Learning with a lazy eye: a potential treatment for amblyopia

B S Webb, P V McGraw and D M Levi

Br. J. Ophthalmol. 2006;90:518-
doi:10.1136/bjo.2006.090175

Updated information and services can be found at:
http://bjo.bmjjournals.com/cgi/content/full/90/4/518

These include:

References
This article cites 6 articles, 4 of which can be accessed free at:
http://bjo.bmjjournals.com/cgi/content/full/90/4/518#BIBL

Rapid responses
You can respond to this article at:
http://bjo.bmjjournals.com/cgi/eletter-submit/90/4/518

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
Other ophthalmology (2150 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to British Journal of Ophthalmology go to:
http://www.bmjjournals.com/subscriptions/
None of the authors has any financial or proprietary interest in any material or method mentioned.

References

Recent studies have shown that this form of neural plasticity is not restricted to the normal visual system. Indeed, with an appropriate training regime one can produce a marked improvement in visual performance of the adult amblyopic eye. Perceptual learning produces a 50–60% improvement in Vernier acuity (positional acuity) and, crucially, in some subjects this improvement in Vernier acuity transfers to other forms of spatial discrimination such as Snellen acuity. By way of one example, amblyopic observers improved from a pre-training value of 20/42 (6/12), attaining 20/20 (6/6) after extensive training on the Vernier task. This suggests that the adult amblyopic visual system retains a great deal more neural plasticity than previously supposed. Such improvements in visual performance are not limited to acuity tasks. A longitudinal study found that training on a contrast detection task led to a twofold improvement in the contrast sensitivity of the amblyopic eye, with minimal “slippage” 12 months after the cessation of training.

At present, relatively little is known about the benefits of perceptual learning in childhood amblyopia, although these findings are encouraging. Given the greater degree of neural plasticity in the developing visual system, one would imagine that the benefits of perceptual learning might greatly outstrip those observed in the adult population. Having said this, a recent study on the efficacy of perceptual learning in previously treated amblyopic children did not support this supposition. While the children (aged 7–10, beyond the sensitive period as defined by Hoyt) showed significant improvements after 7–10 sessions, the results were no better than those of adults. Further work with “fresh” (untreated) and younger amblyopes is required to corroborate and extend these initial findings to younger children, and to determine the “dose-response” function for perceptual learning.

Several large scale clinical studies in the United Kingdom and United States have shown that standard occlusion therapy is effective in treating human amblyopia. However, the benefits are far from universal and a significant number of children (about one third) gain little or no visual benefit despite protracted treatment. This is unfortunate that given occlusion therapy is difficult to implement, is often associated with some degree of distress to the child, and may have an impact on educational development.

Hoyt correctly notes in his original editorial, no alternative treatment strategies currently exist for these individuals. The development of perceptual learning as a clinical tool may modify this situation and provide an alternative method both for the treatment of amblyopia and for eliminating or reversing “slippage” once treatment has ceased. Moreover, if the initial perceptual learning studies in children with amblyopia withstand further experimental scrutiny and deliver encouraging results in younger and previously untreated children, the 250 year old practice of “patching” the amblyopic eye may be supplant or at least supplemented by a new treatment protocol.

Learning with a lazy eye: a potential treatment for amblyopia

In a thought provoking editorial in the BJO, Hoyt raises two very important issues relating to the treatment of human amblyopia. Firstly, there is currently no effective alternative to occlusion therapy for treating amblyopia. Secondly, there is considerable “slippage” of visual acuity after cessation of occlusion therapy. Our sole purpose in responding to this editorial is to draw attention to some very recent work, showing significant long term improvements in visual performance in the adult amblyopic eye that, potentially, could be adapted for use as an effective alternative to occlusion therapy.

Visual perceptual learning—improved visual performance on a given psychophysical task after extensive training—is a well established phenomenon in the normal visual system. This form of learning is often tightly coupled to stimulus characteristics encoded early in visual cortex, such as the orientation or spatial frequency (size) of a visual stimulus. The stimulus specificity of perceptual improvements through training suggests that some aspect of neural processing, whether it be the tuning of individual neurons or the weighting of synaptic connections, remains malleable or “plastic,” even in the adult visual system.