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PREFACE 
In a recent issue of the Notices of the American Mathematical Society (April 

1983, p. 273), as part of a very brief summary of Progress in Theoretical 
Mathematics presented to the Office of Science and Technology of the Presi
dent of the United States by a briefing panel from the National Academy of 
Sciences chaired by William Browder, the general mathematical reader will 
find the following paragraphs: 

Based on a lecture delivered at the Conference dedicating the Professor Abe Gelbart Chair in 
Mathematics at Bar Ilan University, Ramat Gan, Israel, January 1983; received by the editors July 
12, 1983. 

1980 Mathematics Subject Classification. Primary 10D40, 12A67; Secondary 22E55. 
'Supported in part by a grant from the National Science Foundation. 

© 1984 American Mathematical Society 

0273-0979/84 $1.00 + $.25 per page 

177 



178 STEPHEN GELBART 

"The unifying role of group symmetry in geometry, so penetratingly ex
pounded by Felix Klein in his 1872 Erlanger Program, has led to a century of 
progress. A worthy successor to the Erlanger Program seems to be Langlands' 
program to use infinite dimensional representations of Lie groups to illuminate 
number theory. 

That the possible number fields of degree n are restricted in nature by the 
irreducible infinite dimensional representations of GL(«) was the visionary 
conjecture of R. P. Langlands. His far-reaching conjectures present tantaUzing 
problems whose solution will lead us to a better understanding of representa
tion theory, number theory and algebraic geometry. Impressive progress has 
already been made, but very much more Hes ahead." 

The purpose of this paper is to explain what the Langlands program is about 
—what new perspectives on number theory it affords, and what kinds of 
results it can be expected to prove. 

To begin with, Langlands' program is a synthesis of several important 
themes in classical number theory. It is also—and more significantly—a 
program for future research. This program emerged around 1967 in the form of 
a series of conjectures, and it has subsequently influenced recent research in 
number theory in much the same way the conjectures of A. Weil shaped the 
course of algebraic geometry since 1948. 

At the heart of Langlands' program is the general notion of an "automor-
phic representation" m and its L-function L(s, IT). These notions, both defined 
via group theory and the theory of harmonic analysis on so-called adele 
groups, will of course be explained in this paper. The conjectures of Langlands 
just alluded to amount (roughly) to the assertion that the other zeta-functions 
arising in number theory are but special realizations of these L(s, IT). 

Herein lies the agony as well as the ecstasy of Langlands' program. To 
merely state the conjectures correctly requires much of the machinery of class 
field theory, the structure theory of algebraic groups, the representation theory 
of real and /?-adic groups, and (at least) the language of algebraic geometry. In 
other words, though the promised rewards are great, the initiation process is 
forbidding. 

Two excellent recent introductions to Langlands' theory are [Bo and Art]. 
However, the first essentially assumes all the prerequisites just mentioned, 
while the second concentrates on links with Langlands' earlier theory of 
Eisenstein series. 

The idea of writing the present survey came to me from Professor Paul 
Halmos, and I am grateful to him for his encouragement. Although the 
finished product is not what he had in mind, my hope is that it will still make 
accessible to a wider audience the beauty and appeal of this subject; in 
particular, I shall be pleased if this paper serves as a suitable introduction to 
the surveys of Borel and Arthur. 

One final remark: This paper is not addressed to the experts. Readers who 
wish to find additional information on such topics as the trace formula, 
0-series, L-indistinguishability, zeta-functions of varieties, etc., are referred to 
the (annotated) bibliography appearing after Part IV. I am indebted to Martin 
Karel and Paul Sally for their help in seeing this paper through to its 
publication. 



THE LANGLANDS PROGRAM 179 

I. INTRODUCTION 
In this article I shall describe Langlands' theory in terms of the classical 

works which anticipated, as well as motivated, it. Examples are the local-global 
methods used in solving polynomial equations in integers, especially "Hasse's 
principle" for quadratic forms; the use of classical automorphic forms and 
zeta-functions to study integers in algebraic number fields; and the use of 
groups and their representations to bridge the gap between analytic and 
algebraic problems. Thus, more than one half of this survey will be devoted to 
material which is quite well known, though perhaps never before presented 
purely as a vehicle for introducing Langlands' program. 

To give some idea of the depth and breadth of Langlands' program, let me 
leisurely describe one particular conjecture of Langlands; the rest of this paper 
will be devoted to adding flesh (and pretty clothes) to this skeletal sketch (as 
well as defining all the terms alluded to in this Introduction!). 

In algebraic number theory, a fundamental problem is to describe how an 
ordinary prime/? factors into "primes" in the ring of "integers" of an arbitrary 
finite extension E of Q. Recall that the ring of integers OE consists of those x 
in E which satisfy a monic polynomial with coefficients in Z. Though 0E need 
not have unique factorization in the classical sense, every ideal of OE must 
factor uniquely into prime ideals (the "primes" of 0E). Thus, in particular, 

(•) poE=m> 
with each 9t a prime ideal of 0E, and the collection {̂ PJ completely de
termined by/?. 

Now suppose, in addition, that E is Galois over Q, with Galois group 
G = Gal(£/Q). This means that E is the splitting field of some monic 
polynomial in Q[x], and G is the group of field automorphisms of E fixing Q 
pointwise. According to a well-known theorem, each element of G moves 
around the primes 9t "dividing" /?, and G acts transitively on this set. Thus the 
"splitting type" of p in 0E is completely determined by the size of the 
subgroup of G which fixes any % i.e., by the size of the "isotropy groups" Gt 

(which are conjugate in G). 
For simplicity, we shall now assume that the primes ^ in (*) are distinct, i.e., 

the prime p is unramified in E. In this case, the afore-mentioned isotropy 
groups are cyclic. To obtain information about the factorization of such /?, 
attention is focused on the so-called Frobenius element Fr̂ , of G, the canonical 
generator of the subgroup of G which maps any 9. into itself. (We shall discuss 
all these matters in more detail in II.C.2.) To be sure, F% is an automorphism 
of E over Q determined only up to conjugacy in G. Nevertheless, the resulting 
conjugacy class {Frp} completely determines the factorization type of (*). For 
example, when {Fr^} is the class of the identity alone, then (and only then) p 
splits completely in E, i.e., p factors into the maximum number of primes in 0E 

(namely r = [E:Q]= #G). 
In general, one seeks to describe {Fvp} (and hence the factorization of p in 

E) intrinsically in terms of/? and the arithmetic of Q. To see what this means, 
consider the example 

E = Q(i) = {a + / ? i :a , j8eQ} , 
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with OE = Z(/) = {n + mi: n, m G Z}. In this case, G = Gal(£/Q) = 
{ƒ, complex conjugation}, and some elementary algebra shows that 

_ ƒ / i f -1 is a quadratic residue mod p, 
p \ conjugation otherwise. 

For convenience, let us identify Ga\(E/Q) with the subgroup ( ± 1} of C* via 
the obvious isomorphism a: G -+ { ± 1}. Then we have 

o(Fr,) = (-l/p), 

with (-l/p) the Legendre symbol (equal to 1 or -1 according to whether -1 is, 
or is not, a quadratic residue mod p). To express this condition in terms of a 
congruence condition on p instead of on - 1 , we appeal to a part of the 
quadratic reciprocity law for Q which states that (for odd /?, precisely those p 
unramified in Q(/)) 

( - l / / , ) = ( - l ) ° ' - , ) / 2 , i-e., o(Frp) = ( - l ) ( - ' > / 2 . 

This is the type of intrinsic description of Fr^ we sought; from it, and the 
fact that 

( - l ) ( ' - I ) / 2 = l ~ | , s l ( 4 ) , 

we conclude that the factorization of p in Z(i) depends only on its residue 
modulo 4. In particular, all primes in a given arithmetic progression mod 4 
have the same factorization type in Z(i). Moreover, since all the prime ideals 
of Z(/) are principal, and of the form (n) or (n + im), we obtain the following: 

THEOREM (FERMÂT 1640, EULER 1754). Suppose p is an odd prime. Then p 
can be written as the sum of two squares n2 + m2 if and only if p = 1 (4). 

PROOF, p = n2 + m2 = (n + im)(n — im) if and only if/? splits completely 
in Z(/). 

A major goal of class field theory is to give a similar description of {Fr^} for 
arbitrary Galois extensions E. However, this goal is far from achieved and, in 
general, is probably impossible. 

In general, we cannot expect there to be a modulus N such that {Fr^} = {/} 
if and only if p lies in some arithmetic progression mod N. However, if E is 
abelian, i.e., G = Gal(£/Q) is abelian, then a great deal can be said. Indeed, 
suppose E is such an extension, and a: G -> Cx is a homomorphism. Then it is 
known that there exists an integer Na> 0 and a Dirichlet character 

Xo: (Z/NZ)X ^ C' such that o(Frp) = Xo(p) 

for all primes p (unramified in E). This is E. Artin's famous and fundamental 
reciprocity law of abelian class field theory.2 It implies—just as in the special 
case E — Q(z)—that the splitting properties of p in E depend only on its 

2 The more familiar form of this law directly identifies Gal(£/Q) with the idele class group of Q 
modulo the "norms from £"'; we stress the "dual form" of this assertion only because its 
formulation seems more amenable to generalization (i.e., nonabelian E). 
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residue modulo some fixed modulus N (depending on E). To see how this result 
directly generalizes the classical result of Fermât and Euler, we note that when 
E = Q(0 and a: G -> { ± 1} is as before, 

a(F*P)=Xo(p)> 

with X: (Z/4Z)* - C* defined as follows: 

X0(n) = (-lYn-l)/2. 

For more general abelian extensions, Artin's theorem not only implies the 
general quadratic reciprocity law (in place of the supplementary rule (-l/p) = 
(_!)(/>-1)/2) but also the so-called higher reciprocity laws of abelian class field 
theory. For a discussion of such matters, see, for example, [Goldstein, Tate, or 
Mazur]. 

The question remains: for non abelian Galois extensions, how can the family 
{Fr^} be described in terms of the ground field Q? 

Recognizing the utility of studying groups in terms of their matrix represen
tations, Artin focused attention on homomorphisms of the form a: Gal(£/Q) 
-> GLW(C), i.e., on n-dimensional representations of the Galois group G. In this 
way he was able to transfer the problem of analyzing certain conjugacy 
classes in G to an analogous problem inside GLW(Q (where such classes as 
{o(Frp)} are completely determined by their characteristic polynomials 
det[/„ — o(Frp)p~s]). By also introducing the (Artin) L-functions 

L(s,o) = R(det[ln-o(Ftp)p-*]y' 
P 

(whose exact definition will be given in II.C.2), Artin was further able to 
reduce this problem to one involving the analytic objects L(s, a). 

Problem. Can the L-functions L(s, a) be defined in terms of the arithmetic 
of Q alone? 

It was in the context of this problem that Artin proved his fundamental 
reciprocity law. Indeed, for abelian E over Q, and one-dimensional a, Artin 
proved that his L(s, a) is identical to a Dirichlet L-series 

L(s,x) = u^-x(p)p-rl 

for an appropriate choice of character x: (Z/NZ)X -> C*. 
For arbitrary E and a, Artin was able to derive important analytic properties 

of L(s9 a). However, what he was unable to do was discover the appropriate 
"«-dimensional" analogues of Dirichlet's characters and L-functions. Although 
some such 2-dimensional "automorphic" L-functions were being studied nearby 
(and concurrently) by Hecke, it remained for Langlands (40 years later) to see 
the connection and map out some general conjectures. 

Roughly speaking, here is what Langlands did. He isolated the notion of an 
"automorphic representation of the group GL„ over the adeles of Q" as the 
appropriate generalization of a Dirichlet character. Furthermore, he associated 
L-functions with these automorphic representations, generalizing Dirichlet's 
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L-functions in the case n = 1. Finally, he conjectured that each «-dimensional 
Artin L-function L(s9 a) is exactly the L-function L(s, ira) for an appropriate 
automorphic representation ira of GLn. This is discussed—with an arbitrary 
number field F in place of Q—in Part IV of the present paper; cf. Conjecture 
1 in IV.A. 

The (conjectured) correspondence a -» ira is to be regarded as a far reaching 
generalization of Artin's reciprocity map o -> x0* I*1 c a s e n = 2, when ira 

corresponds to a classical automorphic form f(z) in the sense of Hecke (see 
LB), the map o -* ira affords an interpretation of the classes {Fr^} in terms of 
certain conjugacy classes in GL2(C) determined by the Fourier coefficients of 
the form f(z). In general, the proper formulation of this conjecture (and other 
conjectures of Langlands) requires a synthesis and further development of all 
the themes alluded to heretofore: local-global principles, automorphic forms, 
group representations, etc. 

In Part II of this paper, I motivate the use of/?-adic numbers and adeles and 
survey Hecke's theory of automorphic forms, the /.-functions of Artin and 
Hecke, and the use of group representations in number theory. Perforce, this 
brings us to the theory of infinite-dimensional representations of real and/?-adic 
groups. 

In Part III these "classical" themes and ingredients are mixed together to 
produce the all-important notion of an "automorphic representation of GLn 

over Q". Finally, in Part IV, I survey the high points of Langlands' general 
program, with an emphasis on its historical perspective, and a brief description 
of techniques and known results. 

II. CLASSICAL THEMES 
A. The local-global principle. One of the major preoccupations of number 

theory in general has been finding integer solutions of polynomial equations of 
the form 

(1) P(xl9x2,...,xH) = 0. 

For convenience, let us assume that P is actually a homogeneous polynomial, 
and let us agree that only nonzero solutions are of interest. The difficulty in 
solving (1) is illustrated by Fermat's famous unproved assertion that the 
particular equation 

has no nontrivial solutions in integers for n > 2. Indeed, much of the develop
ment of the theory of algebraic numbers is linked to attempts by people 
contemporary with Kummer to solve this problem. 

On the other hand, a question which is more easily decided is the existence 
of integral solutions "modulo m". Clearly a necessary condition that integer 
solutions of (1) exist is that the congruence 

(2) P(xl9...9xn)=0 (modm) 

be solvable for every value of the modulus m. This observation leads naturally 
to the "local methods" we shall now explain. 
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Suppose m = NM with N and M relatively prime. By the Chinese Re
mainder Theorem, (2) has a solution if and only if the similar congruences for 
N and M do. In other words, to solve (2) it is sufficient to solve congruences 
modulo pk for any prime p and all positive integers k. 

Whenever we focus on a fixed prime/?, we say we are working "locally". So 
suppose we fix a prime/? and ask whether the congruence 

(3) /> (* ! , . . . , x j SE O (mod/**) 

has a solution for all natural numbers k. It was Hensel who reformulated this 
question in a formal, yet significant, way in 1897. For each prime p he 
introduced a new field of numbers—the "/?-adic numbers"—and he showed 
that the solvability of (3) for all k is equivalent to the solvability of (1) in the 
/7-adic numbers. Thus the solvability of the congruence (2) for all n is 
equivalent to the solvability of (1) in the/7-adic numbers for all/?. 

Let us return now to the original problem of solving (1) in ordinary integers. 
In addition to being able to solve (2) modulo all integers m, it is also clearly 
necessary to be able to find real solutions for (1). The question of when these 
obviously necessary conditions are also sufficient is much more difficult, since 
the assertion that "an equation is solvable if and only if it is solvable modulo 
any integer and has real solutions" is in general false, or at least not known. 
For example, the Fermât equation has been known to be solvable /7-adically 
for all/? since around 1909. 

On the other hand, there are important instances where this "local-global 
principle" is known to work. 

THEOREM (HASSE-MINKOWSKI). Suppose 

Q(xl9...,xH)= Î atjXtXj 

is a quadratic form with atj in Z and det(a/y) ¥" 0. Then Q(xx,... ,xn) = 0 has a 
nontrivial integer solution if and only if it has a real solution and a p-adic solution 
for each p. 

In order to give a more symmetric form to this example of the local-global 
principle, let me recall how the /7-adic numbers can be constructed analogously 
to the real numbers. Fixing a prime /?, we can express any fraction x in the 
form pan/m, with n and m relatively prime to each other and to /?. Then an 
absolute value is defined on Q by 

\x\p=P~a, 

and the field of /7-adic numbers is just the completion of Q with respect to this 
metric | jp. Note that the integer a (called the /7-adic order of JC) can be 
negative, and the integers that are close to zero "/7-adically" are precisely the 
ones that are highly divisible by p. Though perhaps jarring at first, this /7-adic 
notion of size is entirely natural given our earlier motivations: the congruence 
n = 0 (/?*), with k large, translates into the statement that n is close to zero 
(/7-adically). 
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Because R is the completion of Q with respect to the usual absolute value 
| | , it is customary to write 1*1^ for | x | , Q^ for R, and then call R the 
completion of Q at "the infinite prime" oo. The result is a family of locally 
compact complete topological fields Q^ which contain Q, one for each/? < oo. 
Each Qp is called a "local field", and Q itself is called a "global field". With 
this terminology the Hasse-Minkowski theorem takes the following symmetric 
form: a quadratic form over Q has a global solution if and only if it has a local 
solution for each prime p. 

For the purposes of this article, the significance of the local-global principle is 
this: global problems should be analyzed purely locally, and with equal attention 
paid to each of the local "places " Q . 

Note. For a leisurely discussion of /?-adic numbers, and instances of the 
local-global principle, the reader is urged to browse through the Introduction 
to [BoShaf and Cassels]. Also highly recommended is the expository article 
[Rob 2]. 

B. Hecke theory and the centraliry of automorphic forms. In the 19th century 
the arithmetic significance of automorphic forms was clearly recognized, and 
examples of such forms were used to great effect in number theory. 

Around 1830, Jacobi worked with the classical theta-function 0(z) in order 
to obtain exact formulas for the representation numbers of n as a sum of r 
squares. Then 30 years later, Riemann exploited this same function in order to 
derive the analytic continuation and functional equation of his famous zeta-
function f (s). 

Before explaining these matters in more detail, let us briefly recall the 
classical notion of an automorphic form. 

1. Basic notions. Let H denote the upper half-plane in C, and regard the 
group 

>"»={[: SL.(»)=II" j : a, b, c, d real, ad — be = 1 

as the group of fractional linear transformations of H. An automorphic form 
of weight A: is a function f{z) which is holomorphic in H and "almost" 
invariant for the transformations y — [a

c%\ in some discrete subgroup T of 
SL2(R), i.e., 

<•> /(f^H»+•"*'<*> 
for all y = [a

c
b

d] in V. 
The most famous example of an automorphic form is the classical theta-

function 

0{z) = 2 e™2* = 1 + 2 2e7ri"2 

« = - 0 0 « = 1 
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This is an automorphic form of weight ^ for the group 

r ( 2 ) = { [ c j ] = S L 2 ( Z ) : 6 , c = 0(2), a,d=l(2)]; 

moreover, 

0(-\/z) = (-iz)l/26(z). 

More generally, let Qr(xl9... 9xr) denote the quadratic form 2/= 1 xf9 and set 

( « , , . . . , H r ) 

the sum extending over all "integral" vectors (nl9...9nr). Then dr(z) is again 
an automorphic form, this time of weight r/2. This example has special 
number theoretic significance because the coefficients in the Fourier expansion 
of this periodic function are the representation numbers of the quadratic form 
Qr. Indeed, if r(n9 Qr) denotes the number of distinct ways of expressing n as 
the sum of r squares, then 

er(z) = 0(z)r= i r ( » , Ô ) e " " . 
n = 0 

Here are some more examples of automorphic forms: 
(i) Let A(z) denote the function defined in H by 

00 00 

A(z) - e2wiz U U " e2"inzf4 = 2 r(n)e2winz. 
n=\ n=\ 

It is an automorphic form of weight 12 for the full modular group T — SL2(Z), 
and its Fourier coefficients r(n)—carefully investigated by Ramanujan in 1916 
—are closely related to the classical partition functionp(n). 

(ii) For k > 1 the function 

(c,d)=^(0,0) (cz 4- d) 
i n Z 2 

is called the (normalized) Eisenstein series of weight 2k. It is again an 
automorphic form with respect to the full modular group SL2(Z), this time 
with Fourier expansion 

(-WkAk °° 
^*(0 = l+i-y-^2«2fc-.(»)e2"-*, 

^ n= 1 

with Bk the so-called nth Bernoulli number, and or(n) = 2 ^ dr. 
From these few examples, it is already clearly indicated that automorphic 

forms comprise an integral part of number theory. Indeed, invariance of the 
form with respect to translations of the type z -> z + h implies the existence of 
a Fourier expansion '2ane

2'rrikz/h
9 with the an of number-theoretic significance. 

In general, the automorphy property (1) implies f(z) is determined by its 
values on a "fundamental domain" D for the action of T in H. More precisely, 
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D is a subset of H such that every orbit of T (with respect to the action 
z -» (az + &)/(cz + d)) has exactly one representative in D. For example, for 
T = SL2(Z), the fundamental domain D looks like this: 

Note that any other fundamental domain must be obtained by applying to this 
D some [£ J] in T. In particular, the domain D~l pictured above is precisely the 
image of D by the "inversion" element [_?J], t n e point "at infinity" for D 
being mapped to the "cusp" at 0 in (the boundary of) the fundamental domain 
D-\ 

To be able to apply convenient methods of analysis to the study of 
automorphic forms, it is customary to impose additional technical restrictions 
on the regularity of ƒ at "cusps" along the boundary of a fundamental domain, 
especially "at infinity". This implies in particular that f(z) always has a 
Fourier expansion of the form 

(2) f(z) = 2 aS«"'\ 
n = 0 

For example, for A(z) or E2k(z) we can take h = 1, but for 0(z), which is an 
automorphic form only on T(2) (which does not contain the translation 
z -> z + 1), the period is no longer 1, and we must take h — 2. 

Let us denote by Mk(T) the vector space of automorphic forms of weight k 
for T which are "regular at the cusps" of T, and by 5̂ (1") the subspace off(z) 
in Mk(T) which actually vanish at the cusps. Functions in this latter space are 
called cusp forms; for such functions (like the "modular discriminant" A(z)), 
the constant term a0 in the expansion (2) is zero. 

We have already remarked that automorphic forms in general have number-
theoretic interest because their Fourier coefficients involve solution numbers of 
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number-theoretic problems. For example, by relating 04(z) to certain Eisen-
stein series on T(2), we obtain Jacobi's remarkable formula 

d\n 

Thus the need for analyzing this space Mk(T) is clearly indicated. 
As we shall soon see, the subsequent theory developed by Hecke was so 

successful that it suggested new ways to look at automorphic forms in number 
theory as well as immediately providing the tools to solve existing classical 
problems. 

2. Hecke's theory. Hecke's key idea was to characterize the properties of an 
automorphic form in terms of a corresponding Dirichlet series. The most 
famous Dirichlet series around is, of course, Riemann's zeta-function 

«*)= 1 i= n (i-p-rl. 
p<cc 

So let us first sketch Riemann's original analysis of Ç(s) which Hecke so 
brilliantly generalized. 

Recall the gamma function identity, 

,dt 

valid for Re(s) > 0. (In modern parlance, we say that T(s) is the Mellin 
transform of e"' at s.) With this identity, we derive the relation 

w"T(s)S(2s) = f Hit) - 1 « * 
' 0 

with 6 the classical theta-function already encountered. In other words, Ç(2s) is 
essentially the Mellin transform of 6{it). From this fact, it is a simple matter to 
derive the desired analytic properties of f(j) in terms of the automorphic 
properties of 0(z), and conversely! Here are the key steps: 

-L-\' + -( 
2 s |o 2 J0 

dt 

1 °-l0(it)dt 

(using the change of variable t -* \/t) 

jusing the automorphy property 01 - ) = tl/2$(it)\. 
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Note that invariance with respect to the substitution s -> \ — s is already 
obvious. To reverse the process and derive the "functional equation", i.e., 
automorphy condition of 0(z) from that of f(s), we require "Mellin inversion": 

By generahzing this proof, Hecke was able to "explain" the symmetry of a 
large number of Dirichlet series and also pave the way towards finding 
automorphic forms seemingly everywhere in number theory. 

Given a sequence of complex numbers a0, ax,...,an,... with an — 0(nc) for 
some c > 0, and given h > 0, k > 0, C = ± 1, consider the series 

•(*) = i 5 
n=\ n 

and 

*(*) = (2»/xrr(*)*(j), 
and the function defined in H by 

n = 0 

THEOREM 1 (HECKE). The following two conditions are equivalent: 
(A) O(^) + a0/s + C/(k — s) is entire, bounded in every vertical strip, and 

satisfies the functional equation ®(k — s) = C<!>(s); 
(B)f(-\/z) = C(z/i)kf(z). 
In other words, the holomorphic function/(z) is automorphic of weight k 

(for the group of transformations generated by z -> z + h and z -> -l/z) if 
and only if its associated Dirichlet series *Zan/n

s is "nice". (We shall often use 
the term "nice" to describe a Dirichlet series satisfying certain analytic 
properties similar to f(s).) 

The second part of Hecke's theory answers the question: when does <j>(s) = 
2an/n

s have an Euler product expansion of the form <j>(s) — Up<O0Lp(s), with 
Lp(s) a power series in/?-5? A formal computation shows that </>(s) factors as 

11 2u ms 
pprime m X ) P 

whenever the coefficients an are multiplicative, i.e., anm — anam if n and m are 
relatively prime. 

Characterizing such multiplicativity is crucial. Indeed, since the coefficients 
an always have number-theoretic significance, it is of great interest to know 
when knowledge of these an

9s can be reduced to knowing ap for/? prime. 
Note that when the an

9s are completely multiplicative, i.e., anm — anam for all 
n and m, the Euler product expansion above reduces to the familiar expression 

(3) 25=no-«,/»-')"'• 


