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Polymeric materials have been employed in a wide range of applications in both dry and wet environments. When these materials suffer
damage, it becomes crucial to initiate repairs in order to mitigate further losses. The use of self-healing materials emerges as a promising
strategy not only to address this issue but also possess the advantage of prolonging the product’s lifespan. Nevertheless, the development of
self-healing materials tailored for wet environments presents a set of obstacles and complexities. The review examines the current state of
research in the field and highlights the challenges associated with developing self-healing materials that can effectively repair damage in
such environments. We discuss the self-healing mechanisms and various polymers that are extensively employed in the advancement of
self-healing materials. We study the progress made in the research and development of self-healingmaterials specifically designed for wet
environments. Furthermore, it provides a summary of various applications of self-healing materials in wet environments.

1. Introduction

Polymeric materials have been used in various applications
in our daily lives, such as coatings [1, 2], adhesives [3, 4],
electronic devices [5–8], and matrices in composite materials
[9–12]. These applications can be used both in dry and wet
environments. Over time, these materials will experience
damages, which need to be repaired, so that their function
will still be in accordance with product requirements.

The damage that occurs in thermoset polymers is gener-
ally challenging to repair. This issue not only causes safety
problems but also economic losses [13, 14]. For example, the
losses caused by corrosion problems reach around 2%–5% of
the world’s Gross National Product [15]. Self-healing mate-
rials are a promising solution for repairing damage to these
materials. These materials can heal themselves after being
damaged, which can help prevent further losses from occur-
ring. In 2021, the need for self-healing materials reached
USD 2.1 billion. This need is projected to increase to USD

62.66 billion in 2028, mainly used in transportation, which is
56.9%, followed by energy and household appliances [16].

The development of self-healing materials in a wet envi-
ronment has some challenges. The material might absorb the
water molecules and lead to polymer plasticization. The water
has a high relative permittivity (or dielectric constant), which
can reduce the mechanical properties of polymers [17].

In this paper, the recent research progress of self-healing
polymers in wet environments is discussed. This review pre-
sents an overview of the self-healing mechanism for poly-
meric materials. Furthermore, it discusses the development
of self-healing materials in wet environments such as fresh-
water, seawater, and acidic or alkaline liquids. In addition,
several applications of self-healing materials for wet environ-
ments are presented and discussed.

2. Self-Healing Mechanism

Biological systems, such as human wounds, vascular plants,
mussels, and octopuses, have been inspiring scientists to
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develop self-healing materials [18, 19]. There are two
approaches to developing self-healing materials. The first is
the top-down approach, which starts with technical ques-
tions in problem-solving, which is answered by concepts
readily available in biological systems. The second is the
bottom-up approach, where known biological phenomena
are studied, and their concepts are applied in solving techni-
cal problems [19]. These two approaches are explained in
Figure 1.

There are four key concepts to make the healing process
take place properly: localization, temporality, mobility, and
mechanism [20]. The first concept, localization, indicates the
location and size of the damage. The damage can be located
on the surface or in the inner part of a product, and it can be
of molecular, micro, or macroscale, leading to different scales
of losses. Ideally, one healing protocol can cure damages at
any location and scale. The second concept, temporality,
refers to the time difference between when the damage
occurred and when it has been repaired. One of the chal-
lenges in developing materials with self-healing abilities is to
achieve a short healing time. This decrease in healing time
can occur by increasing mobility, which is the third concept

of the healing material. Mobility of the material will help the
healing agent diffuse more easily into the damaged area.
Inadequate mobility of the healing agent will lead to a slow
healing process or even failure in healing. The mobility of
polymer molecules or parts of molecules makes it more
superior to self-healing materials compared to metals and
ceramics [21]. The last concept is the healing mechanism.
This concept classifies materials with self-healing abilities
into two groups, namely extrinsic and intrinsic. The concept
is based on the presence of healing agents added to the
material or already existing within the material itself [22].

2.1. Extrinsic Self-Healing. Materials with extrinsic self-
healing capabilities require the addition of healing agents
to the polymer system. Healing agents are stored in brittle
microsized capsules or vascular tubes [23]. In the event of
damage, such as scratches or cracks, the microcapsules or
microvascular tubes will break and release the healing agents.
The healing agents, often in the form of monomers, will flow
and fill the gaps, polymerize, and thus repair the damage.

2.1.1. Microcapsule. Self-healing polymeric materials based
on microcapsules use controlled release of healing agents to
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FIGURE 1: Two approaches to develop self-healing materials: (a) top-down and (b) bottom-up approach [19].

2 Advances in Polymer Technology



recover the cracks. Upon a crack formation, the healing
agents will flow to fill the cracks and react or polymerize to
repair the damage. Typical self-healing systems based on
microcapsules are illustrated in Figure 2 [24]. In the single
capsule system, there is only one type of reactive chemical
embedded in the microcapsules, which will react with latent
functional groups of the matrix to repair the damage. Liu
et al. [25] prepared epoxy resin microcapsules with a diame-
ter of 100 µm via interfacial polymerization of epoxy resin
droplets with ethylenediamine. When the capsules were rup-
tured due to an external stimulant, the encapsulated resin
flowed out of the capsules and reached with polyamine hard-
ener existing in the matrix. The optimum concentration of
microcapsules was 20%. The epoxy coating applied on car-
bon steel was almost restored in 4 hr after the cracks were
generated.

The double capsule system is made of two different heal-
ing agents encapsulated in different capsules. Epoxy resin
and amine-based curing agents with a dual capsule self-
healing system were developed by Safdari et al. [26]. Each
capsule stores the epoxy resin and curing agent separately, so
if the capsules are broken, the system can self-heal. The
healing efficiency of up to 99% could be reached by 1% of
microcapsules addition according to the electrochemical
impedance spectroscopy (EIS) results.

Three other microcapsule-based healing mechanisms
were developed based on the previously mentioned systems.
The capsule/dispersed catalyst system contains encapsulated
monomer and catalyst dispersed in the matrix. In the phase-
separated droplets/capsules, there are droplets of one healing
agent and encapsulated another healing agent dispersed in
the matrix. The all-in-one microcapsules contain all of its

Single-capsule Capsule/dispersed catalyst

Double-capsule
Phase-separated
droplet/capsules 

All-in-one microcapsules

FIGURE 2: Microcapsules-based self-healing systems. Figure reproduced from the study of Ekeocha et al. [24] with permission from JohnWiley
and Sons.
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healing agents separately, either in core-and-shell or capsule-
in-capsule configuration [27].

Healing with a microcapsule mechanism is by far the
simplest method, because it does not need any changes in
the chemical structure of commercially available polymers,
and encapsulation is a matured technology [27]. Even though
healing with amicrocapsule mechanism can recover 80%–85%
of mechanical properties, the integration of microcapsules
within the matrix acts as induced damage and then decreases
the mechanical properties of the samples. This is mostly owing
to the microcapsule size and volume used and the fact that
after breakage, themicrocapsule shells stay within thematerial,
functioning as a stress concentrator for othermechanical stres-
ses that the structure may be subjected to the study of Vintila
et al. [28]. Another problem is this method cannot fix recur-
ring damage occurring in the exact same location where all of
the healing agents are already used [24].

2.1.2. Microvascular. The microvascular healing method is
inspired by nature, where damages in living organisms can
be self-repaired by using liquids in hollow fibers [19]. The
use of microvascular overcomes the limitations of the micro-
capsules in recurrent self-healing. The amount of healing
agents stored in a microvascular network is more abundant
than those in microcapsules due to its larger storage volume
[29]. The utilization of microvascular self-healing systems
can be greatly useful in fabricating thermosetting polymeric
composite materials [28]. Microvascular-based self-healing
systems can be categorized into 1D, 2D, and 3D (Figure 3)
[30]. Microvascular systems may include more than one
healing agent, i.e., polymer resin and hardener. In a 1D sys-
tem, the resin and hardener are stored in different vessels
assembled in a 1D configuration. In a 2D network, the vessels
are criss-crossing with one another, while in a 3D system, the
vessels containing the same healing agents are intercon-
nected. The 2D and 3D systems ensure recurring healing
ability, since the healing agents are constantly available [30].

Kato et al. [31] developed a self-healing system using
multiple through-thickness microvascular channels, a system
similar to the 3D microvascular system. An epoxy-glass fiber
composite was modified so that it contains microvascular
channels. Cyanoacrylate glue was injected into the channels.
Delamination was simulated by introducing an indentation
to the material. The material was left for 30min at room
temperature for healing. The compression strength of healed

material with sealing up to 57.3 kN is about 96% compared to
the virgin material.

In addition to the microvessels, catalysts can be dispersed
in the polymer matrix. Toohey et al. [32] developed self-
healing coatings via a 3D microvascular network embedded
in epoxy-based coatings. Liquid phase dicyclopentadiene
(DCPD) was injected into the vessels, while solid phase
Grubb’s catalyst was dispersed in the matrix. Healing tests
revealed that the microvascular substrate specimens had an
average healing efficiency of 38% for all catalyst concentra-
tions. The number of healing cycles of this microvascular
mechanism depends on the variation of size and distribution
of the catalyst particles. The microvascular healing system
can heal a brittle epoxy coating up to seven times, whereas
microcapsule-based healing occurs for only one cycle. Although
this system was proven to be capable of recurrent healing, in
this example, the strength recovery was poor. Moreover, the
system was rigorous to build.

2.2. Intrinsic Self-Healing. In contrast to extrinsic self-healing,
intrinsic self-healing involves a reversible reaction or move-
ment of polymer molecular chains triggered by external sti-
muli such as heat, ultraviolet light, humidity, and pressure to
reorganize its microstructure [33–39]. The interaction between
atoms and molecules results in stronger molecules as com-
pared to a single atom. As illustrated in Figure 4, this interac-
tion is classified into two categories: intramolecular force
(covalent interaction) and intermolecular force (noncovalent
interaction) [40].

2.2.1. Diels–Alder (DA). DA chemistry has been successfully
used to create polymeric materials with self-healing capabil-
ities, providing a wide variety of options for designing new
products [41]. The DA reaction occurs between a diene and
dienophile at a relatively low temperature. The retro-DA
reaction breaks the adduct into its precursors at an elevated
temperature, enabling local molecular mobility, which sub-
sequently leads to healing [42]. Thus, this healing mecha-
nism requires external stimulus in the form of heating.

Thermo-reversible cross-linked epoxy for composites
application was developed by Turkenburg et al. [43] with a
two-step process. The first step was the functionalization of
diglycidyl ether of bisphenol A (DGEBA) with furan, a type
of diene, by reacting DGEBA with furfuryl amine. The sec-
ond step was cross-linking of the oligomer with bismalei-
mide (a dienophile) via the DA reaction by using batch

Component A

Component B

ðaÞ

2D

ðbÞ

3D

ðcÞ
FIGURE 3: 1D (a), 2D (b), and 3D (c) microvascular self-healing system [30].
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extrusion [41]. The product can be de-cross-linked by intro-
ducing heat to promote the retro-DA reaction.

Some works also studied self-healing material from
renewable resources. Viela et al. [44] reported the synthesis
of branched or cross-linked polymer from di- and trifunc-
tional furan and maleimide, made of biobased undecenoic
acid and undecen-1-ol. Turkenburg et al. [43] reported the
synthesis of thermo-reversible crosslinked polymer networks
consisting predominantly of bio-based diethyl itaconate in a
simple two-step process. The first step in this polymerization
was the reaction of diethyl itaconate and furfuryl methacry-
late. The next step was the cross-linking reaction between
bismaleimide and furfuryl groups through the DA reaction.
Both reports demonstrated that the obtained polymers showed
thermo-reversibility as a result of the DA chemistry.

2.2.2. Trans-Esterification. Many researchers have reported
the application of trans-esterification reactions involving
polyesters in self-healing polymers. There are three primary
mechanisms by which dynamic polyester bonding occurs,
namely (1) intermolecular alcoholysis, (2) intermolecular
acidolysis, and (3) trans-esterification, as illustrated in Figure 5
[45]. In intermolecular alcoholysis, the acyl oxygen debond-
ing occurs with the alkoxy group being unbroken. In inter-
molecular acidolysis, either the acyl or alkyl oxygen can be
cleft. Cleavage of the acyl oxygen results in an anhydride
intermediate, which will react with an alcohol to form an ester
[46].

Self-healing materials with a trans-esterification mecha-
nism usually use a catalyst to decrease the bond exchange
reaction temperature. Some of the catalysts that can be used
for this mechanism are zinc acetate, zinc acetylacetonate, and
tertiary amine [47–49]. Lu et al. [50] synthesized a thermoset

epoxy using phthalic anhydride as the curing agent and zinc
acetylacetonate hydrate as a catalyst. The cross-linked mate-
rial was ground into powder and remolded to simulate heal-
ing. A healing efficiency as high as 88.1% can be reached at a
healing temperature of 150°C for 10 hr. They found that the
efficiency is affected by molding time, temperature, pressure,
particle size, and particle size distribution.

Some issues about the usage of catalysts are the incom-
patibility of the catalyst while mixing, which can reduce the
mechanical properties of the polymeric materials, and the
potential toxicity of catalysis [51]. In order to overcome these
problems, some researchers developed catalyst-free self-
healing materials [52, 53].

Zhang and Xu [54] improved the trans-esterification rates
of a non-catalytically cross-linked epoxy by adding conduc-
tive polymer-wrapped carbon nanotubes. They successfully
cured the epoxy with citric acid, incorporating polypyrrole-
wrapped carbon nanotubes (CNT/PPy) as a dopant. This
technique lowers the trans-esterification temperature and
improves its conductivity.

2.2.3. Metal–Ligand Coordination. Metal–ligand coordina-
tion refers to the organic–inorganic bonding of metals and
ligand atoms associated with the Lewis acid–base. The Lewis
base is an electron donor known as a ligand, whereas the
Lewis acid is an electron acceptor known as a central metal
ion. This system is inspired by the ability of mussels to attach
to various surfaces, utilizing catechol groups as ligands [40].
There are various combinations of metals and ligands that
can be used for this mechanism, with a binding energy rang-
ing from 100 to 300 kJmol−1 [55].

Some advantages of metal–ligand coordination in self-
healing: (1) metal–ligand coordination offers comparable

Noncovalent interaction → Enough strong for material utilization
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Hydrogen bonding
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FIGURE 4: Binding energy of some molecular interaction [40].
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strength with covalent cross-linking material. (2) Multiple
metal–ligand complexes provide near-covalent stabilities
with noncovalent reversible rates and a variety of cross-link
modes ranging from zero to three per metal ion. (3) Metal–
ligand complex can be used to tailor the degree of cross-
linking in polymers dissolved in organic solvents by adjusting
the pH of the solution. (4) The pH-adjustable cross-link kinet-
ics allow easy control of viscoelastic properties [56].

Interaction between ion metals with ligands can be detected
using spectroscopy techniques such as Fourier transform infra-
red (FTIR), Raman, andUV–Vis spectroscopy. Zhang et al. [57]
studied the complexes of Zn2+with –CN in the nitrile butadiene
rubber using FTIR. They found that the peak at 2,280 cm−1

indicates Zn2+ –CN complexes. This peak gradually increases
when the Zn2+ content increases. Raman analysis shows that the
coordination bond of Fe3+with catechol has a peak in the range
of 500–600 cm−1 [5, 56, 58]. On the other hand, UV–Vis analy-
sis shows the absorption peak at 340nm, which indicates the

formation of the complexes of the ion metals with terpyridine
ligand [59]. A summary of these characterizations is shown in
Table 1.

2.2.4. Hydrogen Bonding. Electrostatic interaction is primarily
responsible for hydrogen bonding. The donor atom creates a
bond by effectively sharing its electrons with the acceptor atom.
Water is a liquid over a much wider temperature range than
expected for a molecule of its size because of the substantial
hydrogen bonding. H-bonding interactions typically have
bonding energies between 5 and 30 kJmol−1, which is around
10 times less than the binding energies of covalent bonds. A
small number of H-bonds is insufficient to demonstrate a nec-
essary characteristic. However, the degree of H-bonding inter-
actions and rigidity in the polymer backbone can be fine-tuned
in order to produce the desired qualities [2]. One of the most
often employed methods for creating supramolecular healable
polyurethanes is hydrogen bonding interactions [62].

(ii) Intermolecular acidolysis

(iii) Transesterification

(i) Intermolecular alcoholysis 
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3. Self-Healing Material

3.1. Polyurethane. A family of materials called polyurethanes
has a lot of potential for usage in a variety of applications.
They have a wide range of density, hardness, and stiffness,
which makes it possible to create many kinds of polyure-
thane stretchable fibers, stiff elastomers, flexible and rigid
lightweight foams, and other materials. Polyurethane mate-
rials are widely used in furniture, textile fibers, coatings,
adhesives, artificial leather, and other products [63, 64].

Polyurethane is a type of polymer that is created from the
reaction of alcohol and isocyanate. There are various sources
from which polyurethane can be synthesized, and the poly-
mers are categorized based on the desired properties. Some
polyurethanes are rigid, while others are flexible. Some are
thermoplastic, meaning they can be heated and molded into
different shapes, and some are thermosets. Some are organic-
solvent-based and others are waterborne, meaning they can
be spread on surfaces and absorbed into the material. The
wide range of polyurethane characteristics enables them to be
used as binders, coatings, adhesives, sealants, and elastomers.

Various researchers have reported studies to make self-
healing polyurethane through the extrinsic mechanism
[65–68]. Recently, Xiang et al. [69] reported the manufactur-
ing of polyurethane microcapsules with isocyanate prepoly-
mer as a core material through the interfacial polymerization
of a commercial polyurethane curing agent (Bayer L-75) and
1,4-butanediol (BDO) as a chain extender in an emulsion
solution. The self-healing property of this material enables
healing of cracks within 24 hr.

Polyurethane is also quite popular in the field of intrinsic
self-healing polymer research, as many works have already
been reported [70–72]. An interesting example was reported
by Wang and Urban [22], who developed self-healing poly-
urethanes using multiple metal–ligand bonds. They used
diamidepyridine as a ligand and for the metal ions, they
used ferric chloride, terbium trifluoromethanesulfonate (Tb
(OTf)3), and zinc trifluoromethanesulfonate (Zn(OTf)2). The
superior self-healing ability for this material was attained in
polymers cross-linked by Fe3+ and Tb3+ ions, providing the
polymer with both labile and strong bonds at the same time,
enabling a complete healing [73].

3.2. Epoxy. Epoxy resins are a type of thermoset polymer that
is widely used as adhesives, coatings, and composites. Most
epoxy resins are produced by the reaction of a compound
that contains at least two active hydrogen atoms and epichlo-
rohydrin. After a dehydrohalogenation process, epoxy resin
is created (Figure 6). One type of epoxy resin is DGEBA. The
DGEBA contains two oxirane function groups that allow the
construction of an epoxy with a 3D structure. The maximum
cross-linked level of DGEBA epoxy resin is obtained by adding
aliphatic or aromatic diamines since oxirane is extremely
reactive to nucleophilic substances like amines [74]. Like
almost all thermosets, this material cannot be reprocessed
and recycled. Difficulty in repairing the damaged epoxy is
also a problem in actual application.

To solve this problem, some researchers have developed
epoxy that can heal itself automatically with or without

external stimulus. Both extrinsic and intrinsic mechanisms
can be used to develop self-healing epoxy. Some researchers
employed extrinsic mechanisms using microcapsules and
microvascular networks to develop self-healing epoxy. Jialan
et al. [75] synthesized self-healing microcapsules by in situ
polymerization with urea formaldehyde and epoxy resins as
the wall and core materials consecutively. This technique is
capable of repairing the materials after being damaged.

Altuna et al. [49] developed self-healing epoxy by trans-
esterification mechanism. They used a blend of citric (CA)
and sebacic (SA) acids as a cross-linker. Self-healing epoxy
with Diels Alder mechanism was developed by Turkenburg
and Fischer [41] with a two-step process.

Other researchers try to develop epoxy from renewable
resources. Yang et al. [76] develop self-healing epoxy from
epoxidized soybean oil. Yuliati et al. [77] also develop epoxy
from jatropha and sunflower oils. Merighi et al. [78] devel-
oped a bio-based amino cross-linker for epoxy, and other
cross-linkers based on vanillin and furfural were developed
by Fache et al. [79]. The curing agent with a rigid structure
can improve the mechanical and thermal stability of repro-
cessable epoxy from vegetable oils [80].

3.3. Acrylic. Acrylic polymers are a group of polymers syn-
thesized from esters of acrylic and methacrylic acid mono-
mers. The structure contains a vinyl group next to an ester.
There is a vast variation of the type of the monomers; thus,
the produced polymers possess different characteristics, suit-
able for different applications. These polymers are known for
their clarity, stability against aging, elasticity, easy functiona-
lization, good biocompatibility, and low cost [81, 82].

It is interesting that an acrylic-based polymer has the
ability to heal autonomously without any modification. Fan
and Szpunar [83] studied a commercially available acrylic-
based elastomer (VHB 4910) that had an autonomous self-
healing ability by using a hydrogen bonding mechanism.
When a stripe of the elastomer was cut and put together
with a little pressure. They discovered that at the cut interfaces,
there was an increase in the intensity ratio of hydrogen-bonded

HO OH O
Cl+

O O
O O

NaOH, H2O
70 – 80°C

FIGURE 6: Synthesis of DGEBA from bisphenol A and epichlorohy-
drine [74].
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carbonyl bonds to free carbonyl bonds (Figure 7). This rising
ratio proves that some free carbonyl bonds at the cut interfaces
converted to hydrogen-bonded carbonyl bonds. The toughness
of the healed sample reached about 70% of its original after
being kept at ambient conditions for 960min.

Other studies on self-healing acrylic-based copolymers
employing different healing mechanisms have been studied.
Lessard et al. [53] reported self-healing materials from
methacrylic monomers and a trifunctional amine, showing
repeated healing and recycling abilities from dynamic cova-
lent bonds between primary amines and β-ketoesters. Urban
and Wang [84] found that poly(methyl methacrylate/n-butyl
acrylate) [p(MMA/nBA)] copolymer healed itself by employ-
ing dynamic cross-links via the Van Der Waals interaction.
Davydovich and Urban [85] reported that the same copoly-
mer, although it was hydrophobic, underwent accelerated
healing when water molecules were confined in the polymer.
The same group continued the research by adding a type of
co-monomer and found that the new copolymer was also
reprocessable. Wang et al. [86] developed a poly((2-acetoa-
cetoxy)ethyl methacrylate/methyl methacrylate/n-butyl acry-
late) [p(AAEMA/MMA/nBA)] network that can heal itself
without any external intervention. These materials were
reprocessable by compression molding at 120°C and exhib-
ited several self-healing cycles in ambient conditions.

4. Self-Healing Materials in
Underwater Environment

Compared to the dry condition, self-healing materials in
underwater environments are still limited [17, 87]. Both
extrinsic and intrinsic mechanisms can be used to develop
self-healing materials for wet environments. Self-healing
materials based on extrinsic mechanisms for this application
usually use epoxy with microcapsules or microvascular net-
works that contain an amine-based curing agent as the heal-
ing agent (Table 2). Commonly, a conventional amine-based
curing agent will get deactivated in the presence of water. In

order to solve this problem, a modified curing agent was
developed by using a fluorescent latent curing agent (FLCA).
In the water, FLCA will decompose into a fluorescent dye and
a curing agent, as shown in Figure 8. Furthermore, the epoxy
resin released frommicrocapsules will fill the crack and solidify
after reacting with this curing agent. Self-healing material with
FLCA can be healed underwater at a temperature of 60°C
for 4 hr, and its healing efficiency reached 85.6%. Addition-
ally, the fluorescent dyes can change its color after the crack
is repaired [88].

Ye et al. [89] reported a combination of two kinds of the
microcapsule and a zwitterionic copolymer to make a dual-
functional coating with underwater self-healing and anti-
fouling properties. They prepared the microcapsules based
on polyurea formaldehyde and polymethyl methacrylate as
the shell materials. These microcapsules had excellent ther-
mal stability and were resistant to acid, alkali, and salt solu-
tions. A modified-amine underwater epoxy hardener was
used as an epoxy resin hardener due to its excellent charac-
teristics of underwater quick solidification at low tempera-
tures and good compatibility.

As previously described, intrinsic self-healing involves a
reversible reaction or movement of polymer molecular chains.
The structure enabling self-healing capabilities for underwater
applications are the reversible and dynamic bonds such as
hydrogen bond, boronic–ester bond, metal–ligand interaction,
and imine bond. In order to get these bonds, the polymer
backbone should be modified with some molecules of func-
tional groups, such as ligands, that can interact withmetal ions
or molecules of water via the dynamic bonds. In the metal–
ligand coordination mechanism, the ligands usually consist of
catechol, imidazole, pyridine, or carboxylate groups. Further-
more, these ligands will bind with the ion metals with
metal–ligand coordination bonds. Mechanical properties of
self-healing materials withmetal–ligand coordination depends
on the ligand content and pH of the system [40].

The underwater intrinsic self-healing materials are usu-
ally based on noncovalent bonds such as metal–ligand inter-
action, hydrogen bonds, and Van Der Waals forces. The
ligands that are grafted on the polymeric structure will inter-
act with metal ions to get self-healing polymers. These
ligands usually consist of catechol, imidazole, pyridine, or
carboxylate groups. Furthermore, these ligands will bind
with the ion metals via the metal–ligand coordination bonds.
The level of mechanical properties of self-healing materials
with metal–ligand coordination depends on the amount of
ligand and pH of the solution [40]. The presence of hydroxyl
groups in the polymeric structure is also used to develop self-
healing materials with hydrogen bond mechanisms. In
another research, Yuan et al. [90] developed self-healing
materials from tannic acid (TA) and polyethylene glycol
that can heal in an aqueous solution. Another approach to
develop self-healing materials for underwater applications is
by using Van Der Waals forces, with the advantage of not
being affected by water molecules. Niu et al. [38] developed
self-healing materials from 2-methoxyethyl acrylate and
ethyl methacrylate through the Van Der Waals forces. These
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materials can be healed after being immersed in the water for
24 hr [91].

Table 3 summarizes some reports on underwater self-
healing researches. The table shows that, generally, self-
healing materials for underwater applications have a tensile
strength of less than 3MPa. Although the self-healing mate-
rial that uses epoxy with a boronic-ester mechanism has a
tensile strength of 37.5MPa, its healing temperature is rela-
tively high (80°C) [90]. In intrinsic self-healing, the mobility
of the molecular chains is one of the factors that support the
occurrence of self-healing. The easier the molecular chain
moves, the easier the healing process can occur. Likewise,
when a polymer that has hygroscopic parts is exposed to
water, the mobility of the polymer chains will increase and
result in a decrease in the mechanical strength of the material
[91]. However, the presence of new cross-link bonds that are
formed when the polymer is in water can prevent the
decrease in mechanical strength. An example of a new
cross-link bond that can be formed is a coordination bond
between metal ions in water and catechol [94].

Figure 9 describes reversible imine bonds and hydrogen
bonds involved in the self-healing mechanism in polydi-
methyl siloxane (PDMS) system. PDMS is functionalized
with methylene diphenyl diisocyanate (MDI) and triformal-
dedhyde benzene (TFB). The healing ability of this material
is strengthened by TFB soft phase moieties. The reversible
imine bonds formed via Schiff base reaction because TFB

acts as a chain extender for PDMS. The TFB-based imine
bonds are stable and weak. These bonds also show the revers-
ible potentiality in a soft environment. On the other hand,
the transamination reaction between primary amine and
sterically unhindered imines enables fast healing of cleaved
imine. Hence, a combination of stronger hydrogen bonds
and weaker imine bonds is the basic principle of PDMS-
MDIx-TFB1− x dynamic bond network [98].

Xia et al. [95] developed the lipophilic hyperbranched
polymer, which is functionalized by dopamine and hydro-
philic carbonyl groups and then crosslinked by catechol-Fe3+

complexation. The hydrophilicity of the damaged surface of
this material would be slightly improved because of more
carbonyl groups under the inducement of water. Moreover,
the permeation of water into the subsurface is facilitated by
carbonyl groups. When the polymer is damaged, the sponta-
neous dynamic complexation between catechol and Fe3+ will
be occurred and starts to reconnect the cracked in water.
Figure 10 shows the dynamic rearrangement of the damaged
network during healing with the catechol-Fe3+ coordination
bonds.

Kang et al. [96] reacted bis(3-aminopropyl)-terminated
poly(dimethylsiloxane) (H2N–PDMS–NH) and a mixture of
4,4′-methylenebis(phenyl isocyanate) and isophorone diiso-
cyanate to get elastomeric materials. These polymers had a
healing efficiency up to 78% in the water via the mixture of
strong and weak crosslinking hydrogen bonds. Other researchers

TABLE 2: Extrinsic self-healing materials for underwater environment.

Mechanism Polymer Healing condition Healing efficiency (%) Mechanical properties Ref.

Microcapsule
Diglycidyl ether of bisphenol-A (DGEBA)
polyurea formaldehyde (PUF)
microcapsule

60°C; 4 hr 83.5 Lap shear= 70N [88]

Microcapsule
Epoxy Polyurea formaldehyde (PUF) and
polymethyl methacrylate microcapsule

RT; 48 hr [89]

Hydrolysis

Dehydrolysis

Curing agentFluorescent dyeFluorescent latent curing agent

NN

N
CH3

HO

N
H3C

OH

O

N
CH3

HO

NH2H2N+

FIGURE 8: Structure and reversible reaction of the FLCA in the presence of water [88].
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used the metal–ligand coordination mechanism to develop
self-healing materials. Li et al. [94] developed self-healing
material from poly(dopamine acrylamide-co-n-butyl acry-
late) with dopamine as a ligand and Ca2+ ion. When placed
in seawater, this material was more capable of healing than
when placed in air, with healing efficiency reaching up to 78%
in 24 hr. They also found that the swelling on this material is
higher in freshwater than in seawater. Kim et al. [92, 93]
reported the synthesis of poly(dopamine acrylamide-co-
n-butyl acrylate) (P(DA-co-BA)) that was cross-linked

network polymers with p-phenyldiboronic acids (PDBA)
(P-PDBA) and CaCl2 (P-Ca

2+). They found that the boron-
containing catechol polymer was more stable, transparent,
and highly capable of self-healing in seawater. Additionally,
they discovered that the P-PDBA had superior underwater
self-healing abilities and less water uptake than P-Ca2+. Fur-
thermore, P-PDBA had swollen up to 2wt% while P-Ca2+

100% was swollen up to 20wt%. Xu et al. [39] reported a
self-healing polyurethane from 4,4′-diphenylmethane diiso-
cyanate (MDI) and polytetrahydrofuran (PTMG) with

Imine bondHydrogen bond

Self-healing

HO

OH

OH

Damage

Reversible
imine bond 

Dynamic
hydrogen

bond

N N
O

H2N Si Si Si NH2
O

n

O

O

FIGURE 9: Structure illustration of PDMS-MDIx-TFB1− x based on reversible imine bonds and hydrogen bonds [98].

HealingDamage

Hyperbranched polymer Fe3+

PU prepolymer

HO

HO NH2

= = =

=

FIGURE 10: Restoration of harmed HBPU–DMPA–(Fe(DOPA)3) in seawater with metal–ligand coordination [95].

12 Advances in Polymer Technology



dopamine as a ligand and Ca2+ as a metallic ion. The healing
efficiency of this material in artificial seawater is 84% [39].
Self-healing material from methyl vinyl silicone rubber was
developed by Li et al. [5]. They also used dopamine as a ligand
for this self-healing material. This rubber had healing ability
in a pH 9 solution with the healing efficiency up to 91% in
84 hr [5].

Although these dynamic or reversible chains were designed
to be applied in harsh underwater conditions, none has been
reported to use thesematerials in the depth of actual sea, lake, or
river. Some self-healing polymers using metal–ligand coordina-
tion bonds are highly pH dependent. At low pH, mono com-
plexes are formed, and the stable bis and tris complexes will
appear with the increase of pH. These studies have shown that
the polymers are stable on the high pH (= 9) [17, 95]. Another
study used dynamic Debye forces to develop self-healing mate-
rials for underwater applications on the poly(benzyl methacry-
late)–poly(ethyl acrylate) (PEMA–PEA) elastomer, yielding a
material that can heal in acids, bases, and salts water. This study
also found that the self-healing properties of PEMA–PAE only
occurred on the freshly fractured interfaces [99].

There are some limiting conditions of the environment
to utilize the self-healing materials for underwater applica-
tions, such as pH, type and concentration of metal ions,
temperature, and aquatic microorganisms. For metal–ligand
mechanism, the stronger interaction between metal ions with
ligands will occur at higher pH due to the bis- and tris-
complexes formation [95, 100]. At the low pH, the complex
between metal ions with ligands is relatively unstable. In
contrast with metal–ligand interaction, the hydrogen bond
will be formed at acidic pH [17]. The difference in ionic
solution also affected the adhesion strength of wet adhesive
coatings. Zhao et al. [101] found that there was no wet adhe-
sion when the adhesive was immersed in Fe3+ solution due
to the chemical binding of Fe3+ with 3,4-dihydroxy-L-phe-
nylalanine (DOPA). On the other hand, the adhesive coat-
ings that were immersed in NaCl, KCl, MgCl2, and ZnCl2
had adhesion strengths of approximately 4 kPa.

Besides pH, other factors, such as temperature, have to be
taken into account. Most of the studies about self-healing
materials for underwater application were performed at
room temperature. Thus, we do not know yet whether these
systems can be applied at low temperatures. The effect of
microorganisms, water current, and other significant factors
present in the actual environment is yet unknown. Therefore,
we suggest that the self-healing materials proven to work in
the laboratory to be tested in real environments.

Self-healing processes occurring in the materials can be
evaluated and characterized by physical, mechanical, and
chemical analysis techniques. The physical technique can
be done by visual observation using an optical microscope
or scanning electron microscope. The healing efficiency is
analyzed by comparing the width of scratch or crack before
and after the healing process; unfortunately, these techniques
do not reveal the healing mechanism [102, 103]. Xu et al.
[39] used a polarized microscope to observe the self-healing
abilities of metal–catechol polymers. They made a cut of
about 50 µm by a clean razor blade, and the cut location

was wetted by artificial seawater. Then, the samples were
allowed to heal at room temperature for 30min. The cuts
on the samples had disappeared within this period.

The mechanical techniques to evaluate the self-healing
process such as tensile test and lap shear test. A tensile test is
a standard technique to determine the mechanical properties
of materials. This test also can be used to measure the self-
healing efficiency of materials [102]. Xia et al. [95] measured
the healing efficiency using tensile test. Several dumbbell
specimens were cut in artificial seawater. Afterward, the bro-
ken surfaces were brought into contact for 24 hr in the artifi-
cial seawater at 25°C. Then, the tensile testing was applied to
the healed samples in a chamber full of artificial seawater.
Self-healing efficiency was calculated by comparing the ten-
sile strength of the healed sample and the original one [95]. A
lap shear test can be used to study the adhesion properties of
adhesives. A thin slice of self-healing adhesive is placed
between two plates, and then the sample is tested under
tension until the lap joint breaks. The measured shear
strength can be used to calculate self-healing efficiency.
The advantage of this test is that the fracture surfaces may
be placed into contact in a more controlled manner than the
tensile test [104]. Xia et al. [95] also used a lap shear test to
evaluate the healing efficiency of hyperbranched polyure-
thane (HBPU) with functional catechol. Two iron plates
were bonded with this polymer and tested in the seawater.
After the first failure, the iron plates were rebonded and
tested again in the seawater. These cyclic experiments indi-
cate that the polymer has the capability to repeatedly self-
heal in seawater. In order to achieve effective healing, a close
contact between the damaged surfaces must be present.

The chemical techniques to characterize self-healing pro-
cesses are FTIR, Raman spectroscopy, and EIS. FTIR is a
commonly used technique to verify the healing function by
comparing the pristine and healed materials [104]. Kim et al.
[92] analyzed the dynamic crosslinking of catechol-functionalized
polymers with PDBA using FTIR spectroscopy. They found
that two peaks at 1,243 and 1,254 cm−1 from phenolic groups
of catechol were merged into a single peak at 1,248 cm−1 as a
result of esterification of catechol and boronic acid groups.
The coordination between catechol and PDBA acted as a
dynamic crosslinker in this catechol-based polymer [92].
Raman spectroscopy is another method to detecting and
monitoring chemical reactions. The analysis of chemical shifts
in self-healing polymers synthesized through the cross-
linking of terpyridine-Fe2+ metal complexes can be per-
formed using this technique [102]. Fan and Szpunar [83]
analyzed the hydrogen bonding between carbonyl and
hydroxyl groups on acrylic elastomer using Raman spectros-
copy. They found that the peak intensity ratio of the
hydrogen-bonded carbonyl groups to the free carbonyl
groups increased with a closer distance between the cut inter-
faces. This increasing ratio proves that some free carbonyl
groups were converted at the cut interfaces to hydrogen-
bonded carbonyl groups. Another researcher studied the
self-healing mechanism of waterborne polyurethane with
tunable disulfide bonds. In this study, the peak intensity of
the disulfide bonds of 2-hydroxyethyl disulfide in waterborne
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polyurethane cannot be detected in FTIR spectra. Therefore,
they used Raman spectra to observe stretching vibration peaks
of disulfide bonds at 510 cm−1 [105]. EIS is an analysis tech-
nique that is used to assess the performance of the self-healing
process of underwater scratched coatings. Koochaki et al.
[106] chose EIS as a noninvasive probe technique because it
can indirectly monitor the formation of the polyurea inside
the crack on the polymer coatings. Hao et al. [107] conducted
an EIS test to evaluate the self-healing performance of the
acrylic coating that contains corrosion inhibitor loaded into
metal–organic framework-199 (MOF-199). A scratch with a
length of 2mm was applied on the sample prior to the self-
healing test. EIS test was conducted by immersion of the
damaged coating in 3.5 wt% NaCl with an amplitude of
20mV at the frequency range from 105 to 10−2Hz.

5. Self-Healing Polymer Application in
Underwater Condition

5.1. Coating. One of the purposes of coating is to protect the
substrate from corrosion. However, the coating can be dam-
aged during long-term exposure to the environment. This
damage can be caused by heat, chemicals, mechanical loads,
UV light radiation, microorganisms, and fluid flow [1, 108–111].
In the marine environment, fluid flow has a significant impact
on the thickness and surface roughness of the coating (Figure 11)
and results in the deterioration of the barrier properties of the
coatings [108]. Degradation of epoxy coating in the deep-sea
environment was simulated by Meng et al. [112]. They found
that the synergistic effects of fluid flow and hydrostatic pressure
can accelerate the coating failure. Therefore, the damage that
occurs to the coating needs to be repaired.

There are several techniques to protect metals from corro-
sion, such as environmental modification, design improvement,
potential change, coating, and plating. Among these techni-
ques, coating is the most widely used because it is effective,
simple to use, and cost-efficient [113, 114]. Conventional
coatings have low adhesion strengths in the water, so they
cannot resist the erosion from the water [115]. Based on
this problem, researchers develop coating specifically tailored
for underwater applications.

In addition, the aqueous environment may affect the
reactivity of the healing agent or active site [14]. Coating
thickness for marine applications is usually around 250 µm,
which is thicker than conventional coating [116]. The need
for coatings for these marine applications reach around USD
4 billion by 2020 and will continue to increase as trade and
marine activities grow [117].

Several strategies have been developed to make healable
underwater coating materials. Shen et al. [14] developed an
anticorrosion coating based on infiltrating paraffin wax within
a microsized polypropylene network. This coating can be
healed by NIR laser irradiation underwater once damaged.

Some researchers developed a self-healing coating for
underwater environments. Wang et al. [118] synthesized
graphene oxide–mesoporous silicon dioxide layer–nanosphere
structure loaded with TA (GSLNTA) as a self-healing coating
additive. The GSLNTA showed a self-healing capability in an
alternating hydrostatic pressure environment. Zhang et al.
[119] developed a novel healing agent from fatty acid-based
epoxy ester in microcapsules. They found that the fatty acid-
based epoxy ester is applicable for anticorrosive smart self-
healing coating. Ghomi et al. [120] added titanium dioxide
(TiO2) functionalized with 3-(triethoxysilyl) propyl methacry-
late and absorbent acrylamide/acrylic acid (AA) copolymer
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into epoxy resin to develop a self-healing epoxy coating. This
approach can generate a healing efficiency up to 94% [120].
The coating preparation and self-healing mechanism of this
coating are illustrated in Figure 12.

Although the development of self-healing materials exper-
imentally shows a positive trend, computational research is
also done to gain a better understanding on the experimental
observations. Javierre reviewed different modeling frameworks
that focus on the healing mechanisms of polymeric materials.
One example is the dynamic adaptation of the network of
molecules, the degradation and restoration of the material’s
mechanical properties, and the movement and reaction of
various species within the matrix. Computational simulation
based on these models is a complementary tool in materials
development [121].

Coatings with macroscale damages are easy to be visually
observed. However, the nano- or microscale damages on
coatings are difficult to observe manually without specialized
instruments. Therefore, some researchers develop techniques
to detect the damage or crack location by using fluorescent or
color indicators [122, 123]. Thus, the damage that occurs on
the coating can be easily to be detected.

5.2. Adhesives. Adhesives are nonmetallic substances applied
to the surfaces of two separated objects to prevent further

separation [124]. Most adhesives are liquid and have good
wettability and weak cohesive strength before application.
Once applied, the liquid dries to form a solid with good
cohesive strength [125]. Some industries use adhesives
because they are strong and flexible, which makes them suit-
able for many purposes [126].

In the dry condition, the adhesive can employ the Van
Der Waals forces, static electricity, and hydrogen bonds.
Unfortunately, these mechanisms are less effective for wet
or underwater applications [18]. Reversible adhesion in the
wet conditions is challenging to achieve due to the complex
interfacial interaction [101]. In water, the adhesion between
substrates is more difficult to achieve because water can pre-
vent and deteriorate adhesion [125]. To solve these pro-
blems, the interfacial interaction of adhesives has to be
improved to accomplish a perfect underwater bonding [127].

Zhao et al. [101] reported reversible bio-inspired adhe-
sive for the underwater environment by host–guest interac-
tion mechanism. They polymerized dopamine, adamantine,
and methoxyethyl acrylate monomer to form a guest copol-
ymer and poly(N-isopropylacrylamide) and β-cyclodextrin
to form a host copolymer. This adhesive had an adhesion
strength of 4,370mJm−2 at a temperature of 40°C and also
had a good performance in the acid solution.
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FIGURE 12: Coating preparation and self-healing mechanism illustration. Figure reproduced from the study of Ghomi et al. [120] with
permission from Elsevier.
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Cheng et al. developed a hydrogel made from ionic liquid
(1-butyl-3-methylimidazolium chloride), AA, and FeCl3–6H2O
through one-pot method. The self-healing efficiency of this
material reached 80.5% at room temperature. This hydrogel
also showed a good underwater adhesion for wood, rubber,
and glass [128]. The other self-healing hydrogel adhesives for
wet environments were developed by Luo et al. [129]. These
adhesives are derived from silk fibroin and TA. Das et al. [130]
developed a repeatable adhesive based on a copolymer with
cation-catechol and aromatic functional. This adhesive showed
a stronger adhesion in seawater than deionized water

5.3. Composites. The use of polymer composite materials has
increased yearly and is predicted to reach $113.6 billion by
2024. Carbon fiber-reinforced plastic (CFRP) composites are
attracting attention because of the increasing demand for
lightweight structures, particularly in the construction of
buildings and other large structures [33, 131]. Kessler et al.
[132] reported the use of a DCPD healing agent encapsulated
in microcapsules in order to prevent delamination failure of
CFRP composites (Figure 13(a)). Another CFRP was devel-
oped using thermal responsive healable polyurethanes with
DA cycloaddition adducts (Figure 13(b)) [133]. These com-
posites can repeatedly be healed, with the first healing cycle
efficiency averaging around 85% and the second healing
cycle around 73%.

Feng et al. [88] reported a fabrication of composites with
underwater self-healing ability using microcapsules. They
used FLCAs that were stored in the microcapsules. These
fluorescent dyes could indicate the scratches and healing
area visually. The optimum microcapsules and FLCAs con-
tent for these composites was 15 and 6wt%, respectively.
Meanwhile, the optimal healing condition can be reached
at a temperature of 60°C for 4 hr in the water (Figure 14).

6. Conclusions

Self-healing materials have been widely used for various
applications. The development of self-healing materials has
been carried out by many researchers using extrinsic and
intrinsic mechanisms. However, the use of these materials
for wet environments still has challenges. This is due to the
presence of water molecules, which will encourage plastici-
zation of the polymer and reduce its mechanical properties.
Although there are various self-healing mechanisms, only a
few are used in wet environments, namely microcapsules,
metal–ligand coordination, Van Der Waals bonds, hydrogen
bonds, disulfide bonds, boronic esters, and imine bonds. Self-
healing materials in wet environments are used for industrial
purposes such as coatings, adhesives, and as a matrix in
composites. Self-healing materials for underwater, which
can heal at room temperature, mostly have a tensile strength
of less than 3MPa. The ones with higher tensile strength
require high temperature to heal. The low tensile strength
problem can be solved by using a combination of different
healing mechanisms. Although these materials were
designed to be applied in harsh underwater conditions,
none has been reported to use these materials in the depth
of actual sea, lake, or river. The effect of microorganisms,

water current, and other significant factors present in the
actual environment is yet unknown. Further studies are
needed to answer these challenges. Solving the problems
could give benefits to the underwater equipment and have
a great impact on science, technology, and economy.
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