On the performance of Smith's rule in single-machine scheduling with nonlinear cost

Tl Wiebke Höhn
Technische Universität Berlin
NEC Tobias Jacobs
NEC Laboratories Europe

18th Combinatorial Optimization Workshop
Aussois 2014

Generalized min-sum scheduling

Given: jobs $j=1, \ldots, n$ with

- weight $w_{j}>0$
- processing time $p_{j}>0$

Generalized min-sum scheduling

Given: jobs $j=1, \ldots, n$ with

- weight $w_{j}>0$
- processing time $p_{j}>0$

Task: compute sequence with minimum cost $\sum_{j} w_{j} f\left(C_{j}\right)$
■ C_{j} completion time of job j

- non-decreasing, non-negative cost function f

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{\mathrm{j}} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{\mathrm{j}} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{\mathrm{j}} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{\mathrm{j}} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
\int_{0}^{C_{j}^{(s)}} \stackrel{(t)}{s}(t) d t=\sum_{i \leq j} p_{j}
$$

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
\int_{0}^{C_{j}^{(s)}} s(t) d t=\sum_{i \leq j} p_{j}=C_{j}^{(1)}
$$

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
S\left(C_{j}^{(s)}\right):=\int_{0}^{C_{j}^{(s)}} 5(t) d t=\sum_{i \leq j} p_{j}=C_{j}^{(1)}
$$

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
\begin{aligned}
S\left(C_{j}^{(s)}\right) & :=\int_{0}^{C_{j}^{(s)}} 5(t) d t=\sum_{i \leq j} p_{j}=C_{j}^{(1)} \\
& \Leftrightarrow C_{j}^{(s)}=S^{-1}\left(C_{j}^{(1)}\right)
\end{aligned}
$$

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
\begin{aligned}
S\left(C_{j}^{(s)}\right) & :=\int_{0}^{C_{j}^{(s)}} s(t) d t=\sum_{i \leq j} p_{j}=C_{j}^{(1)} \\
& \Leftrightarrow C_{j}^{(s)}=S^{-1}\left(C_{j}^{(1)}\right)
\end{aligned}
$$

increasing speed $s \leftrightarrow$ concave cost f decreasing speed $s \leftrightarrow$ convex cost f

Motivation

- priorities and fairness
$\rightsquigarrow L_{k}$-norms/monomials compromise on worst and average case
- linear cost $\sum_{j} w_{j} C_{j}^{(s)}$ but non-uniform speed s

$$
\begin{aligned}
S\left(C_{j}^{(s)}\right) & :=\int_{0}^{C_{j}^{(s)}} \delta(t) d t=\sum_{i \leq j} p_{j}=C_{j}^{(1)} \\
& \Leftrightarrow C_{j}^{(s)}=S^{-1}\left(C_{j}^{(1)}\right)
\end{aligned}
$$

increasing speed $s \leftrightarrow$ concave cost f decreasing speed $s \leftrightarrow$ convex cost f

Our main focus: convex / concave cost functions

Outline

1 Analysis of Smith's rule for convex (and concave) cost

2 Exact algorithms for monomials

Related work \& complexity status

Related work \& complexity status

| linear | in $P \quad[$ Smith 1956] |
| :---: | :---: | :---: |
| exponential | in $P \quad[$ Rothkopf 1966] |

Related work \& complexity status

linear	in P	[Smith 1956]
exponential	in P	[Rothkopf 1966]
general	PTAS [Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]

Related work \& complexity status

linear	in P	[Smith 1956]
exponential	in P	[Rothkopf 1966]
general	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear		

Related work \& complexity status

linear	in P	[Smith 1956]
exponential	in P	[Rothkopf 1966]
general	PTAS [Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear		weakly NP-hard [Yuan '92]
convex		

Related work \& complexity status

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	PTAS	[Megow, Verschae 2012]	strongly NP-hard [H., Jacobs 2012]
piece-wise linear			
convex		FPTAS ?	weakly NP-hard [Yuan'92] strongly NP-hard?

Related work \& complexity status

linear	in P [Smith 1956]	
exponential	in P \quad [Rothkopf 1966]	
general	PTAS	[Megow, Verschae 2012]
piece-wise linear	strongly NP-hard [H., Jacobs 2012]	
convex	FPTAS ?	weakly NP-hard [Yuan '92] strongly NP-hard ?
concave	in P/FPTAS ?	(strongly) NP-hard ?

Related work \& complexity status

linear	in P [Smith 1956]		
exponential	in P [Rothkopf 1966]		
general	PTAS		strongly NP-hard [H., Jacobs 2012]
piece-wise linear			
convex		FPTAS ?	weakly NP-hard [Yuan '92] strongly NP-hard?
concave		in P/FPTAS ?	(strongly) NP-hard ?
monomials t^{k}		in P / FPTAS ?	(strongly) NP-hard ?

Related work \& complexity status

linear	in P [Smith 1956]	
exponential	in P [Rothkopf 1966]	
general		strongly NP-hard [H., Jacobs 2012]
piece-wise linear		
convex	FPTAS ?	weakly NP-hard [Yuan'92] strongly NP-hard ?
concave	in P/FPTAS ?	(strongly) NP-hard ?
monomials t^{k}	in P/FPTAS ?	(strongly) NP-hard ?
piece-wise linear, const. \# pieces	FPTAS [Megow, Verschae '12]	weakly NP-hard [Yuan '92]

Analysis of Smith's rule

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_{j}}{p_{j}}$.

Analysis of Smith's rule

Smith's rule
 Schedule jobs in non-increasing order of their density $\frac{w_{j}}{p_{j}}$.

How good is this simple algorithm for a fixed convex/concave cost function?

Analysis of Smith's rule

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_{j}}{p_{j}}$.
How good is this simple algorithm for a fixed convex/concave cost function?

- Smith's rule is a $\frac{\sqrt{3}+1}{2}$-approximation for
[Stiller \& Wiese '10] any concave cost function f

Analysis of Smith's rule

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_{j}}{p_{j}}$.

> How good is this simple algorithm for a fixed convex/concave cost function?

- Smith's rule is a $\frac{\sqrt{3}+1}{2}$-approximation for \quad [Stiller \& Wiese '10] any concave cost function f

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

$$
\sup _{0<q, p} \frac{\int_{0}^{q} f(t) d t+p \cdot f(q+p)}{p \cdot f(p)+\int_{p}^{p+q} f(t) d t}
$$

Analysis of Smith's rule

Smith's rule

Schedule jobs in non-increasing order of their density $\frac{w_{j}}{\rho_{j}}$.

How good is this simple algorithm for a fixed convex/concave cost function?

- Smith's rule is a $\frac{\sqrt{3}+1}{2}$-approximation for \quad [Stiller \& Wiese '10] any concave cost function f

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

$$
\sup _{0<q, p} \frac{\int_{0}^{q} f(t) d t+p \cdot f(q+p)}{p \cdot f(p)+\int_{p}^{p+q} f(t) d t}
$$

\rightsquigarrow holds with inverse ratio for concave cost function

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Narrow space of worst-case instances for convex cost:

We can assume w.l.o.g. that:

1. $w_{j}=p_{j}$ for all jobs j
2. Smith's Rule chooses non-decreasing order, OPT the opposite
3. one big job \& several very small jobs

Analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

$$
\sup _{0<q, p} \frac{\int_{0}^{q} f(t) d t+p \cdot f(q+p)}{p \cdot f(p)+\int_{p}^{p+q} f(t) d t}
$$

Analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for fixed convex f is

$$
\sup _{0<q, p} \frac{\int_{0}^{q} f(t) d t+p \cdot f(q+p)}{p \cdot f(p)+\int_{p}^{p+q} f(t) d t}
$$

Corollary

If f is a polynomial of degree k with non-negative coefficients then the tight approximation ratio is

$$
\alpha_{k}:=\max _{0.5 \leq p<1} \frac{(1-p)^{k+1}+(k+1) p}{k p^{k+1}+1}
$$

Tight approximation ratios for polynomials

cost function	ratio
square root	1.07
degree 2 polynomials	1.31
degree 3 polynomials	1.76
degree 4 polynomials	2.31
degree 5 polynomials	2.93
degree 6 polynomials	3.60
degree 10 polynomials	6.58
degree 20 polynomials	15.04
exponential	∞

Tight approximation ratios for polynomials

Observation: $\quad \frac{\alpha_{k}}{k} \approx p_{k} \quad\binom{$ Ienth of big job }{ corresponding to $\alpha_{k}}$

Bounding the approximation ratio

Theorem

For cost function $f(t)=t^{k}$, the tight approximation factor α_{k} of Smith's ruler observes the following for $k \geq 4$:

- $\lim _{k \rightarrow \infty}\left(p_{k}-\sqrt[k+1]{\frac{1}{k^{2}}}\right)=0$,

Bounding the approximation ratio

Theorem

For cost function $f(t)=t^{k}$, the tight approximation factor α_{k} of Smith's ruler observes the following for $k \geq 4$:

- $\lim _{k \rightarrow \infty}\left(p_{k}-\sqrt[k+1]{\frac{1}{k^{2}}}\right)=0$,
- $\lim _{k \rightarrow \infty}\left(\alpha_{k}-k^{\frac{k-1}{k+1}}\right)=0$,

Bounding the approximation ratio

Theorem

For cost function $f(t)=t^{k}$, the tight approximation factor α_{k} of Smith's ruler observes the following for $k \geq 4$:

- $\lim _{k \rightarrow \infty}\left(p_{k}-\sqrt[k+1]{\frac{1}{k^{2}}}\right)=0$,
- $\lim _{k \rightarrow \infty}\left(\alpha_{k}-k^{\frac{k-1}{k+1}}\right)=0$,
- $k-\alpha_{k} \geq \ln k-\frac{1}{2 k}$.

Related computational results

Approximation ratio in experiments:

Related computational results

Approximation ratio in experiments:

tight ratio 1.31

tight ratio 1.76

tight ratio 2.31

tight ratio 2.93
x-value \rightsquigarrow correlation of w_{j} and p_{j}

Related computational results

Approximation ratio in experiments:

tight ratio 1.31

tight ratio 1.76

tight ratio 2.31

tight ratio 2.93
\rightsquigarrow experimental performance much better than worst-case

Related computational results

Approximation ratio in experiments:

tight ratio 1.31

tight ratio 1.76

tight ratio 2.31 tight ratio 2.93 x-value \rightsquigarrow correlation of w_{j} and p_{j}
\rightsquigarrow experimental performance much better than worst-case
\rightsquigarrow more realistic analysis for processing times $1,2, \ldots, p_{\max }$ and given $\sum p_{j}$

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters $p_{\max }$ and $\sum_{j} p_{j}$ is

$$
\sup \left\{\left.\frac{\operatorname{INC}\left(p, p_{\max }, \sum_{j} p_{j}\right)}{\operatorname{DEC}\left(p, p_{\max }, \sum_{j} p_{j}\right)} \right\rvert\, p=0,1,2, \ldots, \sum_{j} p_{j}\right\}
$$

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters $p_{\max }$ and $\sum_{j} p_{j}$ is

$$
\sup \left\{\left.\frac{\operatorname{INC}\left(p, p_{\max }, \sum_{j} p_{j}\right)}{\operatorname{DEC}\left(p, p_{\max }, \sum_{j} p_{j}\right)} \right\rvert\, p=0,1,2, \ldots, \sum_{j} p_{j}\right\}
$$

\rightsquigarrow proof follows same idea as unparametrized analysis

Parametrized analysis of Smith's rule

Theorem

The tight approximation ratio of Smith's rule for convex f and fixed parameters $p_{\max }$ and $\sum_{j} p_{j}$ is

$$
\sup \left\{\left.\frac{\operatorname{INC}\left(p, p_{\max }, \sum_{j} p_{j}\right)}{\operatorname{DEC}\left(p, p_{\max }, \sum_{j} p_{j}\right)} \right\rvert\, p=0,1,2, \ldots, \sum_{j} p_{j}\right\}
$$

\rightsquigarrow proof follows same idea as unparametrized analysis
valuable lower bound for exact computations

$$
p_{\max }=50
$$

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:
■ best first graph search based on A^{*}
[Sen et al. '96, Kaindl et al. '01]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

- best first graph search based on A^{*}
[Sen et al. '96, Kaindl et al. '01]
- local and global comparability
[Schild, Fredman '62, Sen et al. '90]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:
■ best first graph search based on A^{*}
[Sen et al. '96, Kaindl et al. '01]

- local and global comparability
[Schild, Fredman '62, Sen et al. '90]
- global comparability:
not matter where scheduled

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on A^{*}
[Sen et al. '96, Kaindl et al. '01]

- local and global comparability
[Schild, Fredman '62, Sen et al. '90]
- global comparability:
not matter where scheduled
- local comparability: only if scheduled consecutively

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled

■ local comparability: only if scheduled consecutively
[Schild, Fredman '62, Sen et al. '90]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled

■ local comparability: only if scheduled consecutively

Conjecture Mondal, Sen (2000)
[Schild, Fredman '62, Sen et al. '90]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled
■ local comparability: only if scheduled consecutively
H., Jacobs
[Schild, Fredman '62, Sen et al. '90]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled

■ local comparability: only if scheduled consecutively

Dürr, Vasquez

[Schild, Fredman '62, Sen et al. '90]

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled

■ local comparability: only if scheduled consecutively

Dürr, Vasquez

[Schild, Fredman '62, Sen et al. '90]

Approaches tested by us:

■ different graph searches with integrated comparabilities

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled

■ local comparability: only if scheduled consecutively
[Schild, Fredman '62, Sen et al. '90]

Dürr, Vasquez

Approaches tested by us:

■ different graph searches with integrated comparabilities
■ quadratic IP with integrated comparabilities (Cplex 12.4)

Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

■ best first graph search based on $A^{*} \quad$ [Sen et al. '96, Kaindl et al. '01]

- local and global comparability

■ global comparability: not matter where scheduled
■ local comparability: only if scheduled consecutively
[Schild, Fredman '62, Sen et al. '90]

Dürr, Vasquez

Approaches tested by us:

■ different graph searches with integrated comparabilities
■ quadratic IP with integrated comparabilities (Cplex 12.4)
\rightsquigarrow major numerical problems

Exact algorithms for monomial cost

Feasible for monomial cost t^{k} :
■ best first graph search based on A^{*}

Exact algorithms for monomial cost

Feasible for monomial cost t^{k} :

- best first graph search based on A^{*}
- local and global comparability

Exact algorithms for monomial cost

Feasible for monomial cost t^{k} :

- best first graph search based on A^{*}
- local and global comparability

Constraint programming approach:

(joint work with Jens Schulz \& Daniela Luft)

- start time based formulations with disjunctive constraint and domain propagation (SCIP 2.1.1)

Exact algorithms for monomial cost

Feasible for monomial cost t^{k} :

- best first graph search based on A^{*}
- local and global comparability

Constraint programming approach:
(joint work with Jens Schulz \& Daniela Luft)

- start time based formulations with disjunctive constraint and domain propagation (SCIP 2.1.1)
\rightsquigarrow again major numerical problems (for t^{2}, t^{3}, t^{4})

Conclusions

Single machine scheduling with weighted convex/concave cost:

Conclusions

Single machine scheduling with weighted convex/concave cost:
Approximation algorithms:

- tight (parametrized) analysis of Smith's rule

Conclusions

Single machine scheduling with weighted convex/concave cost:
Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^{k}

Conclusions

Single machine scheduling with weighted convex/concave cost:

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule
- asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for cost t^{k}

Exact algorithms for monomial cost:

- generic solvers have major numerical problems while problem-specific enumeration schemes don't

Conclusions

Single machine scheduling with weighted convex/concave cost:

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule

■ asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for $\operatorname{cost} t^{k}$

Exact algorithms for monomial cost:

- generic solvers have major numerical problems while problem-specific enumeration schemes don't
\rightsquigarrow complexity (almost) completely open

Conclusions

Single machine scheduling with weighted convex/concave cost:

Approximation algorithms:

- tight (parametrized) analysis of Smith's rule

■ asymptotic approximation factor $k^{\frac{k-1}{k+1}}$ for $\operatorname{cost} t^{k}$

Exact algorithms for monomial cost:

- generic solvers have major numerical problems while problem-specific enumeration schemes don't
\rightsquigarrow complexity (almost) completely open

Thank you!

