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W. Höhn and T. Jacobs



Motivation

priorities and fairness
 Lk -norms/monomials compromise on worst and average case

linear cost
∑

j

wjC
(s)
j but non-uniform speed s

speed

time

1

C
(s)
j

S
(
C

(s)
j

)
:=

∫ C
(s)
j

0

s(t) dt =
∑
i≤j

pj

= C
(1)
j

⇔ C
(s)
j = S−1

(
C

(1)
j

)

increasing speed s ↔ concave cost f
decreasing speed s ↔ convex cost f

Our main focus: convex / concave cost functions
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Outline

1 Analysis of Smith’s rule for convex (and concave) cost

2 Exact algorithms for monomials
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W. Höhn and T. Jacobs



Related work & complexity status

linear in P [Smith 1956]

exponential in P [Rothkopf 1966]

general

piece-wise linear

convex
weakly NP-hard [Yuan ’92]

strongly NP-hard ?

FPTAS ?
weakly NP-hard [Yuan ’92]

strongly NP-hard ?

concave in P / FPTAS ? (strongly) NP-hard ?

monomials tk in P / FPTAS ? (strongly) NP-hard ?

piece-wise linear,
const.# pieces

FPTAS [Megow, Verschae ’12] weakly NP-hard [Yuan ’92]

PTAS [Megow, Verschae 2012] strongly NP-hard [H., Jacobs 2012]
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W. Höhn and T. Jacobs



Related work & complexity status

linear in P [Smith 1956]

exponential in P [Rothkopf 1966]

general

piece-wise linear

convex
weakly NP-hard [Yuan ’92]

strongly NP-hard ?FPTAS ?
weakly NP-hard [Yuan ’92]

strongly NP-hard ?

concave in P / FPTAS ? (strongly) NP-hard ?

monomials tk in P / FPTAS ? (strongly) NP-hard ?

piece-wise linear,
const.# pieces

FPTAS [Megow, Verschae ’12] weakly NP-hard [Yuan ’92]

PTAS [Megow, Verschae 2012] strongly NP-hard [H., Jacobs 2012]
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Analysis of Smith’s rule

Smith’s rule

Schedule jobs in non-increasing order of their density
wj

pj
.

How good is this simple algorithm for a
fixed convex/concave cost function?

Smith’s rule is a
√
3+1
2 -approximation for [Stiller & Wiese ’10]

any concave cost function f

Theorem

The tight approximation ratio of Smith’s rule for fixed convex f is

sup
0<q,p

∫ q
0 f (t)dt+p·f (q+p)

p·f (p)+
∫ p+q
p f (t)dt

.

 holds with inverse ratio for concave cost function
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W. Höhn and T. Jacobs



Analysis of Smith’s rule

Narrow space of worst-case instances for convex cost:

pj

wj

We can assume w.l.o.g. that:

1. wj = pj for all jobs j

OPT

ALG

2. Smith’s Rule chooses
non-decreasing order,
OPT the opposite

OPT

ALG

3. one big job & several
very small jobs
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W. Höhn and T. Jacobs



Analysis of Smith’s rule

Narrow space of worst-case instances for convex cost:

pj

wj

We can assume w.l.o.g. that:

1. wj = pj for all jobs j

OPT

ALG

2. Smith’s Rule chooses
non-decreasing order,
OPT the opposite

OPT

ALG

3. one big job & several
very small jobs
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Analysis of Smith’s rule

Theorem

The tight approximation ratio of Smith’s rule for fixed convex f is

sup
0<q,p

∫ q
0 f (t)dt+p·f (q+p)

p·f (p)+
∫ p+q
p f (t)dt

.

Corollary

If f is a polynomial of degree k with non-negative coefficients
then the tight approximation ratio is

αk := max
0.5≤p<1

(1−p)k+1 + (k+1)p
kpk+1 + 1

.
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Tight approximation ratios for polynomials

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0  0.25  0.5  0.75  1  1.25  1.5

degree of monomial

degree
approx.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

degree of monomial

degree
approx.

cost function ratio
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Observation: αk
k ≈ pk
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Bounding the approximation ratio

Theorem

For cost function f (t) = tk , the tight approximation factor αk of
Smith’s ruler observes the following for k ≥ 4:

lim
k→∞

(
pk − k+1

√
1
k2

)
= 0,

lim
k→∞

(
αk − k

k−1
k+1

)
= 0,

k − αk ≥ ln k − 1
2k .
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Related computational results

Approximation ratio in experiments:
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x-value  correlation of wj and pj

 experimental performance much better than worst-case

 more realistic analysis for processing times 1, 2, . . . , pmax

and given
∑

pj
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Parametrized analysis of Smith’s rule

Theorem

The tight approximation ratio of Smith’s rule for convex f and
fixed parameters pmax and

∑
j pj is

sup

{
INC(p, pmax,

∑
j pj)

DEC(p, pmax,
∑

j pj)

∣∣∣∣ p = 0, 1, 2, . . . ,
∑
j

pj

}
.

 proof follows same idea as unparametrized analysis

valuable lower bound for
exact computations
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Exact algorithms for quadratic cost

Approach proposed for quadratic cost:

best first graph search based on A∗ [Sen et al. ’96, Kaindl et al. ’01]

local and global comparability [Schild, Fredman ’62, Sen et al. ’90]

global comparability:
not matter where scheduled

local comparability:
only if scheduled consecutively

k(
k(

weight

processing
time

pj

wj

i ≺g j

i ≺` j

j ≺g i

j ≺` i

Approaches tested by us:

different graph searches with integrated comparabilities

quadratic IP with integrated comparabilities (Cplex 12.4)

 major numerical problems
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Exact algorithms for monomial cost

Feasible for monomial cost tk :

best first graph search based on A∗

local and global comparability

k(
k(

weight

processing
time

pj

wj

i ≺g j

i ≺` j

j ≺g i

j ≺` i

Constraint programming approach:
(joint work with Jens Schulz & Daniela Luft)

start time based formulations with disjunctive constraint and
domain propagation (SCIP 2.1.1)

 again major numerical problems (for t2, t3, t4)
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Conclusions

Single machine scheduling with weighted convex/concave cost:

Approximation algorithms:

tight (parametrized) analysis of Smith’s rule

asymptotic approximation factor k
k−1
k+1 for cost tk

Exact algorithms for monomial cost:

generic solvers have major numerical problems while
problem-specific enumeration schemes don’t

 complexity (almost) completely open

Thank you!
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