical Themes
A. The Local-Global Principle
B. Hecke’s Theory and the Centrality of Automorphic Forms
C. Artin (and Other) L-functions
D. Group Representations in Number Theory
I11. Automorphic Representations
A. Some Definitions
B. Local Invariants
IV. The Langlands Program
A. Preliminary L-functions
B. L-groups and the Functoriality of Automorphic Representations
C. What’s Known?
D. Methods of Proof
E. A Few Last Words
Bibliography

PREFACE

In a recent issue of the Notices of the American Mathematical Society (April
1983, p. 273), as part of a very brief summary of Progress in Theoretical
Mathematics presented to the Office of Science and Technology of the Presi-
dent of the United States by a briefing panel from the National Academy of
Sciences chaired by William Browder, the general mathematical reader will
find the following paragraphs:
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“The unifying role of group symmetry in geometry, so penetratingly ex-
pounded by Felix Klein in his 1872 Erlanger Program, has led to a century of
progress. A worthy successor to the Erlanger Program seems to be Langlands’
program to use infinite dimensional representations of Lie groups to illuminate
number theory.

That the possible number fields of degree n are restricted in nature by the
irreducible infinite dimensional representations of GL(n) was the visionary
conjecture of R. P. Langlands. His far-reaching conjectures present tantalizing
problems whose solution will lead us to a better understanding of representa-
tion theory, number theory and algebraic geometry. Impressive progress has
already been made, but very much more lies ahead.”

The purpose of this paper is to explain what the Langlands program is about
—what new perspectives on number theory it affords, and what kinds of
results it can be expected to prove.

To begin with, Langlands’ program is a synthesis of several important
themes in classical number theory. It is also—and more significantly—a
program for future research. This program emerged around 1967 in the form of
a series of conjectures, and it has subsequently influenced recent research in
number theory in much the same way the conjectures of A. Weil shaped the
course of algebraic geometry since 1948.

At the heart of Langlands’ program is the general notion of an “automor-
phic representation” 7 and its L-function L(s, 7). These notions, both defined
via group theory and the theory of harmonic analysis on so-called adele
groups, will of course be explained in this paper. The conjectures of Langlands
just alluded to amount (roughly) to the assertion that the other zeta-functions
arising in number theory are but special realizations of these L(s, 7).

Herein lies the agony as well as the ecstasy of Langlands’ program. To
merely state the conjectures correctly requires much of the machinery of class
field theory, the structure theory of algebraic groups, the representation theory
of real and p-adic groups, and (at least) the language of algebraic geometry. In
other words, though the promised rewards are great, the initiation process is
forbidding.

Two excellent recent introductions to Langlands’ theory are [Bo and Art].
However, the first essentially assumes all the prerequisites just mentioned,
while the second concentrates on links with Langlands’ earlier theory of
Eisenstein series.

The idea of writing the present survey came to me from Professor Paul
Halmos, and I am grateful to him for his encouragement. Although the
finished product is not what he had in mind, my hope is that it will still make
accessible to a wider audience the beauty and appeal of this subject; in
particular, I shall be pleased if this paper serves as a suitable introduction to
the surveys of Borel and Arthur.

One final remark: This paper is not addressed to the experts. Readers who
wish to find additional information on such topics as the trace formula,
0-series, L-indistinguishability, zeta-functions of varieties, etc., are referred to
the (annotated) bibliography appearing after Part IV. I am indebted to Martin
Karel and Paul Sally for their help in seeing this paper through to its
publication.
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I. INTRODUCTION

In this article I shall describe Langlands’ theory in terms of the classical
works which anticipated, as well as motivated, it. Examples are the local-global
methods used in solving polynomial equations in integers, especially “Hasse’s
principle” for quadratic forms; the use of classical automorphic forms and
zeta-functions to study integers in algebraic number fields; and the use of
groups and their representations to bridge the gap between analytic and
algebraic problems. Thus, more than one half of this survey will be devoted to
material which is quite well known, though perhaps never before presented
purely as a vehicle for introducing Langlands’ program.

To give some idea of the depth and breadth of Langlands’ program, let me
leisurely describe one particular conjecture of Langlands; the rest of this paper
will be devoted to adding flesh (and pretty clothes) to this skeletal sketch (as
well as defining all the terms alluded to in this Introduction!).

In algebraic number theory, a fundamental problem is to describe how an
ordinary prime p factors into “primes” in the ring of “integers” of an arbitrary
finite extension E of Q. Recall that the ring of integers O consists of those x
in E which satisfy a monic polynomial with coefficients in Z. Though O need
not have unique factorization in the classical sense, every ideal of Oy must
factor uniquely into prime ideals (the “primes” of O). Thus, in particular,

(*) p OE = H@l’
with each &, a prime ideal of O, and the collection {®} completely de-
termined by p.

Now suppose, in addition, that E is Galois over Q, with Galois group
G = Gal(E/Q). This means that E is the splitting field of some monic
polynomial in Q[x], and G is the group of field automorphisms of E fixing Q
pointwise. According to a well-known theorem, each element of G moves
around the primes %, “dividing” p, and G acts transitively on this set. Thus the
“splitting type” of p in O is completely determined by the size of the
subgroup of G which fixes any ?,, i.e., by the size of the “isotropy groups” G;
(which are conjugate in G).

For simplicity, we shall now assume that the primes @, in (*) are distinct, i.e.,
the prime p is unramified in E. In this case, the afore-mentioned isotropy
groups are cyclic. To obtain information about the factorization of such p,
attention is focused on the so-called Frobenius element Frg of G, the canonical
generator of the subgroup of G which maps any &, into itself. (We shall discuss
all these matters in more detail in I1.C.2.) To be sure, Frg is an automorphism
of E over Q determined only up to conjugacy in G. Nevertheless, the resulting
conjugacy class {Fr,} completely determines the factorization type of (x). For
example, when {Frp} is the class of the identity alone, then (and only then) p
splits completely in E, i.e., p factors into the maximum number of primes in O
(namely r = [E: Q] = #G).

In general, one seeks to describe {Fr,} (and hence the factorization of p in
E) intrinsically in terms of p and the arithmetic of Q. To see what this means,
consider the example

E=Q(i) = {a + Bi:a, B € Q},
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with Oy =Z(i)={n+ mi: n,m €Z}. In this case, G= Gal(E/Q) =
{1, complex conjugation}, and some elementary algebra shows that

{I if -1 is a quadratic residue mod p,
14

conjugation otherwise.

For convenience, let us identify Gal( E£/Q) with the subgroup {1} of C* via
the obvious isomorphism 6: G — {=1}. Then we have

G(Frp) = (—l/p),

with (-1/p) the Legendre symbol (equal to 1 or —1 according to whether -1 is,
or is not, a quadratic residue mod p). To express this condition in terms of a
congruence condition on p instead of on -1, we appeal to a part of the
quadratic reciprocity law for Q which states that (for odd p, precisely those p
unramified in Q(i))

(~1/p) = (<) je., o(Frp) = (-1)*7 V2,

This is the type of intrinsic description of Fr, we sought; from it, and the
fact that

D"V =1ep=1(),

we conclude that the factorization of p in Z(i) depends only on its residue
modulo 4. In particular, all primes in a given arithmetic progression mod 4
have the same factorization type in Z(i). Moreover, since all the prime ideals
of Z(i) are principal, and of the form (n) or (n + im), we obtain the following:

THEOREM (FERMAT 1640, EULER 1754). Suppose p is an odd prime. Then p
can be written as the sum of two squares n> + m? if and only if p = 1 (4).

PROOF. p = n? + m? = (n + im)(n — im) if and only if p splits completely
in Z(i).

A major goal of class field theory is to give a similar description of {Fr,} for
arbitrary Galois extensions E. However, this goal is far from achieved and, in
general, is probably impossible.

In general, we cannot expect there to be a modulus N such that {Fr,} = {I}
if and only if p lies in some arithmetic progression mod N. However, if E is
abelian, i.e., G = Gal(E/Q) is abelian, then a great deal can be said. Indeed,
suppose E is such an extension, and o: G » C* is a homomorphism. Then it is
known that there exists an integer N, > 0 and a Dirichlet character

Xo: (Z/NZ)* - C* suchthat o(Fr,) = x,(p)

for all primes p (unramified in E). This is E. Artin’s famous and fundamental
reciprocity law of abelian class field theory.? It implies—just as in the special
case E = Q(i)—that the splitting properties of p in E depend only on its

2The more familiar form of this law directly identifies Gal( E/Q) with the idele class group of Q
modulo the “norms from E”; we stress the “dual form” of this assertion only because its
formulation seems more amenable to generalization (i.e., nonabelian E).
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residue modulo some fixed modulus N (depending on E). To see how this result
directly generalizes the classical result of Fermat and Euler, we note that when
E = Q(i) and 0: G — { =1} is as before,

o(Fr,) = x.( ),
with x: (Z/4Z)* — C* defined as follows:
Xo(n) = (-1,

For more general abelian extensions, Artin’s theorem not only implies the
general quadratic reciprocity law (in place of the supplementary rule (-1/p) =
(=1)?~D/2) but also the so-called higher reciprocity laws of abelian class field
theory. For a discussion of such matters, see, for example, [Goldstein, Tate, or
Mazur].

The question remains: for nonabelian Galois extensions, how can the family
{Fr,} be described in terms of the ground field Q?

Recognizing the utility of studying groups in terms of their matrix represen-
tations, Artin focused attention on homomorphisms of the form o: Gal(E/Q)
- GL,(C), i.e., on n-dimensional representations of the Galois group G. In this
way he was able to transfer the problem of analyzing certain conjugacy
classes in G to an analogous problem inside GL,(C) (where such classes as
{o(Fr,)} are completely determined by their characteristic polynomials
det[1, — o(Fr,)p~°]). By also introducing the (Artin) L-functions

L(s,0)=1]] (det[ln - "(F"p)l’_s])—l

(whose exact definition will be given in II1.C.2), Artin was further able to
reduce this problem to one involving the analytic objects L(s, o).

Problem. Can the L-functions L(s, o) be defined in terms of the arithmetic
of Q alone?

It was in the context of this problem that Artin proved his fundamental
reciprocity law. Indeed, for abelian E over Q, and one-dimensional ¢, Artin
proved that his L(s, o) is identical to a Dirichlet L-series

L(s,x) =10 - x(p)p~)™"

for an appropriate choice of character x: (Z/NZ)* - C*.

For arbitrary E and o, Artin was able to derive important analytic properties
of L(s, o). However, what he was unable to do was discover the appropriate
“n-dimensional” analogues of Dirichlet’s characters and L-functions. Although
some such 2-dimensional “automorphic” L-functions were being studied nearby
(and concurrently) by Hecke, it remained for Langlands (40 years later) to see
the connection and map out some general conjectures.

Roughly speaking, here is what Langlands did. He isolated the notion of an
“automorphic representation of the group GL, over the adeles of Q” as the
appropriate generalization of a Dirichlet character. Furthermore, he associated
L-functions with these automorphic representations, generalizing Dirichlet’s
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L-functions in the case n = 1. Finally, he conjectured that each n-dimensional
Artin L-function L(s, o) is exactly the L-function L(s, 7,) for an appropriate
automorphic representation 7, of GL,. This is discussed—with an arbitrary
number field F in place of Q—in Part IV of the present paper; cf. Conjecture
1in IV.A.

The (conjectured) correspondence ¢ — m, is to be regarded as a far reaching
generalization of Artin’s reciprocity map o — x,. In case n =2, when =,
corresponds to a classical automorphic form f(z) in the sense of Hecke (see
L.B), the map ¢ — =, affords an interpretation of the classes {Fr,} in terms of
certain conjugacy classes in GL,(C) determined by the Fourier coefficients of
the form f(z). In general, the proper formulation of this conjecture (and other
conjectures of Langlands) requires a synthesis and further development of all
the themes alluded to heretofore: local-global principles, automorphic forms,
group representations, etc.

In Part II of this paper, I motivate the use of p-adic numbers and adeles and
survey Hecke’s theory of automorphic forms, the L-functions of Artin and
Hecke, and the use of group representations in number theory. Perforce, this
brings us to the theory of infinite-dimensional representations of real and p-adic
groups.

In Part III these “classical” themes and ingredients are mixed together to
produce the all-important notion of an “automorphic representation of GL,,
over Q”. Finally, in Part IV, I survey the high points of Langlands’ general
program, with an emphasis on its historical perspective, and a brief description
of techniques and known results.

I1. CLASSICAL THEMES

A. The local-global principle. One of the major preoccupations of number
theory in general has been finding integer solutions of polynomial equations of
the form

(1) P(x;, x3,...,x,) =0.

For convenience, let us assume that P is actually a homogeneous polynomial,
and let us agree that only nonzero solutions are of interest. The difficulty in
solving (1) is illustrated by Fermat’s famous unproved assertion that the
particular equation
X"+YyY'—2"=0

has no nontrivial solutions in integers for n > 2. Indeed, much of the develop-
ment of the theory of algebraic numbers is linked to attempts by people
contemporary with Kummer to solve this problem.

On the other hand, a question which is more easily decided is the existence

of integral solutions “modulo m”. Clearly a necessary condition that integer
solutions of (1) exist is that the congruence

2) P(x,,...,x,) =0 (mod m)

be solvable for every value of the modulus m. This observation leads naturally
to the “local methods” we shall now explain.
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Suppose m = NM with N and M relatively prime. By the Chinese Re-
mainder Theorem, (2) has a solution if and only if the similar congruences for
N and M do. In other words, to solve (2) it is sufficient to solve congruences
modulo p* for any prime p and all positive integers k.

Whenever we focus on a fixed prime p, we say we are working “locally”. So
suppose we fix a prime p and ask whether the congruence

(3) P(xy,...,x,) =0 (mod p*)

has a solution for all natural numbers k. It was Hensel who reformulated this
question in a formal, yet significant, way in 1897. For each prime p he
introduced a new field of numbers—the “p-adic numbers”—and he showed
that the solvability of (3) for all k is equivalent to the solvability of (1) in the
p-adic numbers. Thus the solvability of the congruence (2) for all n is
equivalent to the solvability of (1) in the p-adic numbers for all p.

Let us return now to the original problem of solving (1) in ordinary integers.
In addition to being able to solve (2) modulo all integers m, it is also clearly
necessary to be able to find real solutions for (1). The question of when these
obviously necessary conditions are also sufficient is much more difficult, since
the assertion that “an equation is solvable if and only if it is solvable modulo
any integer and has real solutions” is in general false, or at least not known.
For example, the Fermat equation has been known to be solvable p-adically
for all p since around 1909.

On the other hand, there are important instances where this “local-global
principle” is known to work.

THEOREM (HASSE-MINKOWSKI). Suppose
n

Q(x,-.5x,) = X a; X, X;
i,j=1

is a quadratic form with a,; in Z and det(a;;) # 0. Then Q(x,,...,x,) =0 hasa
nontrivial integer solution if and only if it has a real solution and a p-adic solution
for each p.

In order to give a more symmetric form to this example of the local-global
principle, let me recall how the p-adic numbers can be constructed analogously
to the real numbers. Fixing a prime p, we can express any fraction x in the
form p“n/m, with n and m relatively prime to each other and to p. Then an
absolute value is defined on Q by

|le =pr -a,

and the field of p-adic numbers is just the completion of Q with respect to this
metric | |,. Note that the integer a (called the p-adic order of x) can be
negative, and the integers that are close to zero “p-adically” are precisely the
ones that are highly divisible by p. Though perhaps jarring at first, this p-adic
notion of size is entirely natural given our earlier motivations: the congruence
n =0 (p*), with k large, translates into the statement that n is close to zero
( p-adically).
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Because R is the completion of Q with respect to the usual absolute value
| |, it is customary to write |x|, for |x|, Q. for R, and then call R the
completion of Q at “the infinite prime” oo. The result is a family of locally
compact complete topological fields Q, which contain Q, one for each p < co.
Each Q, is called a “local field”, and Q itself is called a “global field”. With
this terminology the Hasse-Minkowski theorem takes the following symmetric
form: a quadratic form over Q has a global solution if and only if it has a local
solution for each prime p.

For the purposes of this article, the significance of the local-global principle is
this: global problems should be analyzed purely locally, and with equal attention
paid to each of the local “places™ Q,,.

Note. For a leisurely discussion of p-adic numbers, and instances of the
local-global principle, the reader is urged to browse through the Introduction
to [Bo Shaf and Cassels]. Also highly recommended is the expository article
[Rob 2].

B. Hecke theory and the centrality of automorphic forms. In the 19th century
the arithmetic significance of automorphic forms was clearly recognized, and
examples of such forms were used to great effect in number theory.

Around 1830, Jacobi worked with the classical theta-function §(z) in order
to obtain exact formulas for the representation numbers of n as a sum of r
squares. Then 30 years later, Riemann exploited this same function in order to
derive the analytic continuation and functional equation of his famous zeta-
function {(s).

Before explaining these matters in more detail, let us briefly recall the
classical notion of an automorphic form.

1. Basic notions. Let H denote the upper half-plane in C, and regard the

group
—lla b|. .
SL,(R) = e dl'® b,c,dreal,ad — bc = 1

as the group of fractional linear transformations of H. An automorphic form
of weight k is a function f(z) which is holomorphic in H and “almost”
invariant for the transformations y =[?5] in some discrete subgroup T' of
SL,(R), i.e.,

(1) f( az+b

_ k
p— d) =(cz+d)f(z)
forally =[25]inT.

The most famous example of an automorphic form is the classical theta-
function

B(z)= 3 emmr=1+ 3 2emn.

n=-o0 n=1
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This is an automorphic form of weight § for the group
T(2) = {[‘c’ Z =SL,(Z):b,c=0(2), a,d=1 (2)};

moreover,

0(-1/z) = (~iz)"%6(z).

More generally, let Q,(x,...,x,) denote the quadratic form 3/_, x2, and set

0,.(2) = 2 e"iQ'("l"“v"r)Z,

(ny,...,n,)

the sum extending over all “integral” vectors (n,,...,n,). Then §(z) is again
an automorphic form, this time of weight /2. This example has special
number theoretic significance because the coefficients in the Fourier expansion
of this periodic function are the representation numbers of the quadratic form
Q,. Indeed, if r(n, Q,) denotes the number of distinct ways of expressing n as
the sum of r squares, then
[o¢]
0(z) = 0(z)" = X r(n, Q)e™.
n=0
Here are some more examples of automorphic forms:
(i) Let A(z) denote the function defined in H by

o0 o0
A(Z) — e2m’z I'I (1 _ e21rinz)24 — 2 T(n)eZ'irinz‘
n=1 n=1
It is an automorphic form of weight 12 for the full modular group I' = SL(Z),
and its Fourier coefficients 7(n)—carefully investigated by Ramanujan in 1916
—are closely related to the classical partition function p(n).
(ii) For k > 1 the function

1 2 1
2§(2k) (¢, d)#(0,0) (cz + d)Zk

in Z2

Ey(2) =

is called the (normalized) Eisenstein series of weight 2k. It is again an
automorphic form with respect to the full modular group SL,(Z), this time
with Fourier expansion
k 00
Ey(z)=1+ L—IB)—“E 2 0yii(n)e?™m,
k n=1
with B, the so-called nth Bernoulli number, and 6(n) = 2, d".

From these few examples, it is already clearly indicated that automorphic
forms comprise an integral part of number theory. Indeed, invariance of the
form with respect to translations of the type z — z + A implies the existence of
a Fourier expansion Za,e?"'*?/* with the a, of number-theoretic significance.

In general, the automorphy property (1) implies f(z) is determined by its
values on a “fundamental domain” D for the action of I' in H. More precisely,
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D is a subset of H such that every orbit of I' (with respect to the action
z = (az + b)/(cz + d)) has exactly one representative in D. For example, for
I' = SL,(Z), the fundamental domain D looks like this:

-1

Note that any other fundamental domain must be obtained by applying to this
D some [25) in T. In particular, the domain D! pictured above is precisely the
image of D by the “inversion” element [_{}], the point “at infinity” for D
beiflg mapped to the “cusp” at 0 in (the boundary of) the fundamental domain
D

To be able to apply convenient methods of analysis to the study of
automorphic forms, it is customary to impose additional technical restrictions
on the regularity of f at “cusps” along the boundary of a fundamental domain,
especially “at infinity”. This implies in particular that f(z) always has a
Fourier expansion of the form

o0
(2) f(Z) — 2 aneZwinz/h_
n=0
For example, for A(z) or E,,(z) we can take & = 1, but for §(z), which is an
automorphic form only on I'(2) (which does not contain the translation
z - z + 1), the period is no longer 1, and we must take h = 2.

Let us denote by M, (T') the vector space of automorphic forms of weight &
for I" which are “regular at the cusps” of I, and by S,(T") the subspace of f(z)
in M,(T') which actually vanish at the cusps. Functions in this latter space are
called cusp forms; for such functions (like the “modular discriminant” A(z)),
the constant term a, in the expansion (2) is zero.

We have already remarked that automorphic forms in general have number-
theoretic interest because their Fourier coefficients involve solution numbers of
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number-theoretic problems. For example, by relating 6,(z) to certain Eisen-
stein series on I'(2), we obtain Jacobi’s remarkable formula
r(n’ Q4) = 82‘1

dn
4d

Thus the need for analyzing this space M, (T") is clearly indicated.

As we shall soon see, the subsequent theory developed by Hecke was so
successful that it suggested new ways to look at automorphic forms in number
theory as well as immediately providing the tools to solve existing classical
problems.

2. Hecke’s theory. Hecke’s key idea was to characterize the properties of an
automorphic form in terms of a corresponding Dirichlet series. The most
famous Dirichlet series around is, of course, Riemann’s zeta-function

1
=1 a-p)"
1 pP<o0

§(s) =

8

So let us first sketch Riemann’s original analysis of {(s) which Hecke so
brilliantly generalized.
Recall the gamma function identity,

I'(s) =£wt‘e"%,

valid for Re(s) > 0. (In modern parlance, we say that I'(s) is the Mellin
transform of e~ at s.) With this identity, we derive the relation

7= T(5)$(25) =f0°°[—0(it)2_ 1] pdt

t 9
with 6 the classical theta-function already encountered. In other words, {(2s) is
essentially the Mellin transform of 4(iz). From this fact, it is a simple matter to
derive the desired analytic properties of {(s) in terms of the automorphic
properties of 6(z), and conversely! Here are the key steps:

nT(s)(2s) = [ ”:s-'(“";)z‘—‘) dr
1
25

_ (P (8G)—1) 1 1o (1)
—flt 2 dt +2flt 6 ; dt

1
1 l.v—l .
Tt 2fot 8(it) dt

2s
(using the change of variable t — 1/¢)
— [P(s5=1 1 1/2—(s+1) (6Git) — 1) 11
Jot L P = 7

(using the automorphy property 0( % ) =1V 20(it)) .






