UNIQUELY PARTITIONABLE PLANAR GRAPHS
WITH RESPECT TO PROPERTIES HAVING
A FORBIDDEN TREE

JOZEF BUCKO
Department of Mathematics, Technical University
Hlavná 6, 040 01 Košice, Slovak Republic
e-mail: bucko@ccsun.tuke.sk

AND

JAROSLAV IVANČO
Department of Geometry and Algebra
P.J. Šafárik University, Jesenná 5
041 54 Košice, Slovak Republic
e-mail: ivanco@duro.upjs.sk

Abstract

Let \(P_1, P_2 \) be graph properties. A vertex \((P_1, P_2)\)-partition of a graph \(G \) is a partition \(\{V_1, V_2\} \) of \(V(G) \) such that for \(i = 1, 2 \) the induced subgraph \(G[V_i] \) has the property \(P_i \). A property \(R = P_1 \lor P_2 \) is defined to be the set of all graphs having a vertex \((P_1, P_2)\)-partition. A graph \(G \in P_1 \lor P_2 \) is said to be uniquely \((P_1, P_2)\)-partitionable if \(G \) has exactly one vertex \((P_1, P_2)\)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.

Keywords: uniquely partitionable planar graphs, forbidden graphs.

1991 Mathematics Subject Classification: 05C15, 05C70.

1. Introduction

Let us denote by \(I \) the class of all finite undirected graphs without loops and multiple edges. If \(P \) is a proper isomorphism closed subclass of \(I \), then \(P \) will also denote the property that a graph is a member of the set \(P \). We shall use the terms set of graphs and property of graphs interchangeably.
A property \mathcal{P} is said to be hereditary if, whenever $G \in \mathcal{P}$ and H is a subgraph of G, then also $H \in \mathcal{P}$. A property \mathcal{P} is called additive if for each graph G all of whose components have the property \mathcal{P} it follows that $G \in \mathcal{P}$, too.

For every hereditary property \mathcal{P} there is a nonnegative integer $c(\mathcal{P})$ such that $K_{c(\mathcal{P})+1} \not\in \mathcal{P}$ but $K_{c(\mathcal{P})+2} \in \mathcal{P}$ called the completeness of \mathcal{P}. For example $c(\mathcal{O}) = 0$, $c(\mathcal{D}_1) = 1$, $c(\mathcal{T}_2) = 2$, $c(\mathcal{T}_3) = 3$, where \mathcal{O} is the class of all totally disconnected graphs, \mathcal{D}_1 is the class of acyclic graphs, \mathcal{T}_2 is the class of outerplanar graphs and \mathcal{T}_3 is the class of planar graphs.

Any hereditary property \mathcal{P} is uniquely determined by the set

$$\mathcal{F}(\mathcal{P}) = \{ G \in \mathcal{I} | G \notin \mathcal{P}, \text{but each proper subgraph } H \text{ of } G \text{ belongs to } \mathcal{P} \}$$

of its minimal forbidden subgraphs.

Let $\mathcal{P}_1, \mathcal{P}_2$ be arbitrary hereditary properties of graphs. A vertex $(\mathcal{P}_1, \mathcal{P}_2)$-partition of a graph G is a partition $\{ V_1, V_2 \}$ of $V(G)$ such that for $i = 1, 2$ the induced subgraph $G[V_i]$ has the property \mathcal{P}_i.

A property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is defined to be the set of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2)$-partition. It is easy to see that if $\mathcal{P}_1, \mathcal{P}_2$ are additive and hereditary, then $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is additive and hereditary, too.

A graph $G \in \mathcal{P}_1 \circ \mathcal{P}_2$ is said to be uniquely $(\mathcal{P}_1, \mathcal{P}_2)$-partitionable if G has exactly one (unordered) vertex $(\mathcal{P}_1, \mathcal{P}_2)$-partition. For the concept of uniquely partitionable graphs we refer the reader to [1]. Basic properties of uniquely partitionable graphs are discussed in [1] and [4].

Proposition 1 [1]. Let \mathcal{P} be an additive hereditary property. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$-partitionable graph G if and only if $\mathcal{P} \neq \mathcal{O} \circ \mathcal{Q}$.

The proof used non-planar graphs. The constructions of uniquely $(\mathcal{O}, \mathcal{P})$-partitionable outerplanar and planar graphs were presented in [2]. The following results have been proved:

Proposition 2 [2]. Let \mathcal{P} be an additive hereditary property of completeness 1. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$-partitionable outerplanar graph G if and only if there is a tree T which is forbidden for \mathcal{P}.

Proposition 3 [2]. Let \mathcal{P} be an additive hereditary property of completeness 1. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$-partitionable planar graph G if and only if either some odd cycle C_{2q+1} has property \mathcal{P} or there is a bipartite planar graph H which is forbidden for \mathcal{P}.
Our first result shows that the restriction on the completeness is not necessary for the existence of uniquely \((\mathcal{O}, \mathcal{P})\)-partitionable planar graphs.

Theorem 1. Let \(\mathcal{P}\) be an additive hereditary property. If there is a tree \(T \in F(\mathcal{P})\), then there exists a uniquely \((\mathcal{O}, \mathcal{P})\)-partitionable planar graph.

Furthermore, let us consider \((\mathcal{D}_1, \mathcal{D}_1)\)-partitions of planar graphs. The following result is presented in [3]:

Proposition 4 [3]. There are no uniquely \((\mathcal{D}_1, \mathcal{D}_1)\)-partitionable planar graph.

In this note, we shall show that the property \(\mathcal{D}_1 \circ \mathcal{D}_1\) is in some sense “a minimal property” having no uniquely partitionable planar graphs. More precisely, we will prove the following result:

Theorem 2. Let \(\mathcal{P}, \mathcal{Q}\) be the additive hereditary properties of graphs with completeness 1. If there is a tree \(T \in F(\mathcal{P})\), then there exists a uniquely \((\mathcal{P}, \mathcal{Q})\)-partitionable planar graph.

2. Proofs of the Main Results

Proof of **Theorem 1.** Let \(T\) be a forbidden tree for a property \(\mathcal{P}\). As every connected bipartite planar graph is uniquely \((\mathcal{O}, \mathcal{O})\)-partitionable, we can assume that \(T\) has at least 3 vertices. Then \(T\) contains a path \(wuv_1\), where \(v_1\) is an end vertex of \(T\). Denote by \(T'\) the graph which we obtain from \(T\) by adding the edge \(wv_1\). \(T'\) is outerplanar and so the join \(K_1 + T'\) is a planar graph. Let \(G(T, 1)\) be the graph which we obtain from \(K_1 + T'\) by deleting the edge \(av_1\), where \(a\) denotes the vertex of \(K_1\). Evidently, \(G(T, 1)\) may be embedded on the plane such that the vertices \(a\) and \(v_1\) lie in the exterior face (see Figure 1).

![Figure 1](image-url)
$G(T, k)$, for $k > 1$, is a planar graph which we obtain from $G(T, 1)$ by adding the vertices v_2, v_3, \ldots, v_k and edges $uv_2, uv_3, \ldots, uv_k, wv_2, wv_3, \ldots, wv_k$. The vertex a is called the root of $G(T, k)$ and vertices v_1, v_2, \ldots, v_k, are called leaves of $G(T, k)$. Moreover, for every leaf v_i we define its successor $s(v_i)$ by $s(v_1) = a$ and $s(v_i) = v_{i-1}$, if $i = 2, 3, \ldots, k$. Obviously, $G(T, k)$ may be embedded on the plane such that both vertices v_i and $s(v_i)$ lie in a common face (see Figure 1).

Now we construct a planar graph $H(T, k, d)$ using the induction on d. $H(T, k, 1)$ is a graph which we obtain from k copies of $G(T, k)$ by identifying their roots. The vertex arisen by the identification is called the root of $H(T, k, 1)$. The leaves of copies of $G(T, k)$ are leaves of $H(T, k, 1)$. Similary, the successor of a leaf in $H(T, k, 1)$ is equal to the successor of this leaf in the corresponding copy of $G(T, k)$. For $d > 1$, $H(T, k, d)$ is a planar graph which we obtain from $H(T, k, 1)$ and k^2 copies of $H(T, k, d - 1)$ by identifying each leaf of $H(T, k, 1)$ with the root of a copy of $H(T, k, d - 1)$. Evidently, a copy of $H(T, k, d - 1)$ can be inserted into a face of $H(T, k, 1)$ which contains a corresponding leaf x of $H(T, k, 1)$ and its successor $s_1(x)$ in $H(T, k, 1)$ (see Figure 2).
The root of $H(T, k, d)$ is the root of $H(T, k, 1)$ and the leaves of $H(T, k, d)$ are leaves of copies of $H(T, k, d - 1)$. Denote by $s_d(y)$ and $s_{d-1}(y)$ the successor of a leaf y in $H(T, k, d)$ and in a corresponding copy of $H(T, k, d - 1)$. Then

$$s_d(y) = \begin{cases} s_1(x), & \text{if } s_{d-1}(y) \text{ was identified with } x, \\ s_{d-1}(y), & \text{otherwise.} \end{cases}$$

Finally, $H^*(T, k, d)$ is a planar graph which we obtain from $H(T, k, d)$ such that we connect each leaf of $H(T, k, d)$ with its successor by a copy of $G(T, 1)$ identifying the leaf with the root of $G(T, 1)$ and the successor with the leaf of $G(T, 1)$ (see Figure 2).

Put $V_1 = \{ x \in V(H^*(T, k, d)) \mid d(r, x) \equiv 0 \pmod{2} \}$, where r denotes the root of $H(T, k, d)$ and $d(y, z)$ is the length of the shortest path between y and z in $H(T, k, d)$. The vertices belonging to V_1 are depicted by white in Figure 2. It is easy to see that V_1 is an independent set of $H^*(T, k, d)$. Moreover, the set $V_2 = V(H^*(T, k, d)) - V_1$ induces a subgraph of $H^*(T, k, d)$ each of whose components is isomorphic to $T - v_1$. So, $\{V_1, V_2\}$ is a vertex (O, P)-partition of $H^*(T, k, d)$.

Suppose that $\{U_1, U_2\}$ is a vertex (O, P)-partition of $H^*(T, k, d)$. Consider two cases:

Case 1. $U_1 \cap V_1 \neq \emptyset$. Let $x \in U_1 \cap V_1$ and let y be any vertex of $V_1 - \{x\}$. From the construction of $H^*(T, k, d)$ it can easily be seen that there exists
a sequence \(x = x_1, x_2, \ldots, x_t = y \) satisfying: For every \(i = 1, \ldots, t - 1 \), there is a subgraph \(G_i \) of \(H^*(T, k, d) \) isomorphic to \(G(T, k) \) (or \(G(T, 1) \)), where \(x_i \) is its root and \(x_{i+1} \) is its leaf. As \(x_1 \) belongs to \(U_1 \), all vertices of \(G_1 \) adjacent to \(x_1 \) belong to \(U_2 \). However, these neighbours of \(x_1 \) together with \(x_2 \) induce a subgraph of \(G_1 \) containing \(T \). Therefore, \(x_2 \in U_1 \), and by induction, \(y \in U_1 \). Since \(y \) is any vertex of \(V_1 \setminus \{ x \} \), \(V_1 \subseteq U_1 \). The set \(V_1 \) is a domination set of \(H(T, k, d) \), and so, \(V_1 = U_1 \), i.e., \(\{ U_1, U_2 \} = \{ V_1, V_2 \} \).

Case 2. \(V_1 \subseteq U_2 \). It is easy to see that every block of \(H(T, k, d) \) is a copy of \(G(T, k) \), where the root and leaves of the copy belong to \(V_1 \). As the vertices of a block corresponding to \(u \) and \(w \) are adjacent, at least one of them belongs to \(U_2 \). Thus, vertices of a block belonging to \(U_2 \) induce a graph containing a star \(K_{1,k+1} \). From the construction of \(H(T, k, d) \) one can see that vertices of \(H(T, k, d) \) belonging to \(U_2 \) induce a graph containing a complete \(k \)-ary tree with \(2d+1 \) levels. Therefore, for \(k \geq \Delta(T) \) and \(d \geq \frac{1}{2}\text{rad}(T) \), \(H^*(T, k, d)[U_2] \) contains a subgraph isomorphic to \(T \), a contradiction. Thus, for \(k \geq \Delta(T) \) and \(d \geq \frac{1}{2}\text{rad}(T) \), the graph \(H^*(T, k, d) \) is uniquely \((O, P)\)-partitionable.

Proof of Theorem 2. To construct the planar graph \(H_r(s) \), for \(r \geq 1, s \geq 2 \) we will use the induction on \(r \). The first step is the construction of planar graph \(H_1(s) \):

\[
H_1(s) = K_2 + \bigcup_{i=1}^s K_2, \quad \text{where} \quad V(K_2) = \{x_1, x_2\} \quad \text{and} \quad V(\bigcup_{i=1}^s K_2) = \{y_{1i}, y_{2i} \mid i = 1, 2, \ldots, s\}.
\]

The edge \(x_1x_2 \) of \(H_1(s) \) we will call the "major" edge of \(H_1(s) \) and edges \(y_{1i}y_{2i}, i = 1, 2, \ldots, s \) we will call "minor" edges of \(H_1(s) \). For the construction of \(H_1(3) \) see Figure 3.

![Figure 3. The graph \(H_1(3) \)](image-url)
Let us construct the graph $H_{k+1}(s)$ in the following way:

We insert s copies of graph $H_k(s)$ to graph $H_1(s)$ such that we identify the "major" edges of copies of graphs $H_k(s)$ with "minor" edges of $H_1(s)$. For the construction of $H_2(3)$ see Figure 4.

It is easy to see from the construction, that $H_r(s)$ is a planar graph. Now we shall show, that if the maximum degree (Δ) of the tree $T \in F(P)$ is $\Delta(T) \leq s$ and radius $rad(T)$ of the tree T is $rad(T) \leq r$, then the planar graph $H_r(s)$ is uniquely (P, Q)-partitionable.

Let us distinguish two "possible" vertex partitions of the graph $H_r(s)$:

1. The end vertices x_1, x_2 of "major" edge of $H_1(s)$ belong to different classes of the vertex partition. From the fact that K_3 is forbidden for both properties P, Q, it follows that vertices of "minor" edges of $H_1(s)$ belong to different classes of the vertex partition, too. By induction on r in both classes of the partition, it grove the complete s-ary tree with $1 + r$ levels, which is, for $r \geq rad(T)$ and $s \geq \Delta(T)$, a supergraph of the forbidden tree T. It means, that it is not a (P, Q)-partition of $H_r(s)$.

2. Hence the end vertices x_1, x_2 of "major" edge of the graph $H_1(s)$ have to belong to the same class of a vertex partition. From the fact that K_3 is forbidden for both properties P, Q, it follows, that vertices of "minor" edges of $H_1(s)$ have both to belong to the second class of the vertex partition. From
the construction of $H_r(s)$ and from the fact that K_3 is forbidden it is easy to see that the partition of $H_r(s)$ is a $(\mathcal{P}, \mathcal{Q})$-partition of $H_r(s)$. Thus $H_r(s)$, for $r \geq \text{rad}(T)$ and $s \geq \Delta(T)$ is a uniquely $(\mathcal{P}, \mathcal{Q})$-partitionable graph. ■

References

Received 14 July 1998
Revised 24 November 1998