Mathematical Methods in Artificial Intelligence

Edward A. Bender

Contents

Preface	XV
Dear Student	xvii
1 First Things	1
Introduction	1
1.1 Delimiting AI Some Goals of AI Some Tools of AI What Has AI Given the World? Results versus Methods: Cognitive Science	2 2 3 5 6
1.2 Debates Consciousness and Intelligence Symbols versus Connections The Role of Theory	7 7 8 9
1.3 About This Text	11
1.4 The Computation Problem in AI NP-Hard Problems Goals, Difficulties, and Compromises	13 15 17
1.5 Expert Systems Constructing an Expert System Examples of Expert Systems	18 20 21
Notes Biographical Sketches	$\frac{24}{26}$
References	29
2 Trees and Search	33
Introduction Some Examples Chapter Overview	33 33 35
2.1 Graphs and Trees	36
	v

1/19/1999

vi Contents

2.2 A Review of Recursion and Induction	40
2.3 Problem Spaces and Search Trees	44
2.4 Three Simple Search Methods Breadth-First Search Depth-First Search Iterative-Deepening Search	48 48 53 55 56
2.5 Heuristic Search Admissible Heuristics Other Heuristics	60 62 66
 2.6 Partial Search Use a Limited-Depth Search Make a Decision and Start Again Accept the Heuristic as Reasonably Accurate *Chess Programs and Search 	69 70 71 72 74
*2.7 AND/OR Trees and Related Species Alpha-Beta Pruning	76 78
Notes	83
References	83
3 The Concepts of Predicate Logic	85
Introduction What Is Mathematical Logic? Logic and AI	85 86 87
3.1 What Is Prolog?	88
3.2 Propositional Logic Syntax Semantics	93 93 96
3.3 Predicate Logic Syntax Semantics	$104 \\ 105 \\ 110$
 3.4 An Algorithm for Prolog The Prolog Algorithm *Prolog Lists and Recursion Translating Prolog to Logic 	120 120 126 129
Notes	132
References	133

4 The Theory of Resolution	135
Introduction	135
4.1 Truth versus Proof Truth Proof	136 137 139
4.2 Resolution and Propositional Calculus The Resolution Method SLD-Resolution of Horn Clauses	$142 \\ 142 \\ 152$
4.3 First-Order Predicate Calculus Skolemization Unification Resolution Soundness and Completeness Decidability	$154 \\ 155 \\ 158 \\ 161 \\ 163 \\ 165$
4.4 Prolog The Cut Operator Negation Equality, Arithmetic, and Procedural Code	$167 \\ 168 \\ 169 \\ 170$
4.5 FOL and Prolog as AI Tools Goals and Compromises Are FOL and Prolog Good Choices for AI?	$171 \\ 172 \\ 175$
Notes Biographical Sketches	$\begin{array}{c} 179 \\ 180 \end{array}$
References	181
5 Let's Get Real	183
Introduction	183
5.1 Real-World Issues and FOL	184
5.2 Some Alternative Reasoning Tools Qualitative Methods Quantitative Methods Why Such Diversity?	185 186 187 188
5.3 Incomplete Information	189
5.4 Inaccurate Information and Combining Data *The Arrow Impossibility Theorem	$\begin{array}{c} 191 \\ 193 \end{array}$
Notes	196
References	197

Contents

vii

viii Contents

6 1	Nonmonotonic Reasoning	199
Int	roduction	199
6.1	Coming Attractions Types of Qualitative Nonmonotonic Reasoning How Well Do Nonmonotonic Methods Work?	$\begin{array}{c} 201 \\ 202 \\ 207 \end{array}$
6.2	Default Reasoning Extensions Normal Default Theories Prolog and Default Reasoning	210 212 221 223
*6.3	Other Modifications of Logic Circumscription Modal and Autoepistemic Logics	$224 \\ 225 \\ 227$
6.4	Rule Systems Basic Concepts of Monotonic Systems Forward versus Backward Chaining Negation Limiting the Effects of Contradictions Nonmonotonicity	229 229 231 231 232 233
6.5	Semantic Nets Frames Manipulating Simple Inheritance Systems	$234 \\ 237 \\ 239$
6.6	Defeasible Reasoning The Syntax of Defeasible Reasoning The Laws of Defeasible Reasoning Concluding Remarks	$245 \\ 245 \\ 247 \\ 250$
No	tes Diamanhiard Shatah	253
Ref	Gerences	254 254
7 F	Probability Theory	257
Int	roduction	257
7.1	Finite Probability Spaces The Notion of Probability Probability Spaces Random Variables	$258 \\ 258 \\ 260 \\ 266$
7.2	Conditional Probability and Bayes' Theorem Conditional Probability Bayesian Reasoning	$270 \\ 271 \\ 280$

	Contents	ix
		224
7.3 Independence		284
Independence of Compound Events		284
Independence of Random Variables		290
Notes		295
References		297
8 Bayesian Networks		299
Introduction		200
Bayesian Nets		200
Dayesian ivers		000
8.1 Bayesian Networks		301
Directed Acyclic Graphs		302
Bayesian Networks		306
Proof of Theorem 8.2		311
8.2 Some Types of Bayesian Networks		314
Bipartite Multiple-Diagnosis Problems		$\frac{-}{315}$
Singly Connected DAGs		318
MYCIN and Certainty Factors		318
Deduction, Abduction, and Induction		319
8.3 Multiple Diagnosis in Bipartite Networks		320
Irredundant Covers		320
Further Bemarks		325 397
		041
8.4 An Algorithm for Singly Connected Networks		329
*8.5 Some Theorems and Proofs		336
Two Theorems		336
The Algorithm for Singly Connected Networks		340
Formulas for π and λ		341
Further Remarks		343
8.6 Certainty Factors		344
What Are Certainty Factors?		345
An Interpretation of Certainty Factors		346
Limits on Certainty Factor Validity		348
Notes		351
Biographical Sketch		352
References		353

x Contents

9 Fuzziness and Belief Theory	355
Introduction	
9.1 Is Probability the Right Choice?	356
9.2 Fuzziness The Fuzzy Set Concept Properties of Fuzzy Sets Fuzzy Predicates Fuzzy Rule Systems Further Remarks	$360 \\ 361 \\ 364 \\ 369 \\ 374 \\ 384$
9.3 Dempster-Shafer Belief Theory Combining Independent Evidence Further Remarks	$385 \\ 389 \\ 393$
9.4 Looking Backward Long Chains of Deductions Robustness Computational Feasibility Psychological Validity Choosing a System	395 395 396 397 398 398
Notes	399
Biographical Sketch	400
References	401
10 What Is It?	403
Introduction	403
 10.1 Types of Automatic Classifiers Statistically Based Functions Neural Networks Decision Trees Structural and Syntactic Methods Further Remarks 	$\begin{array}{c} 404 \\ 406 \\ 408 \\ 410 \\ 411 \\ 412 \end{array}$
10.2 Applications	414
10.3 Data Preparation Data Friendliness Garbage in the Training Data Incomplete Data	$ \begin{array}{r} 415 \\ 415 \\ 416 \\ 418 \end{array} $
10.4 Evaluation Measuring Accuracy Classifier Complexity What Does It Mean?	$ \begin{array}{r} 419 \\ 420 \\ 420 \\ 422 \\ \end{array} $

	Contents	xi
Notes		422
References		423
11 Neural Networks and Minim	ization	425
Introduction		425
11.1 Hopfield Networks		430
11.2 Some Mathematics: Mostly a	Review	438
Vectors and Matrices		438
Linear Algebra		442
Multivariate Calculus		447
11.3 A Brief Introduction to Perce	ptrons	451
11.4 Finding Minima		454
Types of Algorithms		454
Newton's Method		456
Linear Methods		457
Quadratic Methods		462
*Domains of Attraction		467
11.5 Backpropagation for Feedforw	ard Nets	471
Assumptions and Notation		472
Backpropagation		474
11.6 Parameter Issues in Feedforwa	ard Nets	477
Activation Functions		478
Initialization		481
Excessive Parameter Growth		482
$\operatorname{Stopping}$		484
*11.7 Data Issues		486
Training Sets		487
Data Preparation		488
11.8 Some History		489
Notes		491
Biographical Sketches		493
References		494
40 Brahabilita Otatiatian and I		10-
12 Probability, Statistics, and I	niormation	497
Introduction		497
12.1 Mean and Variance		498

1/19/1999

xii Contents

12.2 Probability Spaces and Density Functions Probability Spaces The Normal Distribution and the Central Limit Theorem	$506 \\ 507 \\ 511$
12.3 Some Statistics Estimating Generalization Error Is It Significant?—Hypothesis Testing	$517\ 518\ 524$
12.4 Information Theory Information Reduces Uncertainty	$\begin{array}{c} 533\\ 537\end{array}$
Notes	542
Biographical Sketch	543
References	544
13 Decision Trees, Neural Nets, and Search	547
Introduction	547
13.1 Decision Trees Growing Decision Trees Pruning and Evaluating Decision Trees Extracting Rules from Trees	$548 \\ 550 \\ 556 \\ 560$
13.2 Neural Nets Again Training and Testing Comments on Large Feedforward Nets The Storage Capacity of Hopfield Nets	$562 \\ 562 \\ 566 \\ 568 \\ 568 \\ $
13.3 Heuristic and Partial Search Beware of Small Heuristics Partial Search The Future of Search in AI	$570 \\ 571 \\ 575 \\ 579$
Notes Decision Trees Neural Nets Search	$580 \\ 580 \\ 581 \\ 582$
References	582
14 Last Things	585
Introduction	585
 14.1 Optimization Again Escaping from Local Minima Genetic Algorithms *Hidden Markoy Models 	$586 \\ 587 \\ 589 \\ 593$

	Contents	xiii
14.2 Learning Inductive Learning Truth Maintenance Systems Learning Theory		$595 \\ 596 \\ 598 \\ 599 \\ 599$
14.3 Planning		601
14.4 Language and Speech Understanding Language Recognizing Speech Machine Translation		$\begin{array}{c} 602 \\ 603 \\ 604 \\ 605 \end{array}$
14.5 Robotics Vision Motion Planning		$\begin{array}{c} 605 \\ 607 \\ 608 \end{array}$
Notes Optimization Learning Planning Language		608 609 609 610 610
References		611
Subject Index		615
Author Index		629

Preface

If AI is ever to become a respectably hard science, then a firm, formal basis is needed. —Derek Partridge (1991)

Philosophy

Teaching an AI course presents a problem. The field is so broad that an attempt to cover most of it is bound to result in a fairly shallow survey course. Nevertheless, it is important to discuss some important tools of AI in some depth. The tools can be roughly divided into three types: tools for implementing a plan (e.g., Lisp, microprocessors), tools for designing a plan (e.g., algorithms), and tools for designing tools.

A hands-on approach based on implementing plans is often pursued in computer science. Unfortunately, toy AI problems are of limited pedagogical use while real AI problems are often on such a scale that programming only one of them is a major project. Moreover, a hands-on approach often gives students the ability to implement some plans without giving them the ability to understand or develop the tools on which such plans are based.

As a result, I believe it's critical to focus on tools for designing AI tools. Since AI is a young science, we must to some extent anticipate what these tools will be. Mathematics has been the major tool designing tool in the sciences; therefore, I am persuaded that AI will not be an exception.

Possible Courses

It's popular to say that a book does not require much formal mathematics, but does require some mathematical maturity. That's true here. Much of the material can, in theory, be read and understood with no more background than high school algebra. In practice, however, students need more than this or they will be overwhelmed by the need to think mathematically. Furthermore, after the first ten chapters, some background in calculus is needed.

This text can be used for an introductory course in AI for upper-division or graduate students who have had a standard lower-division calculus course. Many courses are possible, depending on the time available, the capabilities of the students, and the interests of the instructor. All courses should include

xvi Preface

at least Chapter 1 and most of Chapters 2, 3, 5, and 10. Possible supplements are (a) logic from Chapters 4 and/or 6; (b) neural nets from Chapter 11; (c) probability and its uses from Chapters 7, 8, and 9; and (d) material from Chapter 14. The more mathematical exercises and proofs can be emphasized or deemphasized as circumstances dictate.

This text can also be used for a second course in AI for students interested in AI research. Many monographs and research papers are inaccessible to such students because they assume a mathematical background not provided by standard AI courses. The mathematics in this text helps bridge that gap.

Instructors may obtain a T_{EX} diskette containing solutions to many of the exercises from Computer Society Press.

The following diagram illustrates some dependencies among all chapters but the last, ranging from weak (dotted lines) to nearly complete dependency (solid lines). Dashed lines indicate that only some sections are essential. More details on dependencies are found at the end of each chapter introduction.

Acknowledgments

Various people have helped with this text. I'd particularly like to thank my students whose confusions and misunderstandings uncovered poorly written passages, my colleagues Frederic Bien, Te C. Hu, Fred Kochman, Alfred Manaster, Jeff Remmel, and Malcolm Williamson for their suggestions, my copy editor Emily Thompson for her ample, apposite use of red ink, and Computer Society Press for their helpful editorial assistance.

Dear Student

History teaches that new technology will require new mathematics. ... The question is: Which mathematics to use? —Monique Pavel (1989)

Many introductory AI texts give the impression that AI is a collection of heuristic ideas and data structures implemented in Lisp and Prolog. The prognosis for such a discipline would be grim. Fortunately, AI researchers use mathematics and are developing new tools. Unfortunately, most of what you need is found in monographs and research articles inappropriate material for a beginning course. This text is my attempt to fill the gap.

Since some of the mathematics used in AI is not part of a standard undergraduate curriculum, you'll be learning mathematics and seeing how it's used in AI at the same time. As with most mathematically oriented texts, this one isn't easy. I've written the next couple of pages to help you through it. Please read them.

Goals

In this text I hope to introduce you to some mathematical tools that have been important in AI and to some of their applications to the design of algorithms for AI. Since expert systems (broadly interpreted) comprise a large part of AI and have been the main focus of mathematically based tools, I have centered the book around the expert system idea.

As a result of studying this text, you should be in a much better position to read the technical literature in AI and should be able to easily fill in gaps in coverage by reading one of the more broadly based survey texts. xviii Dear Student

Reading Mathematics

Many people learn mathematics the way I learned history in high school. The exams contained two columns and the goal was to match each date in column A with one of the persons, places, and events in column B. Being lazy, I learned the "whens" of history but never the "whys." I missed a whole world of ideas.

When mathematics is taught and learned by rote, students miss a world of ideas. Mathematics should be learned as an aid to thinking, not as a replacement for it. Learning mathematics is a skill that's seldom taught. If, like many students, you haven't mastered it, the following comments should be helpful.

The key is to work on understanding—not on memorization. How can you do this?

Let's begin with definitions. Whenever you meet a new concept, develop an understanding of it by relating it to ideas you already know and by looking at what it means in specific cases. For instance, when learning what a polynomial is, look at specific polynomials; when learning what continuity is, see what it means for a specific function like x^2 . The importance of understanding the general through the specific cannot be overemphasized even by using italics. The discussions and examples that immediately precede and follow definitions are often designed to foster understanding. If a definition refers to an earlier, unclear concept, stop! If you proceed, you may end up wandering aimlessly in a foggy landscape filled with shadowy concepts and mirages. Go back and improve your understanding of the earlier concepts so that they're practically solid objects that you can touch and manipulate. Finally, ask yourself why a definition has been introduced: What is the important or useful concept behind it? You may not be able to answer that question until you've read further in the text, but you can prepare your mind to recognize the answer when you see it.

What about theorems? The comments for definitions apply here, too: Look at specific examples, try to relate the theorem to other things you know, ask why it's important. Be sure you're clear on what the theorem *claims* and on what its words *mean*. In addition, attempt to see why the result seems reasonable before you read the proof. Reading and understanding the proof is the last step. If the proof is long, it may be helpful to make an outline of it. But don't mistake the ability to reproduce a proof for understanding. That's like expecting a photograph to understand a scene. There are better tests of understanding: Do you see where all of the assumptions are used? Can you think of a stronger conclusion than that in the theorem? If so, can you see why the stronger conclusion is not true, or at least why the proof is insufficient to establish the stronger conclusion?

Examples play a key role in mathematics. In practically every mathematics text, they fall into three categories.

- The type that aren't in the text: They're the ones you create by following the preceding advice.
- The obvious ones that are labeled "example" in the text. They're usually illustrations of definitions, algorithms, or theorems. Sometimes they develop related ideas.
- The type that comes from homework problems: These examples are the *solutions* to the problems you do yourself, not the problems themselves.

If you neglect any of these three types of examples, your mathematical text will be most useful to you as a doorstop.

Navigation Aids

Here's some information to help you navigate this text.

- A chapter introduction usually tells what's in the chapter, why it's there, and how the chapter is laid out. The overview it provides will help you organize the chapter in your mind.
- Numerous quotations highlight ideas and controversies, offer insight, provoke thought, and perhaps provide comic relief.
- Starred material either is more difficult than the text in which it is embedded or is peripheral.
- A remark that's somewhat off the track may appear as an Aside set in smaller type. Asides can be skipped without losing the thread of the discussion.
- There are four types of exercises. Here they are in order of difficulty.
 - Some exercises are lettered and some numbered; for example, 2.4.A versus 2.4.1. The purpose of lettered exercises is to make sure you absorbed the basic ideas. Their solutions can be found by rereading the preceding material. You should do all lettered exercises. It's often necessary to know the answers to these exercises before reading further.
 - A few numbered exercises are there to be sure you've picked up basic ideas that are needed soon. The answer to such an exercise is given immediately after the exercise section. You should do all these exercises, then read the solutions. If you've made an error, study the

xx Dear Student

section further or ask for help. It's important to understand how to do these exercises before reading further.

- The solutions to most exercises are neither very simple nor very difficult. Many you'll be able to do. Ask for help on those that baffle you.
- Starred exercises are ones that I consider difficult or that refer to starred material.

A few exercises don't have just one right answer. They may ask for your opinion or they may ask for you to construct an example of something. If an exercise asks for a proof, use full sentences. Read your proof aloud—it'll help you catch mistakes and incoherent thinking.

Enjoy your exploration of AI and its mathematical foundations.

Sincerely, Ed Bender