On Fuzzy Almost r-minimal Continuous Functions between Fuzzy Minimal Spaces and Fuzzy Topological Spaces

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

The purpose of this paper is to introduce and investigate the concept of fuzzy almost r-minimal continuous function between fuzzy minimal spaces and fuzzy topological spaces. Particularly, we investigate characterizations for the fuzzy almost r-minimal continuity by using generalized fuzzy r-open sets.

Key words: r-minimal structure, fuzzy r-minimal continuous, fuzzy weakly r-minimal continuous, fuzzy almost r-minimal continuous

1. Introduction

The concept of fuzzy set was introduced by Zadeh [13]. Chang [2] defined fuzzy topological spaces using fuzzy sets. The concept of smooth topological space was introduced in [3, 10] by Chattopadhyay, Hazra, Samanta, and Ramadhan, which is a generalization of fuzzy topological space. Yoo et al. [11] introduced the concept of fuzzy r-minimal space which is an extension of the smooth topological space. The author introduced the concepts of fuzzy r-minimal continuous function [8] and fuzzy weakly r-minimal continuous function [9] between fuzzy r-minimal spaces and fuzzy topological spaces. The purpose of this paper is to generalize the concept of fuzzy r-minimal continuous function. So, in this paper, we introduce the concept of fuzzy almost r-minimal continuous function between a fuzzy r-minimal space and a fuzzy topological space. In particular, we investigate characterizations for the fuzzy almost r-minimal continuity by using generalized fuzzy r-open sets - fuzzy r-semiopen sets, fuzzy r-preopen sets, fuzzy r-β-open sets, fuzzy r-regular open sets.

2. Preliminaries

Let I be the unit interval $[0, 1]$ of the real line. A member A of I^X is called a fuzzy set of X. By \emptyset and \bar{I} we denote constant maps on X with value 0 and 1, respectively. For any $A \subseteq I^X$, A^c denotes the complement $\bar{I} - A$. All other notations are standard notations of fuzzy set theory.

A fuzzy point x_α in X is a fuzzy set x_α defined as follows

$$x_\alpha(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_α is said to belong to a fuzzy set A in X, denoted by $x_\alpha \in A$, if $\alpha \leq A(x)$ for $x \in X$. A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let $f : X \to Y$ be a function and $A \subseteq I^X$ and $B \subseteq I^Y$. Then $f(A)$ is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} A(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise}, \end{cases}$$

for $y \in Y$, and $f^{-1}(B)$ is a fuzzy set in X, defined by

$$f^{-1}(B)(x) = B(f(x)), x \in X.$$

A fuzzy topology (or smooth topology) [3, 10] on X is a map $T : I^X \to I$ which satisfies the following properties:

1. $T(\emptyset) = T(\bar{I}) = 1$.
2. $T(A_1 \cap A_2) \geq T(A_1) \wedge T(A_2)$ for $A_1, A_2 \subseteq I^X$.
3. $T(A_1 \cup A_2) \geq T(A_1) \vee T(A_2)$ for $A_1 \subseteq I^X$.

The pair (X, T) is called a fuzzy topological space [11].

A fuzzy set A is said to be fuzzy r-open (resp., fuzzy r-closed) [6] if $T(A) \geq r$ (resp., $T(A^c) \geq r$).

The r-closure of A, denoted by $cl(A, r)$, is defined as $cl(A, r) = \cap\{B \subseteq I^X : A \subseteq B \text{ is fuzzy } r\text{-closed}\}$.

The r-interior of A, denoted by $int(A, r)$, is defined as $int(A, r) = \cup\{B \subseteq I^X : A \subseteq B \text{ is fuzzy } r\text{-open}\}$.

Definition 2.1 ([11]). Let X be a nonempty set and $r \in (0, 1] = I_0$. A fuzzy family $\mathcal{M} : I^X \to I$ on X is said to have a fuzzy r-minimal structure if the family

$$\mathcal{M}_r = \{A \subseteq I^X \mid \mathcal{M}(A) \geq r\}$$

contains \emptyset and \bar{I}.

Then the (X, \mathcal{M}) is called a fuzzy r-minimal space (simply r-FMS) if \mathcal{M} has a fuzzy r-minimal structure. Every member of \mathcal{M}_r is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal closed set if the...
complement of A (simply, A^c) is a fuzzy r-minimal open set.

Let (X, M) be an r-FMS and $r \in I_0$. The fuzzy r-minimal closure and the fuzzy r-minimal interior of A [11], denoted by $mC(A, r)$ and $mI(A, r)$, respectively, are defined as

$$mC(A, r) = \cap \{ B \subseteq I^X : B^c \in M_r \text{ and } A \subseteq B \},$$

$$mI(A, r) = \cup \{ B \subseteq I^X : B \in M_r \text{ and } B \subseteq A \}.$$

Theorem 2.2 ([11]). Let (X, M) be an r-FMS and A, B in I^X.

1. $mI(A, r) \subseteq A$ and if A is a fuzzy r-minimal open set, then $mI(A, r) = A$.
2. If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.
3. If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.
4. $mI(mI(A, r), r) = mI(A, r)$ and $mC(mC(A, r), r) = mC(A, r)$.
5. $\tilde{1} - mC(A, r) = mI(\tilde{1} - A, r)$ and $\tilde{1} - mI(A, r) = mC(\tilde{1} - A, r)$.

3. Fuzzy Almost r-minimal Continuous Functions

Definition 3.1. Let (X, M_X) be an r-FMS and (Y, σ) a fuzzy topological space. Then $f : X \to Y$ is said to be **fuzzy almost r-minimal continuous** if for a fuzzy point x_α and for each fuzzy r-open set V with $f(x_\alpha) \in V$, there exists a fuzzy r-minimal open set U such that $x_\alpha \in U$ and $f(U) \subseteq \text{int}(cl(V, r), r)$.

We recall that: Let (X, M_X) be an r-FMS and (Y, σ) a fuzzy topological space. Then $f : X \to Y$ is said to be

1. **fuzzy r-minimal continuous** [8] if for every fuzzy r-open set A in Y, $f^{-1}(A)$ is fuzzy r-minimal open in X;
2. **fuzzy weakly r-minimal continuous** [9] if for a fuzzy point x_α and for each fuzzy r-open set V with $f(x_\alpha) \in V$, there exists a fuzzy r-minimal open set U such that $x_\alpha \in U$ and $f(U) \subseteq cl(V, r)$.

From the above definitions, easily we have the following implications:

fuzzy r-minimal continuity \Rightarrow fuzzy almost r-minimal continuity \Rightarrow fuzzy weakly r-minimal continuity

Example 3.2. Let $X = I$ and let A, B, C and D be fuzzy sets as the following:

$$A(x) = \frac{1}{2} x, \quad x \in I;$$

$$B(x) = -\frac{1}{2} (x - 1), \quad x \in I;$$

$$C(x) = \begin{cases} \frac{1}{2} (x + 1), & \text{if } 0 \leq x \leq \frac{1}{2}, \\ -\frac{1}{2} (x - 2), & \text{if } \frac{1}{2} < x \leq 1; \end{cases}$$

and

$$D(x) = \begin{cases} -\frac{1}{2} (2x - 1), & \text{if } 0 \leq x \leq \frac{1}{2}, \\ \frac{1}{2} (2x - 1), & \text{if } \frac{1}{2} < x \leq 1. \end{cases}$$

Let us consider two fuzzy topologies M_1 and M_2 defined as the following:

$$M_1(\mu) = \begin{cases} 1, & \text{if } \mu = 0_X, 1_X, \\ \frac{1}{2}, & \text{if } \mu = C, \\ 0, & \text{otherwise}; \end{cases}$$

$$M_2(\mu) = \begin{cases} 1, & \text{if } \mu = 0_X, 1_X, \\ \frac{1}{2}, & \text{if } \mu = D, \\ 0, & \text{otherwise}. \end{cases}$$

And let us consider a fuzzy r-minimal structure N defined as the following:

$$N(\mu) = \begin{cases} 1, & \text{if } \mu = 0_X, 1_X, \\ \frac{1}{2}, & \text{if } \mu = A, B, \\ 0, & \text{otherwise}. \end{cases}$$

Then:

1. The identity function $f : (X, N) \to (X, M_1)$ is fuzzy almost $\frac{1}{2}$-minimal continuous but not fuzzy $\frac{1}{2}$-minimal continuous.

2. The identity function $g : (X, N) \to (X, M_2)$ is fuzzy weakly $\frac{1}{2}$-minimal continuous but not fuzzy almost $\frac{1}{2}$-minimal continuous.

Let (X, M) be a FTS and $A \in I^X$. Then a fuzzy set A is said to be **fuzzy r-regular open** (resp., fuzzy r-regular closed) [7] if $A = \text{int}(cl(A, r), r)$ (resp., $A = cl(\text{int}(A, r), r)$).

Theorem 3.3. Let $f : X \to Y$ be a function between an r-FMS (X, M_X) and a fuzzy topological space (Y, σ). Then the following statements are equivalent:

1. f is fuzzy almost r-minimal continuous.
2. $f^{-1}(B) \subseteq mI(f^{-1}(\text{int}(cl(B, r), r)), r)$ for each fuzzy r-open set B of Y.
3. $mC(f^{-1}(\text{int}(cl(F, r), r)), r) \subseteq f^{-1}(F)$ for each fuzzy r-closed set F in Y.
4. $f^{-1}(F) = mC(f^{-1}(F), r)$ for an fuzzy r-regular closed set F in Y.
5. $f^{-1}(V) = mI(f^{-1}(V), r)$ for an fuzzy r-regular open set V in Y.

On Fuzzy Almost r-minimal Continuous Functions between Fuzzy Minimal Spaces and Fuzzy Topological Spaces

45
This implies $mC(f^{-1}(cl(int(cl(V,r),r)),r)) \subseteq f^{-1}(F)$.

(3) \Rightarrow (4) For any fuzzy r-regular closed set F of Y, since $F = cl(int(F,r))$ and fuzzy r-closed, we have $mC(f^{-1}(F),r) = mC(f^{-1}(cl(int(F,r),r)),r) \subseteq f^{-1}(F).$ So $f^{-1}(F) = mC(f^{-1}(F),r)$.

(4) \Rightarrow (5) Obvious.

(5) \Rightarrow (1) Let V be a fuzzy r-open set containing $f(x_a)$. Since $int(cl(V,r),r)$ is fuzzy r-open, from (5),

$$x_a \in f^{-1}(V) \subseteq f^{-1}(int(cl(V,r),r)) = mI(f^{-1}(int(cl(V,r),r),r)).$$

So there is a fuzzy r-minimal open set U such that $x_a \in U \subseteq f^{-1}(int(cl(V,r),r))$. This implies $f(U) \subseteq int(cl(V,r),r)$, and so f is fuzzy almost r-minimal continuous.

Let X be a nonempty set and $M : I^X \rightarrow I$ a fuzzy family on X. The fuzzy family M is said to have the property (U) [11] if for $A_i \subseteq M (i \in J)$,

$$M(\bigcup A_i) \geq \wedge M(A_i).$$

Theorem 3.4 ([11]). Let (X, M) be an r-FMS with the property (U). Then

1. For $A \subseteq I^X, mI(A,r) = A$ if and only if A is fuzzy r-minimal open.
2. For $F \subseteq I^X, mC(F,r) = F$ if and only if F is fuzzy r-minimal closed.

Corollary 3.5. Let $f : X \rightarrow Y$ be a function between an r-FMS (X, M_X) and a fuzzy topological space (Y, σ). If M_X has the property (U), then the following statements are equivalent:

1. f is fuzzy almost r-minimal continuous.
2. $f^{-1}(B) \subseteq mI(f^{-1}(cl(cl(B,r),r)),r)$ for each fuzzy r-open set B of Y.
3. $mC(f^{-1}(cl(cl(F,r),r)),r) \subseteq f^{-1}(F)$ for each fuzzy r-closed set F in Y.
4. $f^{-1}(B)$ is fuzzy r-minimal open for each fuzzy r-regular open set B of Y.
5. $f^{-1}(B)$ is fuzzy r-minimal closed for each fuzzy r-regular closed set B of Y.

Definition 3.6. Let (X, τ) be a FTS and $A \subseteq I^X$. Then a fuzzy set A is said to be

1. fuzzy r-semiopen [6] if $A \subseteq cl(int(cl(A,r),r))$;
2. fuzzy r-preopen [5] if $A \subseteq int(cl(A,r),r)$;
3. fuzzy r-β-open [1] if $A \subseteq cl(int(cl(A,r),r),r)$.

A fuzzy set A is called a fuzzy r-semiopen (resp., fuzzy r-preopen, fuzzy r-β-open) set if the complement of A is a fuzzy r-semiopen (resp., fuzzy r-preopen, fuzzy r-β-open) set.

Theorem 3.7. Let $f : X \rightarrow Y$ be a function between an r-FMS (X, M_X) and a fuzzy topological space (Y, σ). Then the following statements are equivalent:

1. f is fuzzy almost r-minimal continuous.
2. $mC(f^{-1}(G),r) \subseteq f^{-1}(cl(G,r))$ for each fuzzy r-β-open set G in Y.
3. $mC(f^{-1}(G),r) \subseteq f^{-1}(cl(G,r))$ for each fuzzy r-semiopen set G in Y.

Proof. (1) \Rightarrow (2) Let G be a fuzzy r-β-open set. Then since $cl(G,r)$ is fuzzy r-regular closed, from Theorem 3.3 (4), it follows

$$mC(f^{-1}(G),r) \subseteq mC(f^{-1}(cl(G,r)),r) = f^{-1}(cl(G,r)).$$

(2) \Rightarrow (3) Since every fuzzy r-semiopen set is fuzzy r-β-open, it is obvious.

(3) \Rightarrow (1) Let F be a fuzzy r-regular closed set. Then F is fuzzy r-semiopen, and so from (3), we have

$$mC(f^{-1}(F),r) \subseteq f^{-1}(cl(F,r)) = f^{-1}(F).$$

Hence, from Theorem 3.3, f is fuzzy almost r-minimal continuous.

Theorem 3.8. Let $f : X \rightarrow Y$ be a function between an r-FMS (X, M_X) and a fuzzy topological space (Y, σ). Then f is fuzzy almost r-minimal continuous if and only if $mC(f^{-1}(cl(cl(F,r),r),r),r) \subseteq f^{-1}(cl(G,r))$ for each fuzzy r-preopen set G in Y.

Proof. Suppose \(f \) is fuzzy almost \(r \)-minimal continuous and let \(G \) be a fuzzy \(r \)-preopen set in \(Y \). Then since \(cl(G, r) = cl(int(cl(G, r), r), r) \) and \(cl(G, r) \) is fuzzy \(r \)-regular closed, from Theorem 3.3,

\[
\begin{align*}
 f^{-1}(cl(G, r)) &= mC(f^{-1}(cl(G, r)), r) \\
 &= mC(f^{-1}(cl(int(cl(G, r), r), r)), r).
\end{align*}
\]

Thus it implies \(mC(f^{-1}(cl(int(cl(G, r), r), r)), r) \subseteq f^{-1}(cl(G, r)). \)

For the converse, let \(A \) be a fuzzy \(r \)-regular closed set in \(Y \). Then since \(int(A, r) \) is fuzzy \(r \)-preopen, from hypothesis and \(A = cl(int(A, r), r) \), it follows

\[
\begin{align*}
 f^{-1}(A) &= f^{-1}(cl(int(A, r), r)) \\
 &= mC(f^{-1}(cl(int(A, r), r), r), r) \\
 &= mC(f^{-1}(cl(A, r), r), r) \\
 &= mC(f^{-1}(A), r).
\end{align*}
\]

This implies \(f^{-1}(A) = mC(f^{-1}(A), r) \), and hence by Theorem 3.3, \(f \) is fuzzy almost \(r \)-minimal continuous. \(\square \)

Theorem 3.9. Let \(f : X \rightarrow Y \) be a function between an \(r \)-FMS \((X, M_X)\) and a fuzzy topological space \((Y, \sigma)\). Then \(f \) is fuzzy almost \(r \)-minimal continuous if and only if \(f^{-1}(G) \subseteq mI(f^{-1}(int(cl(G, r), r)), r) \) for each fuzzy \(r \)-preopen set \(G \) in \(Y \).

Proof. Suppose \(f \) is fuzzy almost \(r \)-minimal continuous and let \(G \) be a fuzzy \(r \)-preopen set in \(Y \). Since \(int(cl(G, r), r) \) is fuzzy \(r \)-regular open, from Theorem 3.3, it follows \(f^{-1}(G) \subseteq f^{-1}(int(cl(G, r), r)) = mI(f^{-1}(int(cl(G, r), r)), r) \).

For the converse, let \(U \) be fuzzy \(r \)-regular open. Then \(U \) is also fuzzy \(r \)-preopen. Since \(U = int(cl(U, r), r) \), by hypothesis, \(f^{-1}(U) \subseteq mI(f^{-1}(int(cl(U, r), r)), r) = mI(f^{-1}(U), r) \). This implies \(f^{-1}(U) = mI(f^{-1}(U), r) \) and so \(f \) is fuzzy almost \(r \)-minimal continuous. \(\square \)

Definition 3.10 ([12]). Let \((X, M_X)\) be an \(r \)-FMS and \(C = \{A_i \in I^X : i \in J\} \). \(C \) is called a fuzzy \(r \)-minimal cover if \(\{A_i : i \in J\} = \overline{1}_X \). It is a fuzzy \(r \)-minimal open cover if each \(A_i \) is a fuzzy \(r \)-minimal open set. A subcover of a fuzzy \(r \)-minimal cover \(A \) is a subfamily of \(A \) which also is a fuzzy \(r \)-minimal cover. \(X \) is said to be fuzzy \(r \)-minimal compact (resp., almost fuzzy \(r \)-minimal compact, nearly fuzzy \(r \)-minimal compact) if for every fuzzy \(r \)-minimal open cover \(C = \{A_i \in I^X : i \in J\} \) of \(X \), there exists \(J_0 = \{j_1, j_2, \ldots, j_n\} \subseteq J \) such that \(\overline{1}_X = \cup_{i \in J_0} A_i \) (resp., \(\overline{1}_X = \cup_{i \in J_0} mC(A_i, r) \), \(\overline{1}_X = \cup_{i \in J_0} mI(mC(A_i, r), r) \)).

Definition 3.11 ([4]). Let \((X, \tau)\) be a fuzzy topological space. \(X \) is said to be fuzzy \(r \)-preopen and fuzzy \(r \)-precompact if for every fuzzy \(r \)-open cover \(C = \{A_i \in I^X : \tau(A_i) \geq r, i \in J\} \) of \(A \), there exists \(J_0 = \{j_1, j_2, \ldots, j_n\} \subseteq J \) such that \(\overline{1}_X = \cup_{i \in J_0} A_i \) (resp., \(\overline{1}_X = \cup_{i \in J_0} mC(A_i, r) \), \(\overline{1}_X = \cup_{i \in J_0} mI(mC(A_i, r), r) \)).

Theorem 3.12. Let \(f : X \rightarrow Y \) be a fuzzy almost \(r \)-minimal continuous surjection between an \(r \)-FMS \((X, M_X)\) and a fuzzy topological space \((Y, \sigma)\). If \(X \) is fuzzy \(r \)-minimal compact, then \(Y \) is \(r \)-fuzzy nearly compact.

Proof. Let \(C = \{B_i \in I^Y : i \in J\} \) be a fuzzy \(r \)-open cover of \(Y \). Then for each \(x(i) \in f^{-1}(B_i) \) for \(B_i \in C \), since \(f \) is fuzzy almost \(r \)-minimal continuous, there exists a fuzzy \(r \)-minimal open set \(U(x(i)) \) such that \(x(i) \in U(x(i)) \subseteq f^{-1}(int(cl(B_i, r), r)) \). So the collection \(\{U(x(i)) : x(i) \in X\} \) is a fuzzy \(r \)-minimal open cover in \(X \). Since \(X \) is fuzzy \(r \)-minimal compact, there exists \(J_0 = \{1, 2, \ldots, n\} \subseteq J \) such that \(\overline{1}_X = \cup_{j \in J_0} U(x(j)) \subseteq \cup_{j \in J_0} f^{-1}(int(cl(B_j, r), r)) \). Hence \(\overline{1}_Y = \cup_{j \in J_0} int(cl(B_j, r), r) \).

\(\square \)

Theorem 3.13. Let \(f : X \rightarrow Y \) be a fuzzy almost \(r \)-minimal continuous surjection between an \(r \)-FMS \((X, M_X)\) and a fuzzy topological space \((Y, \sigma)\). If \(X \) is fuzzy \(r \)-minimal compact and if \(M_X \) has the property \((U) \), then \(Y \) is \(r \)-fuzzy nearly compact.

Proof. Let \(C = \{B_i \in I^Y : i \in J\} \) be a fuzzy \(r \)-open cover of \(Y \). Then by the property \((U) \), the fuzzy family \(C' = \{mI(f^{-1}(int(cl(B_i, r), r)), r) : B_i \in C \} \) for \(i \in J \) is a fuzzy \(r \)-minimal open cover of \(X \). Since \(X \) is fuzzy \(r \)-minimal compact, there exists a finite subset \(J_0 \) of \(J \) such that \(\overline{1}_X = \cup_{j \in J_0} mI(f^{-1}(int(cl(B_j, r), r)), r) = \cup_{j \in J_0} f^{-1}(int(cl(B_j, r), r)) \).

This implies \(\overline{1}_Y = \cup_{j \in J_0} int(cl(B_j, r), r) \) and so \(Y \) is \(r \)-fuzzy nearly compact. \(\square \)

References

Won Keun Min

He received his Ph.D. degree in the Department of Mathematics from Korea University, Seoul, Korea, in 1987. He is currently a professor in the Department of Mathematics, Kangwon National University. His research interests include general topology and fuzzy topology.

E-mail : wkmin@kangwon.ac.kr