STARFAST: a Wireless Wearable EEG/ECG Biometric System based on the ENOBIO Sensor

Alejandro Riera#1, Stephen Dunne#2, Iván Cester#3, Giulio Ruffini#3

#STARLAB BARCELONA SL
Camí de l’Observatori Fabra s/npp
08035 Barcelona SPAIN

1 alejandro.riera@starlab.es
2 stephen.dunne@starlab.es
3 ivan.cester@starlab.es
4 giulio.ruffini@starlab.es

Abstract—We present a wearable, wireless biometry system based on the new ENOBIO 4-channel electrophysiology recording device developed at Starlab. Features extracted from electroencephalogram (EEG) and electrocardiogram (ECG) recordings have proven to be unique enough between subjects for biometric applications. We show here that biometry based on these recordings offers a novel way to robustly authenticate or identify subjects. In this paper, we present a rapid and unobtrusive authentication method that only uses 2 frontal electrodes and a wrist worn electrode referenced to another one placed at the ear lobe. Moreover, the system makes use of a multistage fusion architecture, which demonstrates to improved system performance. The performance analysis of the system presented in this paper stems from an experiment with 416 test trials, where an Equal Error Rate (EER) of 0% is obtained after the EEG and ECG modalities fusion and using a complex boundary decision. If a lineal boundary decision is used we obtain a True Acceptance Rate (TAR) of 97.9% and a False Acceptance Rate (FAR) of 0.82%. The obtained performance measures improve the results of similar systems presented in earlier work.

I. INTRODUCTION

The present paper introduces a method to authenticate people from their physiological activity, concretely the combination of ECG and EEG data. We call this system STARFAST (STAR Fast Authentication bio-Scanner Test).

Several biometric modalities are already being exploited commercially for person authentication: voice recognition, face recognition and fingerprint recognition are among the more common modalities nowadays. But other types of biometrics are being studied as well: ADN analysis, keystroke, gait, palm print, ear shape, hand geometry, vein patterns, iris, retina and written signature [33].

Although these different techniques for authentication exist nowadays, they present some problems. Typical biometric traits, such as fingerprint, voice and retina, are not universal, and can be subject to physical damage (dry skin, scars, loss of voice...). In fact, it is estimated that 2-3% of the population is missing the feature that is required for authentication, or that the provided biometric sample is of poor quality. Furthermore, these systems are subject of attacks such as presenting a registered deceased person, dismembered body part or introduction of fake biometric samples.

New types of Biometrics, such as electroencephalography (EEG) [1, 2, 3, 4, 5, 6, 7, 8, 9, 25] and electrocardiography (ECG) [14, 15, 16, 17,18], are based on physiological signals, rather than more traditional biological traits. These have some advantages: Since every living and functional person has a recordable EEG/ECG signal, the EEG/ECG feature is universal. Moreover brain or heart damage is something that rarely occurs, so it seems to be quite invariant across time. Finally it seems very difficult to fake an EEG/ECG signature or to attack an EEG/ECG biometric system.

An ideal biometric system should present the following characteristics: 100% reliability, user friendliness, fast operation and low cost. The perfect biometric trait should have the following characteristics: very low intra-subject variability, very high inter-subject variability, very high stability over time and universality. In the next section we show the general architecture and the global performance of the system we have developed.

II. METHODS AND RESULTS

In this paper, we present a rapid and unobtrusive authentication/identification method that only uses 2 frontal electrodes (for EEG recording) with another electrode placed on the left wrist (for ECG recording) and all 3 referenced to another one placed at the right earlobe. Moreover the system makes use of a multi-stage fusion architecture, which has been demonstrated to improve system performance.

The EEG/ECG recording device is ENOBIO [23, 24, 32, 35], a product developed at STARLAB BARCELONA SL. It is a wireless 4 channel (plus the common mode) device with active electrodes. It is therefore quite unobtrusive, fast and...
easy to place. Even though ENOBIO can work in dry mode, in
this study conductive gel has been used (see fig. 1).

Fig. 1: ENOBIO sensor embedded in a cap. We can see the 4 channel inputs (red pins). In the picture, only two channels are plugged. The data are transmitted wirelessly to the laptop.

The general schema used is described below:

Briefly, the preprocessing module segments the recorded takes into 4 seconds epochs. From each one of those epochs we extract 5 different features: auto-regression coefficients, fast Fourier transform, mutual information, coherence and cross correlation [10, 11, 12, 19, 20, 21]. The classifier used in both the signature extraction module and in the recognition module is the Fisher Discriminant Analysis [13], with 4 different discriminant functions (linear, diagonal linear, quadratic and diagonal quadratic). During the enrolment process, we need four 3-minutes takes, and these are used to select the best combinations of features and classifiers, and then to train the classifiers for each subject. This new feature is what we call ‘personal classifier’ approach, and it improves the performance of the system considerably. The authentication test takes are 1-minute long. The preprocessing and the feature extraction are equivalent to the enrolment case. The recognition module loads the trained classifiers for each modality (ECG and EEG) and an independent score is then provided for each. Then the fusion module [22] provides a final decision about the subject authentication.

In order to test the performance of our system we use 48 legal situations (when a subject claims to be himself), 350 impostor situations (when an enrolled subject claims to be another subject from the database) and 16 intruder situations (when a subject who is not enrolled in the system claims to be a subject belonging to the database). Once the EEG and the ECG biometrics results are fused, using a complex boundary decision (dotted line 2 in fig. 3), we can obtain an ideal performance, that is True Acceptance Rate (TAR) = 100% and False Acceptance Rate (FAR) = 0%. If a linear boundary decision is used (line 1 in fig. 3), we obtain a TAR = 97.9% and a FAR = 0.82%. The results are summarized in table I.

In order to test the performance of our system we use 48 legal situations (when a subject claims to be himself), 350 impostor situations (when an enrolled subject claims to be another subject from the database) and 16 intruder situations (when a subject who is not enrolled in the system claims to be a subject belonging to the database). Once the EEG and the ECG biometrics results are fused, using a complex boundary decision (dotted line 2 in fig. 3), we can obtain an ideal performance, that is True Acceptance Rate (TAR) = 100% and False Acceptance Rate (FAR) = 0%. If a linear boundary decision is used (line 1 in fig. 3), we obtain a TAR = 97.9% and a FAR = 0.82%. The results are summarized in table I.

This system has been tested as well to validate the initial state of users, and has been proved sensitive enough to detect it. If a subject has suffered from sleep deprivation [28], alcohol intake [26, 27] or drug ingestion when passing an authentication test, the authentication performance decreases. This fact provides evidence that such a system is able to detect not only the identity of a subject but his state as well.
TABLE I

<table>
<thead>
<tr>
<th></th>
<th>TAR</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>79.2%</td>
<td>21.8%</td>
</tr>
<tr>
<td>ECG</td>
<td>97.9%</td>
<td>2.1%</td>
</tr>
<tr>
<td>FUSION 1</td>
<td>97.9%</td>
<td>0.82%</td>
</tr>
<tr>
<td>FUSION 2</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>

III. CONCLUSION AND FUTURE WORK

These results show that the authentication of people from physiologic data can be achieved using techniques of machine learning. Concretely it shows that the fusion of two (or more) independent biometric modules increases the performance of the system by applying a fusion stage after obtaining the biometric scores.

This result shows that processing the different physiological modalities separately on different processing modules, and introducing a data fusion step, the resulting performance can be increased. Applying a very similar approach, we could easily adapt the system to do emotion performance can be increased. Applying a very similar modules, and introducing a data fusion step, the resulting physiological feedback, this same system can personalize your experience because it knows who you are without any interaction required by the user.

The advantage that such a system would present compared to currently existing approaches is that –by having built a decisional system that is completely modular- we could estimate each class independently of the other classes obtained, which would allow us to have a modular approach to define the interaction between the human and the machine.

Finally we would like to highlight the usefulness of using a single system for user state monitoring and user personalization. Assuming that the system is worn anyway for physiological feedback, this same system can personalize your experience because it knows who you are without any interaction required by the user.

ACKNOWLEDGMENT

The authors also wish to thank STARLAB BARCELONA S.L. for supporting this research and for providing the ENOBIO sensor. STARLAB BARCELONA S.L. is a private research company with the goal of transforming science into technologies with a profound and positive impact on society.

The authors also wish to thank the HUMABIO project (Contract number 026990) who funded part of this research. HUMABIO is a EC co-funded "Specific Targeted Research Project" (STREP) where new types of biometrics are combined with state of the art sensorial technologies in order to enhance security in a wide spectrum of applications like transportation safety and continuous authentication in safety critical environments like laboratories, airports and/or other buildings.

REFERENCES


[34] Rainville, P, Bechara, A, Naqvi, N, Damasio, A. Basic emotions are associated with distinct patterns of cardio respiratory activity. International Journal of psychophysiology 61 (2006)

[35] Iván Cester et al. ENOBIO: Wearable, Wireless, 4-channel electrophysiology recording system optimized for dry electrodes. Presented in pHealth conference 2008 (Valencia)