






while both pathways contribute to skin PORH, they do not act
synergistically and that cytochrome epoxygenase metabolites
are involved in the downstream actions of sensory nerves. A
potential limitation is that, in addition to sodium channels,
local anesthetics may block potassium channels, whether volt-
age sensitive or not, as well as Ca2� channels, yet with a low
affinity (33). Therefore, while unlikely, we cannot rule out a
direct effect of lidocaine/prilocaine on calcium-activated po-
tassium channels. Recent data suggest that CYP metabolites
play a role in local thermal hyperemia in skin (9). In the latter
study, CYP2C9 was blocked using sulfaphenazole, which has
the advantage of being highly specific but the disadvantage of
being insoluble in water, and requires dimethyl sulfoxide,
making experiments more complex. We chose fluconazole
since it preferentially inhibits CYP2C9 and -2C19 (35), is

soluble in water, is available for perfusion in humans, and has
been used previously as a reference for EETs inhibition in
studies on flow-mediated dilation in conductance arteries,
where an inhibition of EETs production was demonstrated (2,
4). Furthermore, with the use of intra-arterial fluconazole
injections in patients with essential hypertension, an impaired
contribution of EETs to the flow-mediated dilation in the radial
artery can be demonstrated (4). Interestingly, the inhibitory
effect of fluconazole was more pronounced on the PORH AUC
than on the peak, suggesting that EETs are mostly involved in
the time course rather than the peak response.

Previous in vitro studies clearly indicate that an endotheli-
um-dependent non-NO, nonprostanoid mechanism of relax-
ation is involved in human subcutaneous microvessels mounted
on pressure myographs (10, 12). Indeed, EDHF was the major

Fig. 1. A: representative laser speckle con-
trast image (LSCI) over the 4 microdialysis
fibers during the peak of postocclusive reac-
tive hyperemia (region of interest 1 to 4 and
their respective controls 5 to 8, the latter were
used only for quality control during the record-
ing and not used for data analysis) where the
effect of fluconazole, lidocaine/prilocaine, and
the combination can be observed. B: mean �
SE effect of placebo, fluconazole, lidocaine/
prilocaine, and the combination on peak pos-
tocclusive reactive hyperemia (left) and area
under the curve (AUC, right). PORH, post-
occlusive reactive hyperemia; CVC, cutane-
ous vascular conductance; CVCmax, maxi-
mal CVC. *P � 0.001 (peak) and �0.01
(AUC) vs. placebo. †P � 0.003 vs. flucona-
zole. Corresponding individual data are on
bottom.
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contributor to the acetylcholine-dependent endothelium vasore-
laxation, and in these arteries a product of CYP metabolism of
arachidonic acid was likely to be EDHF, as shown by the con-
centration-dependent inhibition obtained using the nonspecific
CYP inhibitor ketoconazole (12). However, heterogeneity of CYP
inhibitors is observed, since acetylcholine relaxation of human
subcutaneous microvessels was unaffected by 17-octadecynoic
acid, a CYP inhibitor, whereas econazole induced a small by
significant rightward shift of the concentration-dependent curves
(10). In contrast, Lenasi et al. showed that inhibition of CYP2C9
through skin microinjections did not modify acetylcholine ionto-
phoresis-induced vasodilation of human forearm skin, whereas
combined NO and COX blockade altered the response (23).
However, to fully compare such data and avoid the confounding
effect of current-induced vasodilation, acetylcholine and the

blockers used should be infused intradermally through microdi-
alysis fibers rather than via the less reproducible iontophoresis and
microinjection techniques.

Multiple CYPs can metabolize arachidonic acids to EETs.
Mammalian CYP1A, CYP2B, CYP2C, CYP2D, CYP2G,
CYP2J, CYP2N, and CYP4A subfamilies have been shown to be
capable of EET biosynthesis in vitro (37), but only the CYP2C
and CYP2J isoforms appear to contribute to EETs formation in
human endothelial cells (5). In our study it is likely that flucona-
zole exerted its effect through the inhibition of EETs production.
However, it was not feasible to quantify EETs in the dialysate.
Indeed, plasma EET concentrations are very low, �10 ng/ml (4).
EETs are strongly bound to proteins (95%), and the quantity
available for diffusion through a microdialysis membrane is there-
fore very low. In addition, quantification by skin microdialysis

Fig. 2. A: representative LSCI image over
the 4 microdialysis fibers during the peak of
postocclusive reactive hyperemia where the
effect of fluconazole, NG-monomethyl-L-ar-
ginine (L-NMMA), and the combination can
be observed (region of interest 1–4 and their
respective controls 5–8, the latter were used
only for quality control during the recording
and not used for data analysis). B: mean �/
SE effect of placebo, fluconazole, L-NMMA,
and the combination on peak postocclusive
reactive hyperemia (left) and AUC (right).
*P � 0.001 (peak) and 0.002 (AUC) vs.
placebo. #P � 0.008 vs. L-NMMA. Corre-
sponding individual data are on bottom.
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would not be optimal given that EETs production would be
transient over the 5-min PORH, while it takes �60 min to obtain
a sufficient volume of dialysate to run an assay using LC-MS MS.
LSCI coupled with the use of inserted microdialysis fibers has the
advantage of providing easy visual analysis throughout the pro-
tocol, with low within-subject coefficients of variation for skin
PORH (13).

The human skin microcirculation is able to release NO, as
suggested in the plateau phase of local thermal hyperemia (27)
or following acetylcholine perfusion (38). In the present study
we showed that infusion of a NO synthase inhibitor, L-NMMA,
does not affect skin PORH. This is consistent with three
previous studies where NO synthase inhibition using NG-nitro-
L-arginine methyl ester (L-NAME) or nitro-L-arginine perfu-
sion through microdialysis fibers did not alter skin PORH (24,
26, 36). Similarly, L-NAME injected intradermally did not
decrease peak skin PORH in a fourth study (11). Lastly, skin
PORH was not associated with a detectable rise in NO con-
centrations (38). Therefore, there is large evidence that NO
does not participate in skin PORH and that the effects of
EDHFs are more important than NO in this microcirculation
(32). However, when L-NMMA was infused together with
fluconazole, the inhibitory effect of fluconazole on skin PORH
was partially reversed and did not differ from placebo. An
interaction between NO and EET had already been described in
human peripheral conductance arteries, where either flucona-
zole or L-NMMA infusion decreased the flow-mediated dila-
tion of radial arteries induced by heating skin of the hand, but
their combination potentiated their effects (3). The general
belief is that the effects of NO predominate in large vessels
while EDHFs are more important in the microcirculation (32).
However, both NO and EDHFs contribute to the flow-mediated
vasodilatation in human conductance arteries (3). An important
question that remains unanswered is why would PORH stim-
ulate the skin endothelium to release EDHFs and EETs but not
NO? A possible response is the nature of the stimulus. When
PORH is studied using the flow-mediated dilation of the
brachial artery or forearm strain gauge plethysmography, quick
increases in shear stress are the major initial mechanisms
leading to endothelial cell activation. Indeed, Koller and Bagi
showed in vitro that, in isolated skeletal muscle arterioles (20),
a reactive dilatation resembling that of in vivo PORH can be
generated. The factors implicated in the response were defor-
mation, stretch, pressure, and shear stress. However, such
physical factors differ when studying PORH of the skin be-
cause of its specific microvascular architecture: it is organized
as a horizontal arteriovenous plexus at the dermal-hypodermal
interface, from which ascending arterioles arise and connect
directly to a superficial horizontal arteriovenous plexus in the
papillary dermis, from which the nutritive capillary loops arise
(8). Contrary to the flow-mediated dilatation of the brachial
artery, skin PORH cannot be elicited above the pressure cuff
(unpublished observations). Therefore, it is likely that a similar
method (brachial artery occlusion) will not induce the same
physical stimulus and will not activate the same endothelial
mechanisms, but this hypothesis remains to be tested.

In conclusion, we have shown that cytochrome epoxygenase
metabolites, putatively EETs, play a major role in healthy skin
PORH, in addition to sensory nerves. Their effect seems to be
more important in the time course rather than the peak.
Whether alteration of this pathway can explain the modified

skin PORH observed in diseases such as diabetes and sclero-
derma remains to be tested.
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