

- weight $w_j > 0$
- processing time $p_j > 0$

- weight $w_j > 0$
- processing time $p_j > 0$

Task: compute sequence with minimum cost $\sum_{i} w_j f(C_j)$

- C_j completion time of job j
- non-decreasing, non-negative cost function f

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

$$\int_0^{C_j^{(s)}} s(t) \, dt = \sum_{i \leq j} p_j$$

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

$$\int_{0}^{C_{j}^{(s)}} s(t) \, dt = \sum_{i \leq j} p_{j} = C_{j}^{(1)}$$

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

priorities and fairness

 $\rightsquigarrow~L_k\text{-norms/monomials}$ compromise on worst and average case

■ linear cost $\sum_{j} w_j C_j^{(s)}$ but non-uniform speed *s*

$$S\left(C_{j}^{(s)}\right) := \int_{0}^{C_{j}^{(s)}} s(t) dt = \sum_{i \leq j} p_{j} = C_{j}^{(1)}$$
$$\Leftrightarrow C_{j}^{(s)} = S^{-1}\left(C_{j}^{(1)}\right)$$

(-)

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

priorities and fairness

 \rightsquigarrow L_k-norms/monomials compromise on worst and average case

■ linear cost $\sum_{j} w_j C_j^{(s)}$ but non-uniform speed s

decreasing speed $s \leftrightarrow \text{convex cost } f$

Our main focus: convex / concave cost functions

1 Analysis of Smith's rule for convex (and concave) cost

2 Exact algorithms for monomials

linear	in P [Smith 1956]
exponential	in P [Rothkopf 1966]

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	PTAS [Megow, Verschae 2012] strongly NP-hard [H., Jacobs 2012]		

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general piece-wise linear	PTAS [Megow, Verschae 2012] strongly NP-hard [H., -	Jacobs 2012]	

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general piece-wise linear	PTAS	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
convex			weakly NP-hard [Yuan '92]

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general piece-wise linear	PTAS	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
convex		FPTAS ?	weakly NP-hard [Yuan '92] strongly NP-hard ?

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	DTAC	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear	PTAS	[iviegow, verschae 2012]	
convex		FPTAS ?	weakly NP-hard [Yuan '92] strongly NP-hard ?
concave		in P / FPTAS ?	(strongly) NP-hard ?

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	PTAS	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear			
convex		FPTAS ?	weakly NP-hard [Yuan '92] strongly NP-hard ?
concave		in P / FPTAS ?	(strongly) NP-hard ?
monomials t^k		in P / FPTAS ?	(strongly) NP-hard ?

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	DTAC	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear	PTAS	[wiegow, verschae 2012]	Strongly INF-Hard [II., Jacobs 2012]
convex		FPTAS ?	weakly NP-hard [Yuan'92] strongly NP-hard ?
concave		in P / FPTAS $?$	(strongly) NP-hard ?
monomials <i>t^k</i>		in P / FPTAS ?	(strongly) NP-hard ?
piece-wise linear, const. # pieces	FPTAS	[Megow, Verschae '12]	weakly NP-hard [Yuan '92]

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_j}{p_i}$.

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_j}{p_i}$.

How good is this simple algorithm for a fixed convex/concave cost function?

Smith's rule Schedule jobs in non-increasing order of their density $\frac{w_j}{r_j}$.

How good is this simple algorithm for a fixed convex/concave cost function?

Smith's rule is a $\frac{\sqrt{3}+1}{2}$ -approximation for [Stiller & Wiese'10] any concave cost function f

Smith's rule Schedule jobs in non-increasing order of their density $\frac{w_j}{r_j}$.

How good is this simple algorithm for a fixed convex/concave cost function?

Smith's rule is a $\frac{\sqrt{3}+1}{2}$ -approximation for [Stiller & Wiese'10] any concave cost function f

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

 $\sup_{0 < q,p} \frac{\int_0^q f(t)dt + p \cdot f(q+p)}{p \cdot f(p) + \int_p^{p+q} f(t)dt} .$

Smith's rule Schedule jobs in non-increasing order of their density $\frac{w_j}{p_i}$.

How good is this simple algorithm for a fixed convex/concave cost function?

Smith's rule is a $\frac{\sqrt{3}+1}{2}$ -approximation for [Stiller & Wiese'10] any concave cost function f

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

 $\sup_{0 < q,p} \frac{\int_0^q f(t)dt + p \cdot f(q+p)}{p \cdot f(p) + \int_p^{p+q} f(t)dt} \ .$

 \rightsquigarrow holds with inverse ratio for concave cost function

Narrow space of worst-case instances for convex cost:

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

Narrow space of worst-case instances for convex cost:

1.
$$w_j = p_j$$
 for all jobs j

1.
$$w_j = p_j$$
 for all jobs j

2. Smith's Rule chooses non-decreasing order, OPT the opposite

- 1. $w_j = p_j$ for all jobs j
- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

1.
$$w_j = p_j$$
 for all jobs j

- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

1.
$$w_j = p_j$$
 for all jobs j

- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

- 1. $w_j = p_j$ for all jobs j
- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

- 1. $w_j = p_j$ for all jobs j
- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

- 1. $w_j = p_j$ for all jobs j
- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

- 1. $w_j = p_j$ for all jobs j
- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

1.
$$w_j = p_j$$
 for all jobs j

- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

1.
$$w_j = p_j$$
 for all jobs j

- 2. Smith's Rule chooses non-decreasing order, OPT the opposite
- one big job & several very small jobs

The tight approximation ratio of Smith's rule for fixed convex f is

 $\sup_{0 < q,p} \frac{\int_0^q f(t)dt + p \cdot f(q+p)}{p \cdot f(p) + \int_p^{p+q} f(t)dt} .$

The tight approximation ratio of Smith's rule for fixed convex f is

 $\sup_{0 < q,p} \frac{\int_0^q f(t)dt + p \cdot f(q+p)}{p \cdot f(p) + \int_p^{p+q} f(t)dt} .$

Corollary

If f is a polynomial of degree k with non-negative coefficients then the tight approximation ratio is

$$\alpha_k := \max_{\substack{0.5 \le p < 1}} \frac{(1-p)^{k+1} + (k+1)p}{kp^{k+1} + 1}$$

Tight approximation ratios for polynomials

cost function	ratio
square root	1.07
degree 2 polynomials	1.31
degree 3 polynomials	1.76
degree 4 polynomials	2.31
degree 5 polynomials	2.93
degree 6 polynomials	3.60
degree 10 polynomials	6.58
degree 20 polynomials	15.04
exponential	∞

Tight approximation ratios for polynomials

For cost function $f(t) = t^k$, the tight approximation factor α_k of Smith's ruler observes the following for $k \ge 4$:

$$\lim_{k\to\infty}\left(p_k-\sqrt[k+1]{\frac{1}{k^2}}\right)=0,$$

For cost function $f(t) = t^k$, the tight approximation factor α_k of Smith's ruler observes the following for $k \ge 4$:

$$\lim_{k \to \infty} \left(p_k - \sqrt[k+1]{\frac{1}{k^2}} \right) = 0,$$
$$\lim_{k \to \infty} \left(\alpha_k - k^{\frac{k-1}{k+1}} \right) = 0,$$

For cost function $f(t) = t^k$, the tight approximation factor α_k of Smith's ruler observes the following for $k \ge 4$:

$$\lim_{k \to \infty} \left(p_k - \sqrt[k+1]{\frac{1}{k^2}} \right) = 0,$$
$$\lim_{k \to \infty} \left(\alpha_k - k^{\frac{k-1}{k+1}} \right) = 0,$$
$$\lim_{k \to \infty} k - \alpha_k \ge \ln k - \frac{1}{2k}.$$

\rightsquigarrow experimental performance much better than worst-case

→→ experimental performance much better than worst-case →→ more realistic analysis for processing times $1, 2, ..., p_{max}$ and given $\sum p_j$

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters p_{\max} and $\sum_j p_j$ is

$$\sup \left\{ \frac{\mathsf{INC}(p, p_{\mathsf{max}}, \sum_j p_j)}{\mathsf{DEC}(p, p_{\mathsf{max}}, \sum_j p_j)} \, \middle| \, p = 0, 1, 2, \dots, \sum_j p_j \right\} \, .$$

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters p_{\max} and $\sum_j p_j$ is

$$\sup \left\{ \frac{\mathsf{INC}(p, p_{\mathsf{max}}, \sum_j p_j)}{\mathsf{DEC}(p, p_{\mathsf{max}}, \sum_j p_j)} \, \middle| \, p = 0, 1, 2, \dots, \sum_j p_j \right\} \, .$$

→ proof follows same idea as unparametrized analysis

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters p_{\max} and $\sum_{j} p_{j}$ is

$$\sup \left\{ \frac{\mathsf{INC}(p, p_{\mathsf{max}}, \sum_j p_j)}{\mathsf{DEC}(p, p_{\mathsf{max}}, \sum_j p_j)} \, \middle| \, p = 0, 1, 2, \dots, \sum_j p_j \right\} \, .$$

 \rightsquigarrow proof follows same idea as unparametrized analysis

valuable lower bound for exact computations

Approach proposed for quadratic cost:

■ best first graph search based on A* [Sen et al. '96, Kaindl et al. '01]

Approach proposed for quadratic cost:

- best first graph search based on A* [Sen et al. '96, Kaindl et al. '01]
- Iocal and global comparability

[Schild, Fredman '62, Sen et al. '90]

43

Approach proposed for quadratic cost:

- best first graph search based on A^* [Sen et
- Iocal and global comparability
 - global comparability: not matter where scheduled

[Sen et al. '96, Kaindl et al. '01]

[Schild, Fredman '62, Sen et al. '90]

Approach proposed for quadratic cost:

- best first graph search based on A*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

[Sen et al. '96, Kaindl et al. '01]

[Schild, Fredman '62, Sen et al. '90]

Approach proposed for quadratic cost:

- best first graph search based on A^*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

Approach proposed for quadratic cost:

- best first graph search based on A^*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

Conjecture Mondal, Sen (2000)

time

Approach proposed for quadratic cost:

- best first graph search based on A^*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

Approach proposed for quadratic cost:

- best first graph search based on A^*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

A* [Sen et al. '96, Kaindl et al. '01] [Schild, Fredman '62, Sen et al. '90] weight $i \prec_g j$ w_i

p

j ≺_e i

processing

time

Approach proposed for quadratic cost:

- best first graph search based on A*
- local and global comparability
 - global comparability: not matter where scheduled
 - Iocal comparability: only if scheduled consecutively

[Sen et al. '96, Kaindl et al. '01] [Schild, Fredman '62, Sen et al. '90] weight

Approaches tested by us:

different graph searches with integrated comparabilities

Dürr, Vasquez

Approach proposed for quadratic cost:

- best first graph search based on A^*
- Iocal and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

A* [Sen et al. '96, Kaindl et al. '01] [Schild, Fredman '62, Sen et al. '90] weight ↓

p

j ≺_e i

processing

time

Approaches tested by us:

- different graph searches with integrated comparabilities
- quadratic IP with integrated comparabilities (Cplex 12.4)

Approach proposed for quadratic cost:

- best first graph search based on A^*
- local and global comparability
 - global comparability: not matter where scheduled
 - local comparability: only if scheduled consecutively

A* [Sen et al. '96, Kaindl et al. '01] [Schild, Fredman '62, Sen et al. '90] weight ↑

Approaches tested by us:

- different graph searches with integrated comparabilities
- quadratic IP with integrated comparabilities (Cplex 12.4)
 major numerical problems

Feasible for monomial cost t^k :

• best first graph search based on A^*

Feasible for monomial cost t^k :

- best first graph search based on A^*
- local and global comparability

Feasible for monomial cost t^k :

- best first graph search based on A*
- local and global comparability

Constraint programming approach: (joint work with Jens Schulz & Daniela Luft)

start time based formulations with disjunctive constraint and domain propagation (SCIP 2.1.1)

Feasible for monomial cost t^k :

- best first graph search based on A*
- local and global comparability

Constraint programming approach: (joint work with Jens Schulz & Daniela Luft)

start time based formulations with disjunctive constraint and domain propagation (SCIP 2.1.1)
 → again major numerical problems (for t², t³, t⁴)

processing time

pi

Approximation algorithms:

■ tight (parametrized) analysis of Smith's rule

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- **a** asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^k

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- **a** asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^k

Exact algorithms for monomial cost:

generic solvers have major numerical problems while problem-specific enumeration schemes don't

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- **a** asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^k

Exact algorithms for monomial cost:

- generic solvers have major numerical problems while problem-specific enumeration schemes don't
- \rightsquigarrow complexity (almost) completely open

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- **a** asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^k

Exact algorithms for monomial cost:

- generic solvers have major numerical problems while problem-specific enumeration schemes don't
- \rightsquigarrow complexity (almost) completely open

Thank you!