Sensitivity of Nocturnal Boundary Layer to Tropospheric Aerosol Radiative Forcing Under Clear Sky Conditions

Udaysankar S. Nair1, Richard McNider2, Falguni Patadia1, Sundar A. Christopher1,2 and Kirk Fuller1

1Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Drive
Huntsville, Alabama 35805

2Department of Atmospheric Science, University of Alabama in Huntsville
320 Sparkman Drive
Huntsville, Alabama 35805

Journal of Geophysical Research

December 17, 2009
Revised, February 17, 2010

1 Corresponding Author: U.S. Nair, Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805 E-mail: nair@nsstc.uah.edu Phone: 256-961-7841
ABSTRACT

Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A one-dimensional version of the Regional Atmospheric Modeling System (RAMS) is used to examine the sensitivity of the nocturnal boundary layer temperature to surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations, for typical mid-latitude nocturnal boundary layer case days from the CASES-99 field experiment. The analysis is further extended to urban sites in Pune and New Delhi, India. For the cases studies, locally the nocturnal SLWRF from urban atmospheric aerosols (2.7 – 30 W m\(^{-2}\)) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m\(^{-2}\)), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately four times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth (AOD). Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 W m\(^{-2}\) to 1 W m\(^{-2}\) when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.
1 Introduction

Surface air temperature observations in the last century show a clear trend of nighttime minimum temperatures increasing at a rate twice that of the daytime maximum temperature except during the 1979-2004 time period when the rate of increase of both maximum and minimum temperatures are approximately the same [Dai et al. 1999; Karl et al. 1984, 1993]. This asymmetry in the trends of maximum and minimum temperatures have decreased the diurnal temperature range (DTR) over the land surface throughout the globe with the exception of weak increases in central Canada and southeastern Australia [Karl et al. 1993]. While the DTR decrease is present in every season, in most areas the largest decreases occur during the Northern Hemisphere Summer and Fall seasons. There is considerable debate regarding the mechanisms responsible for the DTR decrease [IPCC 2007; Dai et al. 1999]. Some suggested factors responsible for this increase include urban heat islands, greenhouse gases, clouds, land use changes, and tropospheric aerosols [Balling et al., 2003, Braganza et al., 2004a; Kalnay and Cai, 2003; Pielke et al., 2007; Zhou et al., 2007]. Heat island effects would initially appear to be a viable mechanism because minimum temperatures are more susceptible to urban thermal inertia. However, DTR climate trend analyses often attempt to remove these urban effects [Karl et al., 1984].

Global Circulation Model (GCM) sensitivity studies show that increased concentration of greenhouse gases such as CO₂ and CH₄ also cause changes in DTR. However, comparative studies with state-of-the-art GCMs reveal differences in the magnitude and even the sign of DTR trends among the models. These studies also reveal large discrepancies between modeled and observed DTR trends [Karl et al., 1993]. Based
on these results, Karl et al. [1993] and Stone and Weaver [2003] concluded that the land
surface parameterizations or physics in existing GCMs may not be robust enough to
correctly capture the observed DTR signal. Walters et al. [2007] also proposed that the
coarse resolution in GCMs may not correctly capture the sensitivity of the nocturnal
boundary layer to either external forcing or parameters describing the land surface
characteristics.

Cloudiness trend is another factor that needs to be considered in interpreting
observed DTR trends. Dai et al. [1999] examined the physical and statistical relationships
of clouds, precipitation, and soil moisture in the First International Satellite Land Surface
Climatology Project (ISLCP) Field Experiment (FIFE) data. They showed that clouds
could change the DTR, and that soil moisture was less important than clouds. Using this
evidence, and some historical measures of cloudiness trends, they concluded that
cloudiness was the most likely cause of the DTR change. Hansen et al. [1995] showed
that clouds were apparently the only adjustable GCM parameter that could damp the
DTR to its observed magnitude. However, the GCMs often lack adequate vertical
resolution in the nocturnal boundary layer (NBL) and do not include explicit treatment of
aerosol microphysics. As will be shown in this paper, aerosols would provide a similar
response signal to that of a change in cloudiness. Further, while cloudiness trends are
uncertain, anthropogenic aerosol loading in the atmosphere has definitively increased in
the last century [Ramanathan et al., 2001a]. Recently, [Kalnay and Cai, 2003] conducted
a long-term reanalysis of modeled and observed data. This study showed that changes in
land surface usage, including irrigation, contribute significantly to the observed DTR
trends. Irrigation would have the expected effect of lowering daytime temperatures due to
evaporation, and raising nighttime temperatures due to the higher heat capacity of wet soils and well-hydrated vegetation. However, rigorous statistical verification of this mechanism would be difficult because surface moisture availability is not routinely measured. Moreover, the DTR has decreased in some areas where irrigation effects would be minimal, such as the eastern United States. All in all, with the uncertainties in long-term cloudiness trends and the persistent deficiencies in GCM surface land processes, there is still considerable uncertainty in explaining the DTR trends.

Increases in tropospheric aerosol concentrations have also been suggested as a significant factor in the DTR trends [Stone and Weaver, 2003; Braganza et al., 2004a, 2004b; Makowski et al., 2008]. Makowski et al. [2008] attributes long-term trends in DTR mostly to modulation of incoming solar radiation through the direct and indirect aerosol effect. Most aerosol studies [IPCC, 2007] have concentrated on the direct radiative effect of aerosol scattering and the indirect effects of aerosols in clouds [see Yu et al., 2002 for a comprehensive review]. Both effects tend to increase the planetary albedo and reduce daytime temperatures. Recent global-scale aerosol studies [Koch et al., 2007] have begun to demonstrate the importance of carbonaceous aerosols, especially elemental carbon (EC), to the atmospheric aerosol budget. EC aerosols serve as net warmers of the planetary boundary layer (PBL) and the free troposphere. This effect would counter aerosol cooling in the daytime and reduce surface cooling at night. Detailed reviews of aerosol measurement and modeling studies [IPCC, 2007] have concluded that the foregoing aerosol effects are potentially significant (with magnitudes comparable to the predicted warming from greenhouse gases), but also very poorly
understood (the magnitude of the net uncertainty is comparable to the aerosol effects; the sign is unknown).

The majority of research studies on aerosol radiative interactions focus on the daytime interaction of aerosols with solar radiation through both direct and indirect pathways. However, there are relatively few studies that address the radiative impact of aerosols on the nocturnal boundary layer [Estournel et al., 1983; Garratt et al., 1990; Jacobson, 1997; Venkatram and Viskanta, 1977; Yu et al., 2002; Zdunkowski et al., 1976]. Even though these studies address various aspects of aerosol radiative interaction with NBL, a systematic analysis that includes spatio-temporal variations of the NBL and aerosols is lacking. Zdunkowski et al. [1976] conducted a detailed analysis of the impact of air pollution on PBL including the hygroscopic growth of aerosols. While the numerical modeling experiments of Zdunkowski et al. [1976] did not explicitly consider effects of diurnal asymmetries in atmospheric aerosol loading [diurnal variations in aerosol optical depth (AOD) resulting from changes in aerosol mass concentration, chemical composition, particle size, etc.], they noted that dense haze cover at nighttime following a clear day will lead to warming at the surface. Jacobson [1997] used a detailed air pollution modeling system to examine the impact of aerosols on the PBL, including the nocturnal effects. Even though the modeling system captured the diurnal variability of aerosol loading, the study did not focus on the role of nocturnal heating and DTR trends.

It is the purpose of this study to investigate the response of the nocturnal boundary layer to longwave aerosol radiative forcing. Simple models [Pielke and Matsui, 2005] have indicated that due to the shallow nature of the nocturnal boundary layer under light winds, the temperature response to longwave forcing may be large. Additionally,
Walters et al. [2007] showed that the forcing itself may change the boundary layer height causing a mixing of heat down from aloft. This mixing of heat from aloft acts as a multiplier effect to the direct warming due to the added radiation. While both of these studies dealt with increases in downward longwave radiation into the surface from greenhouse gases, similar responses might be expected from downward longwave radiation to the surface from aerosols. Also, both of these studies employed simple models. Pielke and Matsui [2005] employed a semi-empirical analytical formulation that did not incorporate full nonlinear dynamics between the surface and the atmosphere. Walters et al. [2007], while including full nonlinear interaction with the surface, only employed a two-layer atmosphere. The present study will examine the response of a full nonlinear multi-level atmospheric model (a one-dimensional version of the Regional Atmospheric Modeling System - RAMS) to aerosol radiative forcing. The experimental design and description of the numerical modeling system used are described in section 2, while results, discussion of the analysis and conclusions are presented in sections 3, 4 and 5 respectively.

2 Methodology

2.1 Experimental Design

The primary goal of this study is to assess the immediate direct effect of surface longwave radiative forcing (SLWRF) from urban aerosols on nighttime surface air temperatures and gain an understanding of conditions and processes through which surface air temperature is impacted. Also of interest is to compare the impact of SLWRF from atmospheric aerosols to doubled atmospheric carbon-dioxide. This is achieved by conducting sensitivity analysis on typical cases of observed, stable nocturnal boundary
layer (SNBL) development using a one-dimensional version of RAMS. While this study is a sensitivity analysis, it is important to note that the experiments are based on a nocturnal boundary layer that has the physical attributes of observations. As noted by Steeneveld et al. [2006] and Walters et al. [2007], models often have difficulties capturing the dynamic range of boundary layer cooling at night due to anomalous numerical diffusion or profile formulations that preclude strong stability. Such models will not be sensitive in resolving the effects of relatively small perturbations in longwave radiation at the surface. Thus, this study adopts an experimental design where RAMS is used to simulate typical SNBL case study days of 21-22 October 1999 from the Cooperative Atmosphere-Surface Exchange Study [Poulos et al., 2002] held in 1999 (CASES-99) near Leon, Kansas (37.65°N, 96.73°W) with the objective of improving the understanding of processes relevant to the SNBL. The days used in this study are typical SNBL case days that are the focus of other modeling studies [Steeneveld et al., 2006]. The experimental design utilized in this study establishes the capability of the model to faithfully simulate these typical SNBL case days by comparing model simulations against detailed field observations of surface meteorology and energy fluxes collected during CASES-99.

Sensitivity experiments are then conducted for these case days by modifying the validated control experiment (C1), by including radiative forcing from typical urban aerosols (U1) and doubled atmospheric carbon dioxide (X2, see Table 1 for description of all the experiments). Additional sensitivity experiments, U2 and U3 are conducted to examine the impact of diurnal variation in atmospheric aerosol loading, D1 to address the impact of other aerosol types on SNBL development, while C2 and U4 are used to
examine how soil moisture modulates the impact of aerosol surface radiative forcing on surface air temperature.

The analysis is then extended to urban locations where detailed observations are not available for initialization and validation, but for which aerosol characterization is available. The experiments U5 and U6, utilize urban aerosol composition characteristic of two urban sites in India, namely Pune [Panicker et al., 2008] and New Delhi [Singh et al., 2005] respectively, valid for the time period December 2004-January 2005 and April-June, 2003 respectively. The U5 and U6 experiments are compared against C3 and C4 which are experiments that are identical to U5 and U6, except for the assumption of clear air conditions in order to examine whether the results obtained for CASES-99 site is also applicable to other areas.

Note that the experiments used in this study are not climate experiments since they do not look at the cumulative impact of either aerosols or greenhouse gases. Rather, they provide an examination of the direct sensitivity of NBL to these forcings.

2.2 Description of RAMS

This study utilizes RAMS, Version 4.4, modified to include radiative interactions of aerosols, to study the impact of aerosols on nocturnal boundary layer development. RAMS is a nonhydrostatic atmospheric model used to simulate a wide range of atmospheric phenomenon [Cotton et al., 2003] and utilizes finite difference approximations to solve conservation equations of mass, momentum, heat, and different water phases. Cloud and precipitation processes are represented in the model through either convective parameterization or explicit parameterization of cloud microphysics. RAMS provides a variety of options with varying sophistication for representing subgrid-
scale turbulence. Land surface processes are simulated using a multi-layer soil model and the Land Ecosystem Atmosphere Feedback (LEAF-2) model [Walko et al., 2000]. While radiative transfer schemes of varying complexity [Mahrer and Pielke, 1977; Chen and Cotton, 1983; Harrington et al., 1999] are available in RAMS, none account for radiative interactions with aerosols. RAMS was modified to include a Delta four-stream radiative transfer scheme of Fu and Liou [1993], referred from hereon as FL-RTS [Wang and Christopher, 2006; Wang et al., 2006]. Aerosol characterization within FL-RTS is based on the Optical Properties of Aerosols and Clouds (OPAC) based on Hess et al. [1998].

2.2.1 The FL-RTS

The FL-RTS is a plane-parallel radiative transfer model [Fu and Liou, 1993] that computes upwelling and downwelling radiative fluxes at specified, discrete locations within an atmospheric column. The FL-RTS divides the radiation spectrum into six broadbands in the shortwave (SW) part (0.2–4 μm), with the first bands (0.2–0.7 μm) being subdivided into ten subbands. The longwave (LW) part of the spectrum (4–37.5 μm) is subdivided into twelve broadbands. Gaseous absorption characteristics within these bands are computed using the correlated k-distribution method [Fu and Liou, 1992]. A delta function is used to model the forward scattering by clouds and aerosols. The FL-RTS provides the option to be configured either in the two or four stream mode for radiative flux computations. Fu and Liou [1993] show that the FL-RTS irradiance estimates are within 0.05% of line-by-line calculations.
2.2.2 The OPAC Aerosol Types

The OPAC is a software package for specifying optical properties of clouds and aerosols as a function of wavelength. Single scattering albedo (ω_o), asymmetry parameter (g) and extinction coefficient (β_{ext}), for individual aerosol components and aerosol types (mixture of components), are available at 61 wavelengths between 0.25 and 40 μm and at eight relative humidity values between 0–99%. These optical properties along with vertical distribution information are needed to specify aerosol radiative interactions in the model. The OPAC assumes a lognormal size distribution for aerosols and optical properties of individual components are computed assuming number concentrations of 1 cm$^{-3}$ and therefore require appropriate scaling for differing situations. Aerosol types in OPAC range from clean and polluted continental conditions to Arctic and Antarctic types which are composed of specific mixes of individual components. The OPAC aerosol types utilized in this study, namely Urban and Desert types differ both in composition and microphysics (Table 2). Urban aerosol types have relatively high number concentrations of water soluble and soot components, but smaller particle sizes in comparison to desert aerosol types dominated by accumulation and coarse mode mineral components (see Table 2). This study specifically focuses on Urban and Dust aerosol types since prior studies report substantial SLWRF associated with these aerosol types and thus the potential to impact SNBL evolution. The other two aerosol types considered in study are essentially OPAC aerosol types modified to conform to characteristics of urban aerosols observed over Pune and New Delhi, India, as reported in Panicker et al. [2008] and Singh et al. [2005]. The aerosol type for Pune, India, valid for the time period December 2003 through January 2004, is the OPAC Urban type with the number density
of the components modified (Table 2) to match the observed AOD, Single Scattering
Albedo (SSA) and Asymmetry Parameter (ASP). Using a similar approach, Singh et al.
[2005] found the pre-monsoon aerosol characteristics to be a mixture of the OPAC Urban
and Desert aerosol types (Table 2).

2.2.3 Calculation of Aerosol Optical Thickness

Aerosol Optical Depth (AOD) is computed following Hess et al. [1998] by assuming exponentially decreasing number concentrations with height as given by equation 1:

\[
N(z) = N(0)e^{-\frac{z}{H}}
\]

(1)

where \(z\) is the altitude above ground in kilometers and \(H\) is the scale height in kilometers. The scale height specifies the nature of decrease of number concentration with height, with increasing values describing smaller variation with height. Based on aerosol vertical distribution described by (1), AOD of an atmospheric layer contained between height levels \(z_1\) and \(z_2\) (\(z_1 < z_2\)) is given by:

\[
\tau_\lambda(z_1, z_2) = \int_{z_1}^{z_2} \beta_{\text{ext}}(z = 0, \lambda, RH)e^{-\frac{z}{H}}dz = \beta_{\text{ext}}(z = 0, \lambda, RH)H\left(e^{-\frac{z_2}{H}} - e^{-\frac{z_1}{H}}\right)
\]

(2)

where \(\lambda\) is the wavelength, \(RH\) is relative humidity. For each aerosol type, OPAC outputs \(\beta_{\text{ext}}\) at \(z = 0\), computed using specified number concentrations of individual components. OPAC specifies the total physical thickness of Urban and Desert aerosol layers as 2 and 6 km and the scale heights to be 8 and 2 km respectively. Based on these parameters, the computed values of AOD at 0.55 \(\mu\)m and 80% RH for Urban and Desert aerosol types are 0.643 and 0.286, respectively. The OPAC Urban AOD is consistent with values over
polluted regions in Africa, India, and China [Ramanathan et al., 2001b; Smirnov et al., 2002; Pandithurai et al., 2007]. Since OPAC provides the optical properties only at eight discrete RH values, linear interpolation is used to determine aerosol optical properties at other RH values. Note, in addition to the mixed layer aerosol types, OPAC also suggests the use of a background aerosol type for the free troposphere (τ~ 0.013), stratospheric aerosol layer (τ~ 0.005), and if applicable, a transported mineral aerosol layer (τ~ 0.097). In this study, only the impact of the boundary layer aerosols is considered and the effect of other categories is ignored.

2.3 Numerical Model Configuration

Numerical experiments consist of 1D simulations of atmospheric boundary layer development over a 48-hour period starting from initial conditions characterized by evening radiosonde observations. A pseudo one-dimensional configuration of RAMS to simulate atmospheric boundary layer development using a domain of 5 × 5 grid points is used with cyclic boundary conditions along the lateral boundaries. A sufficiently large grid spacing of 10 km in the x and y directions is utilized so that the model is incapable of resolving large eddies. Vertical grid structure, surface characteristics, and other relevant information are provided in Table 3.

For the CASES-99 case days, when the soil model is directly initialized using soil moisture observations, model-simulated latent heat fluxes are negligible compared to observations. Latent heat flux observations are not negligible however, and thus suggest that while the local soil moisture observations in the 0–25 cm layer are dry, it may not be reflective of large-scale conditions. Therefore the soil moisture content in this layer was systematically altered until close agreement was obtained between observations and
model-simulated sensible and latent heat fluxes, 2 m temperature, and relative humidity. The altered soil moisture profile was utilized in all the other experiments.

In the urban site experiments (U5-U6), soil moisture and temperature observations are not available and therefore information from the National Center for Environmental Prediction (NCEP) Reanalysis dataset was utilized to initialize the soil model. Note that the soil moisture values from the NCEP Reanalysis are average conditions for 2.5 × 2.5 degree grid cell. Similar to C1 experiment, the soil moisture was adjusted until there was relatively good agreement between the observed 2 m temperature and relative humidity is obtained for U5 and U6 experiments.

3 Results

The sensitivity analyses discussed in the following sections utilize specific days from CASES-99 (21-22 October 1999). Additional experiments conducted for the time period 23-25 October 1999 CASES-99 days yielded similar results and thus are excluded for brevity.

3.1 Comparison of the CASES-99 Control Simulation to Observations

Observations of downwelling solar radiation (Figure 1a) show the presence of clouds in the time period centered around local solar noon on both 21 and 22 October 1999 making comparisons to model simulations complicated. Cloud cover appears to be more optically thick and persistent on 21 October when compared to 22 October. Comparison to observations on the 22 October shows the FL-RTS generally overestimating the downwelling shortwave with a maximum difference of 61 W m⁻². During the late afternoon hours for both days, when clouds are not present, mean error
between model simulation and observations is approximately 5%, slightly higher than the
than the 3% error estimated by Christopher et al. [2003].

Downwelling longwave radiation at the surface (Figure 1b) from FL-RTS compare well with observations during both nights (differences of less than 2%), while there are considerable differences during the first day (maximum of 18%). Significant daytime differences during the first day may be related to the presence of clouds. During the second night, there is again close agreement between model and observations with differences averaging less than 2%. During the second day, there is better agreement between the simulation and observations during the morning hours, but larger deviations in the afternoon. However, note that there was a frontal passage through the area at this time which the model does not capture.

There is good agreement between the observed and model-simulated upwelling longwave radiation from the surface (Figure 1c), except during the afternoon hours of the second day when the frontal passage occurred. Simulated patterns of surface sensible and latent heat fluxes (Figure 1d,1e), though very similar to observations, lag the observations by approximately half an hour. The heat and moisture fluxes show significant variability during the first day due to cloudiness. During the second day, the variability is much less and the maximum amplitudes of observed and simulated patterns of sensible and latent heat fluxes differ by ~40 W m⁻² and 15 W m⁻² respectively. The RAMS simulations of temperature and humidity patterns are also consistent with observations during the first day, but differ during the second day due to frontal passage.
3.2 Radiative Impact of Urban Aerosols and Doubled Carbon Dioxide

While top-of-atmosphere shortwave and longwave radiative forcing metrics are utilized in Earth radiation budget studies, radiative forcing at the surface is the metric that is most relevant for this study. For given land surface conditions, the surface air temperature, heat, and moisture fluxes to the atmosphere are most sensitive to net radiative energy available at the surface. Thus surface shortwave and longwave radiative forcing are the appropriate metrics for analyzing the impact of atmospheric aerosols on boundary layer development and will be utilized in the analysis of the experiments conducted in this study.

In the shortwave part of the spectrum, when comparing the control (C1), urban aerosol (U1) and doubled CO₂ experiments (X2), significant differences are observed only between the C1 and U1 experiments (Figure 2a). The downwelling shortwave radiation at the surface is significantly reduced in the U1 experiment, with differences of up to 123 W m⁻² occurring at the local solar noon hour. Since carbon dioxide is not a major absorber in the shortwave, there is very little difference in the downwelling shortwave flux at the surface between the X2 and C1 experiment.

However in the longwave there are significant differences between the U1, X2, and the C1 experiment (Figure 2b). During the first night, both U1 and X2 show enhancement in downwelling longwave of approximately 3.0 W m⁻² compared to the C1 experiment. During the second night, the enhancement in downwelling longwave in the U1 simulation reduces to ~2.2 W m⁻². This reduction during the second night is related to reduced water vapor loading in the U1 simulation due to attenuation of downwelling shortwave radiation leading to less evaporation and transpiration. The nocturnal enhancement in downwelling longwave radiation is within the range (2.5 to 16 W m⁻²).
reported by prior studies [Estournel et al., 1983; Jacobson, 1997; Panicker et al., 2008; Zdunkowski et al., 1976], closer to lower limits. The nighttime differences in downwelling longwave between U1 and X2 are minimal during the first night (~0.1–0.2 W m\(^{-2}\)) and are more significant during the second night (~1 W m\(^{-2}\)). During the daytime, the differences in downwelling longwave between the C1 and U1 simulations are significantly greater with a maximum value of approximately 4.5 W m\(^{-2}\) reflecting differing vertical distributions of aerosols and carbon dioxide. Note that the urban aerosols are confined to the lowest 2 km while carbon dioxide is assumed to be well mixed through the depth of the model atmosphere. Thus, under clear-sky conditions, carbon dioxide is able to better absorb and reradiate enhanced longwave emissions from the surface and the PBL during the daytime.

3.3 Impact of Urban Aerosols and Doubled Carbon Dioxide on Surface Air Temperature

In the CASES experiments, enhancement in nocturnal downwelling longwave radiation due to urban aerosol loading and doubling of carbon dioxide leads to an increase in surface air temperature during the first night (Figure 2c). The nocturnal minimum is increased by ~0.38°C and 0.3°C during the first night in U1 and X2 experiments, respectively. During the first day of the simulation, significant reduction of downwelling shortwave radiation at the surface is accompanied by reduction in daytime surface air temperature in the U1 experiment with a maximum difference of ~2°C occurring in the afternoon (Figure 3). The surface air temperature in the X2 simulation shows a very small increase when compared to the C1 simulation, with a maximum difference of less than 0.16°C (Figure 3) occurring in the afternoon. Note that the small
increase in daytime surface air temperature in the X2 experiment is primarily due to enhancement in downwelling longwave radiation at the surface.

The impact of doubled carbon dioxide on surface air temperature during the second night is very similar to that found during the first night. The solutions of surface air temperature are similar in both the C1 and X2 simulations, but start diverging later in the night with the surface air cooling at a faster rate in the C1 simulation. Nocturnal minimum temperature in the C1 simulation is smaller that that found in the X2 simulation by \(~0.35^\circ\text{C}\). The net effect of doubled carbon dioxide on the surface air temperature cycle is reduction of DTR (Figure 3), with the increase in the nocturnal minimum more than compensating for the negligible increase in the daytime maximum temperature.

However, the behavior of the U1 simulation is considerably different on the second night. The surface air temperature in the U1 simulation is initially cooler compared to the C1 simulation, but the solutions converge to similar values at early morning hours. Note that, unlike the first night, where the initial surface temperature was the same for both the C1 and U1 simulations, the surface temperature is initially cooler in the U1 simulation (Figure 2d). The surface temperatures in the U1 and C1 simulations converge during the early morning hours. These patterns (Figure 2c, 2d) suggest that daytime cooling of the surface during the first day leads to cooler surface air temperature going into the second night and that the enhancement in downwelling longwave radiation at the surface in the U1 simulation causes the nocturnal minimum temperature to be the same as that in the C1 simulation. This is verified by the U2 simulation, where the aerosol optical depth is set to zero at nighttime, which shows that without the longwave enhancement (Figure 4a), surface air temperature remains cooler compared to the C1
simulation (Figure 4b), yielding lower nocturnal minimum temperatures (Figure 3) and increase in DTR of ~0.66°C (Figure 3). RAMS simulation experiments show that the impact of urban aerosols is to reduce the DTR by reducing the daytime maximum and by increasing the nocturnal minimum temperature.

4 Discussion

RAMS simulations show that heavy aerosol loading and characteristics of conditions in polluted regions around the globe such as India and China, have a significant impact on surface air temperature and the radiation budget. Nocturnal SLWRF due to heavy urban aerosol loading and direct radiative effects of doubled atmospheric carbon dioxide at local scales are comparable for the cases considered in this study (see section 3.2). Therefore, on a local scale, urban aerosols have the potential to impact nocturnal boundary layer temperature. Since many of the temperature observations around the globe used in the DTR trend analysis are made in urban settings, the local effects may have a significant impact on such trends.

This study illustrates that the response of the SNBL surface air temperature to perturbations in the surface radiation budget is disproportionate when compared to the convective boundary layer (CBL). Nocturnal boundary layer processes and their sensitivity to changes in both radiation input and surface properties are relevant to interpreting trends in surface air temperature and DTR. Note that a nocturnally averaged radiative forcing of 3.2 W m\(^{-2}\) resulted in an average surface air temperature increase of 0.22°C during the first night in the U1 experiment, while a daytime average radiative forcing of −84 W m\(^{-2}\) leads to an average daytime surface air temperature cooling of
1.5°C. The sensitivity of surface air temperature to perturbations in downwelling radiation (δ) due to urban aerosol loading may be quantified as:

$$\delta = \frac{\Delta \overline{T}_a}{\Delta \overline{F}_d}$$ \hspace{1cm} (3)

where $\Delta \overline{T}_a$ and $\Delta \overline{F}_d$ are average differences in surface air temperature and average forcing of downwelling radiation at the surface due to urban aerosol loading. The δ values computed separately for NBL (δ_{NBL}) and CBL (δ_{CBL}) occurring during the first 24 hours of the U1 simulation yields values of 0.068 and 0.018 K/W m$^{-2}$. Thus the sensitivity of the SNBL surface air temperature to SL WRF radiative forcing from urban aerosol loading is 3.7 times more than that of the CBL. This difference in sensitivity is largely due to the differences in depth of the CBL and NBL. Walters et al. [2007] examined temperature sensitivity of NBL to arbitrarily prescribed SL WRF using a two-layer atmosphere and found a sensitivity of about 0.12 K/W m$^{-2}$ in the light wind very stable NBL and about 0.04 K/W m$^{-2}$ in the weakly stable NBL (see discussion and Figure 7 below). Thus, the results of this more complete boundary layer model are in keeping with the simple model employed by Walters et al. [2007]. The additional downward radiation at the surface at night is smaller due to the radiating temperature of the lower part of the atmosphere thus the actual increase downward radiation due to aerosols is larger than this net change. However, the smaller depth of the NBL confines this heating to a smaller depth [Walters et al., 2007] leading to a larger temperature response and thus sensitivity.

In the specific cases considered in this study, the magnitude of daytime reduction in surface air temperature dominates over the nocturnal warming leading to overall cooling effect. However, the overall effect could be different depending on several
factors, including aerosol optical characteristics, diurnal variations in column loading and vertical distribution, and nocturnal boundary layer dynamics. For example, in the model simulations of Jacobson [1997] over the Los Angeles Basin, urban aerosols with differing optical characteristics caused a daytime cooling of 0.08 K, a maximum reduction in shortwave of 55 W m\(^{-2}\) (150 W m\(^{-2}\) in the present study), nocturnal warming of 0.77 K and maximum nocturnal longwave enhancement of 13 W m\(^{-2}\) (4.0 W m\(^{-2}\) in the present study). Other studies also report larger magnitudes for nocturnal enhancement of longwave in the presence of urban aerosols [Estournel et al., 1983; Panicker et al., 2008; Welch and Zdunkowski, 1976]. The study also examined the impact of other OPAC aerosol models on boundary development and found desert aerosols to be the only type capable of producing longwave forcing similar to Jacobson [1997]. The D1 simulation, where the OPAC desert aerosol optical model is used, shows a nocturnal downwelling longwave radiation increase of 9 W m\(^{-2}\) (Figure 2b) leading to nocturnal surface air temperature increases of more than 1 K and a depression in DTR of ~1.6°C (Figure 4b).

Differences in nocturnal surface air temperature evolution between the first and second nights in the U1 simulation (Figure 2c) resulting from differing amounts of daytime surface heating, suggest that diurnal variations in aerosol column loading and vertical distribution are important factors in determining the overall impact on DTR and average surface air temperature. Constant aerosol composition and number concentrations are assumed in the aerosol experiments used in this study and the temporal variations in aerosol optical depth is solely due to the hygroscopic effect (Figure 6). However, in reality, time-varying emissions and atmospheric circulation patterns lead to diurnal asymmetries in aerosol composition, number concentrations and vertical
distribution [Allen et al., 1999; Dorsey et al., 2002; Guasta, 2002; Mårtensson et al., 2006; Pandithurai et al., 2007; Smirnov et al., 2002]. Diurnal variation patterns of AOD, where it is substantially higher during the early morning and late evening hours compared to midday [Pandithurai et al., 2007], would lead to a reduction in cooling during daytime and enhancement in nighttime warming. Enhancement in nighttime warming is also expected for scenarios where there is an increase in black carbon concentrations during the early morning hours [Allen et al., 1999] due to increased emissions from traffic and trapping of aerosols. Other sites such as Mexico City [Smirnov et al., 2002] exhibit patterns where the AOD increases during the afternoon hours thereby enhancing the cooling effect of aerosols. The U3 simulation, in which the daytime AOD is reduced by a factor of one-half, was used to examine the impact of the diurnal variation of AOD on surface air temperature. Note that the U3 crudely mimics the AOD diurnal variation reported by Pandithurai et al. [2007], where the AOD during the early morning or late afternoon hours differs from midday values by a factor of two. Compared to the U1 simulation, the U3 simulation shows an increase in nocturnal surface air temperature (Figure 5) with the nocturnal minimum temperature during the second night being higher by ~0.18°C (Figure 3). However, the DTR in U3 simulation is higher by ~0.79°C due to increase in incoming shortwave compared to the U1 simulation (Figure 3).

Relative humidity enhancement in NBL also creates diurnal asymmetries in AOD as hygroscopic aerosols respond to a nighttime increase of RH and swell (Figure 6). The impact of hygroscopic swelling in NBL is often insubstantial as the RH increase is confined to a very shallow layer (<100 m), with the maximum swelling of the aerosols occurring at the lowest model level (Figure 6). However, in situations where there are
substantial emissions of aerosols into the NBL, significant day-night differences in vertical distribution of aerosols exist [Guasta, 2002] and the hygroscopic effect could be important depending upon aerosol composition.

The magnitude of δ_{NBL}, and thus response of DTR and mean surface air temperature to aerosol radiative forcing, is strongly dependent on NBL dynamics [Dai and Trenberth, 2004; Pielke and Matsui, 2005; Walters et al., 2007]. A recent study by Walters et al. [2007] used nonlinear analysis techniques to examine the sensitivity of the stable nocturnal boundary layer (SNBL) to perturbations in incoming longwave radiation and surface characteristics. Walters et al. [2007] found perturbations that decrease NBL stability lead to significant increases in surface temperature. Increase in turbulence that accompany the decrease in NBL stability lead to mixing of warm air from aloft causing rapid, significant changes in surface air temperature. Average longwave nocturnal radiative forcing of 3.0 W m$^{-2}$ found in U1 simulations is within the range of perturbations found by Walters et al. [2007] to be capable of substantially altering the surface air temperature in the NBL through destabilization. However, the present study may not likely fully capture the destabilization of the NBL as reported by Walters et al. [2007] since the destabilization only occurs when the NBL is near a threshold of transitioning between a strongly stable NBL and weakly stable NBL. Figure 7, created using the bifurcation diagram techniques reported in Walters et al. [2007] illustrates this potential transition. Under light winds (Figure 7a) the additional downward radiation produces an increasing temperature in the NBL with a slope (or sensitivity as discussed above) of about 12 K/W m$^{-2}$. Under strong winds, when the NBL depth is greater, the simple model indicates less sensitivity. However, at intermediate winds, the temperature
difference between the two states can be of order 7–9 K and a sensitivity of 0.28–0.36 K/W m\(^{-2}\). Based on the shape of the temperature time series, the first CASES night is probably within the strongly stable case and the second night not quite as stable. However, it may be that the roughness and wind speed are not at the transition parameter space discussed by Walters et al. [2007] which can lead to amplified sensitivity. Thus, it may be that other nights may be at this transitional threshold. Only a few nights each year when the aerosols cause the transition to a warmer boundary layer may produce a larger climatological temperature difference than reported here.

Soil moisture impacts the partitioning of net radiation received at the surface and thus plays an important role in the diurnal evolution of surface air temperature. Since the soil moisture determines the amount of water vapor added to the boundary layer during the day, it also modulates the aerosol radiative longwave radiative forcing. In order to examine the impact of soil moisture on aerosol nocturnal longwave radiative forcing, the C1 and U1 simulations were repeated with soil saturation increased uniformly throughout the depth of the soil layer to 70%, referred hereon as C2 and U4 simulations. Differences in downwelling longwave radiation between C2 and U4 (Figure 8a) during the second night are significantly smaller compared to differences found in the C1 and U1 simulations (Figure 2b). The decrease in nocturnal radiative forcing occurs in the higher soil moisture situation because the C2 simulation develops a substantially moister boundary layer compared to the U3 simulation during the first day. Enhancement of water vapor in the C2 simulation leads to an increase in downwelling longwave radiation partially offsetting the increase in downwelling longwave radiation in U3 from aerosol loading resulting in a smaller nocturnal SLWRF. Interestingly, comparison of surface air
temperature between the C2 and U4 simulations show slight nocturnal warming in the U4 simulation during parts of the second night (Figure 8b). The reason for this behavior is not understood and illustrates the complex nonlinear interactions exhibited by the NBL dynamics.

Of all the experiments considered, the C2 and U4 show the most dramatic change in DTR when compared to C1 (Figure 3). The difference in DTR between C2, U4, and C1 are –7.3 and –8.4°C while the DTR differences between other experiments and C1 are in the range –0.2 to –2°C. When compared to C1, even though the daytime maximum temperature in the C2 and U4 experiments are reduced by more than –5.9°C, the nocturnal minimum temperature is higher in C2 and U4 by more than 1.2°C. The reason for this strong nocturnal warming, despite strong surface air cooling during the daytime, is due to a combination of factors including increased soil heat capacity and bare soil emissivity and an increase in boundary layer moisture during the second day. The impact of enhanced boundary layer moisture in the C2 and U4 experiments is obvious during the second night when the maximum differences in downwelling longwave radiation between both these experiments and C1 exceed 6 W m⁻². Christy et al. [2006] found an increasing trend in the nocturnal minimum temperature in irrigated regions of central California and suggested changes in soil heat capacity and enhanced water vapor concentration in the boundary layer as possible reasons. The C2 and U4 experiments in this study do indeed support this hypothesis.

The validity of results obtained from the sensitivity analysis for CASES-99 days is further tested in numerical experiments U5 (Pune, 19-21 January 2005) and U6 (Delhi, 30 May 2003) where urban land surface characteristics and aerosol optical characteristics
deduced from observations are imposed. For the Pune site, the U5 and C3 experiments show nocturnal SLWRF of ~4.7 W m\(^{-2}\) and 2.7 W m\(^{-2}\) during the first and second night respectively (Figure 9a) which is not substantially different that that found for CASES-99 sensitivity analysis. Comparison of the U6 and C4 experiments for the Delhi site show nocturnal SLWRF of 28.5 W m\(^{-2}\) and 29.7 W m\(^{-2}\) during the first and second night respectively (Figure 9c), which is significantly higher than that found in all the other experiments. Note that the higher values of nocturnal SLWRF for the Delhi site is partly due to substantially higher surface temperatures compared to other experiments. The response of 2 m temperature to urban aerosol SLWRF at the Pune site is an increase in nocturnal minimum of 0.51°C and 0.12°C during the first and second nights respectively and a decrease in DTR of 0.72°C (Figure 9b). At the Delhi site, the SLWRF leads to an increase in nocturnal minimum of 1.14 °C and 1.69°C during the first and second nights respectively and a decrease in DTR of 3.07 °C (Figure 9d). Note the experiments were repeated for five other selected days selected for each of the urban sites with similar results. These experiments show that there is considerable variability in the magnitude of nocturnal SLWRF resulting from urban aerosols, compensating for the daytime cooling at the minimum (Figure 9b, Figure 9d) or causing significant nighttime warming on the extreme.

Note that the numerical modeling experiments exhibit differing responses of SLWRF and nocturnal warming to variations in aerosol microphysics and composition. The composition and microphysics of aerosols in the U1 experiment are such that it substantially impacts both the downwelling shortwave and longwave radiation. Water soluble aerosols components (nitrates and sulfates) in the U1 experiment, with smaller
particle size and large number concentrations, lead to significant reduction in daytime
downwelling shortwave due to scattering. The soot aerosol component (black carbon) in
U1 experiment contributes to absorption in both shortwave and longwave part of the
spectrum. In contrast, the coarse mode mineral component with larger particle sizes in
the D1 and U6 experiments are substantially more effective absorbers of longwave
radiation and leads to higher values of SLWRF that overwhelm the cooling caused the
daytime reduction in downwelling shortwave radiation.

The numerical experiments considered in this study show a complex response of
diurnal surface air temperature variation to urban atmospheric aerosol loading (Figure 3).
It is essential to consider aerosol impacts when interpreting surface temperature records
in areas such as China, India, and Africa. However, accounting for the aerosol
contribution is difficult since the surface air temperature response is dependent on spatial
and temporal variations in aerosol concentration, optical characteristics, and is also
modulated by other factors such as soil moisture, land surface characteristics, etc.

5 Conclusions

Aerosol radiative forcing plays an important role on the boundary layer
development and surface temperature evolution. In the context of global climate change,
there is considerable interest on the role of aerosols in the climate system especially
surface temperature. Previous focus of the research effort in this area has been on
shortwave radiative forcing with little attention paid to the impact of longwave radiative
forcing which may be amplified through nocturnal boundary layer dynamics. Since there
is a disproportionate nocturnal contribution to warming trends detected in surface
temperature records [Karl et al., 1993], it is important to understand the impact of aerosol
radiative forcing on nocturnal boundary layer development. This study uses two typical cases of SNBL from the CASES-99 field experiment to examine the impact of urban aerosol radiative forcing on SNBL. For the case study days considered in this study, it is found that:

1. Urban aerosols have a nocturnal downwelling longwave radiative forcing impact at the surface similar to that from doubled atmospheric carbon dioxide at local scales. Enhanced nocturnal downwelling longwave from urban aerosols compensate for the daytime cooling due to a reduction in downwelling solar radiation. When diurnal variations in AOD are minimal, urban aerosols maintain the nocturnal minimum surface air temperature the same as that found for clear atmosphere even though the daytime maximum is higher for clear sky conditions.

2. Sensitivity of surface air temperature to radiative forcing is higher by a factor of more than three in the NBL compared to CBL since the energy changes impact a shallower layer during the nighttime.

3. Aerosol radiative characteristics and diurnal asymmetries in AOD play an important role in determining the overall impact of aerosols on surface air temperature.

4. An increase in downwelling longwave radiation at the surface caused by urban aerosols is of sufficient magnitude to cause destabilization of the marginally stable NBL and significant surface air temperature fluctuations from enhanced vertical mixing as suggested by Walters et al. [2007].

5. The impact of urban aerosol longwave radiative forcing is strongly modulated by soil moisture. SLWRF due to urban aerosols decreases for conditions of higher
soil moisture. This is because with higher soil moisture conditions, the boundary
layer water vapor content is enhanced under clear sky conditions, leading to an
increase in downwelling longwave at the surface.

In order to understand the impact of urban aerosols on surface air temperature and
DTR, detailed knowledge regarding diurnal variation of aerosol characteristics including
vertical distribution, optical properties, and column loading are needed. Further modeling
studies are necessary to examine the impact of aerosol radiative forcing on the marginally
stable NBL. Once the NBL conditions most sensitive to urban aerosol radiative forcing
are identified, the frequency of occurrence of such conditions needs to be determined
from observations. Such analysis will allow quantification of the aerosol radiative forcing
contribution to observed nocturnal warming trends.

Acknowledgements

This research was supported by DOE grant DE-FG02-05ER45187 and NSF grant
ATM-0417774 Dr. Sundar Christopher was supported by NASA Radiation Sciences
Program.

Tignor and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Figure Legends

Figure 1. Comparison between observations (black line) and C1 simulation (red line) of:
 a) downwelling shortwave; b) downwelling longwave; c) upwelling longwave; d) sensible heat flux; e) latent heat flux; f) surface air temperature; and g) relative humidity.

Figure 2. Comparison between C1 (red), D1 (green), U1 (blue), and X2 (black) simulations. a) downwelling shortwave; b) downwelling longwave; c) surface air temperature; and c) upwelling longwave.

Figure 3. Diurnal temperature range (open triangle), maximum (solid square) and minimum (open circle) temperatures for the different experiments. The values are valid for the time period including the first day and the second night.

Figure 4. Comparison between C1 (red) and U2 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.

Figure 5. Comparison between C1 (red) and U3 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.

Figure 6. Diurnal variation of aerosol extinction coefficient in the infrared (10.2-12.5 μm) in the U1 experiment at the first model level (solid line) and averaged for the atmospheric column in the lowest 100 m.

Figure 7. Bifurcation diagrams with enhanced downward radiation from aerosols as the bifurcation parameter (x axis) and boundary layer potential temperature as the response variable (y axis) plotted along the x axis and the boundary layer potential temperature. Line colors give roughness length: green – z0=0.1 m, red – z0 = 0.25 m, pink - z0 = 0.5 m, blue - z0 = 1.0 m. (a) Bifurcation diagram for a
geostrophic wind speed of 3 m s⁻¹. (b) Bifurcation diagram for a geostrophic wind speed of 7 m s⁻¹. (c) Bifurcation diagram for a geostrophic wind speed of 10 m s⁻¹.

Figure 8. Comparison between C2 (red) and U4 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.

Figure 9. Diurnal variation of: a) downwelling longwave radiation in U5 (black) and C3 (red) experiments; b) 2 m temperature, in U5 (black), C3 (red) and 3 hourly observations (back dots); c) same as (a) except for U6 and C4 experiments and; d) same as (b) except for U6 and C4 experiments.
<table>
<thead>
<tr>
<th>Aerosol Model</th>
<th>Component</th>
<th>Number Density (cm(^{-3}))</th>
<th>Mode radius (μm)</th>
<th>0.55 μm AOD (80% relative humidity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Water Soluble</td>
<td>28,000</td>
<td>0.0212</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>Insoluble</td>
<td>1.5</td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soot</td>
<td>130,000</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Urban [Panicker et al. 2008]</td>
<td>Water Soluble</td>
<td></td>
<td>0.0212</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>Insoluble</td>
<td></td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soot</td>
<td></td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Urban [Singh et al. 2005]</td>
<td>Soot</td>
<td>130,000</td>
<td>0.0118</td>
<td>0.863</td>
</tr>
<tr>
<td></td>
<td>Water Soluble</td>
<td>10,000</td>
<td>0.0212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral, Nucleation Mode</td>
<td>269.5</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral, Accumulation Mode</td>
<td>5.050</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral, Coarse Mode</td>
<td>3.850</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td>Water Soluble</td>
<td>0.018</td>
<td>0.0212</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>Mineral, Nucleation mode</td>
<td>0.033</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral, Accumulation mode</td>
<td>0.747</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral, Coarse mode</td>
<td>0.202</td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Composition of aerosol models used in the study. Lognormal distribution is assumed for aerosol model components whose subcomponents are as follows: Water Soluble: Mixture of sulfates, nitrates and organics; Insoluble: Mixture of soil particles and organic material; Soot: Black carbon; Mineral: Mixture of quartz and clay [Hess et al., 1998].
<table>
<thead>
<tr>
<th>Experiment Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1D simulation initialized using CASES-99 radiosonde observation acquired at 0 UTC on 21 Oct 1999. Clear atmosphere and carbon dioxide concentration of 370 ppm (average value for 1999) are used.</td>
</tr>
<tr>
<td>U1</td>
<td>Same as C1 except for the assumption of urban aerosol loading.</td>
</tr>
<tr>
<td>U2</td>
<td>Same as U1 except for the assumption of zero nighttime AOD.</td>
</tr>
<tr>
<td>U3</td>
<td>Same as U1 except for the reduction of daytime AOD by a factor of 2.</td>
</tr>
<tr>
<td>X2</td>
<td>Same as C1 except for the assumption of doubling atmospheric CO₂ concentration from present day values to 760 ppm.</td>
</tr>
<tr>
<td>D1</td>
<td>Same as C1 except for the assumption of desert dust aerosol loading.</td>
</tr>
<tr>
<td>C2</td>
<td>Same as C1 except for the assumption of constant soil saturation of 70%.</td>
</tr>
<tr>
<td>U4</td>
<td>Same as U1 except for the assumption of constant soil saturation of 70%.</td>
</tr>
<tr>
<td>U5</td>
<td>Urban land surface characteristics and aerosol optical characteristics deduced for Pune [Panicker et al., 2008]</td>
</tr>
<tr>
<td>C3</td>
<td>Same as U5 except for the assumption of an aerosol-free atmosphere.</td>
</tr>
<tr>
<td>U6</td>
<td>Urban land surface characteristics, aerosol optical characteristics deduced for New Delhi [Singh et al., 2005].</td>
</tr>
<tr>
<td>C4</td>
<td>Same as U6 except for the assumption of an aerosol-free atmosphere.</td>
</tr>
</tbody>
</table>

Table 2. Description of the numerical experiments utilized in this study.
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Experiments C1-C2, U1-U4, D1, X2</th>
<th>Experiments C3-C4, U5-U6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical grid spacing at the surface</td>
<td>0.5 m</td>
<td>5 m</td>
</tr>
<tr>
<td>Grid stretch ratio</td>
<td>1.16</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum vertical grid spacing</td>
<td>500 m</td>
<td>500 m</td>
</tr>
<tr>
<td>Soil Levels (below ground)</td>
<td>0.05, 0.075, 0.15, 0.225, 0.375, 0.60, 0.90 m.</td>
<td>0.001, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7 m</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Clay Loam [Chen et al., 2007]</td>
<td>C3, U5: Sandy Soil C4, U6: Silt Loam [Zobler, 1999]</td>
</tr>
<tr>
<td>Land use</td>
<td>Short grass</td>
<td>Urban and built-up</td>
</tr>
<tr>
<td></td>
<td>Horizontal: Modified Smagorinsky</td>
<td>Horizontal: Modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smagorinsky</td>
</tr>
<tr>
<td>Initial atmospheric conditions</td>
<td>Radiosonde observations at 0 UTC (1800 LST)</td>
<td>Radiosonde observations at 1200 UTC (1730 LST)</td>
</tr>
</tbody>
</table>

Table 3. Numerical model configuration used in the different experiments.
Figure 1. Comparison between observations (black line) and C1 simulation (red line) of:

- a) downwelling shortwave
- b) downwelling longwave
- c) upwelling longwave
- d) sensible heat flux
- e) latent heat flux
- f) surface air temperature
- g) relative humidity
Figure 2. Comparison between C1 (red), D1 (green), U1 (blue), and X2 (black) simulations. a) downwelling shortwave; b) downwelling longwave; c) surface air temperature; and c) upwelling longwave. Note than in panel a, the differences between C1 and X2 are negligible and thus the curve for C1 (red) is hidden by the one for X2.
Figure 3. Diurnal temperature range (open triangle), maximum (solid square), and minimum (open circle) temperatures for the different experiments. The values are valid for the time period including the first day and the second night.
Figure 4. Comparison between C1 (red) and U2 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.
Figure 5. Comparison between C1 (red) and U3 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.
Figure 6. Diurnal variation of aerosol extinction coefficient in the infrared (10.2–12.5 μm) in the U1 experiment at the first model level (solid line) and averaged for the atmospheric column in the lowest 100 m.
Figure 7. Bifurcation diagrams with enhanced downward radiation from aerosols as the bifurcation parameter (x axis) and boundary layer potential temperature as the response variable (y axis) plotted along the x axis and the boundary layer potential temperature. Line colors give roughness length: green – $z_0=0.1$ m, red – $z_0=0.25$ m, pink – $z_0=0.5$ m, blue – $z_0=1.0$ m. (a) Bifurcation diagram for a geostrophic wind speed of 3 m s$^{-1}$. (b) Bifurcation diagram for a geostrophic wind speed of 7 m s$^{-1}$. (c) Bifurcation diagram for a geostrophic wind speed of 10 m s$^{-1}$.
Figure 8. Comparison between C2 (red) and U4 (blue) simulations for a) downwelling longwave at the surface and b) surface air temperature.
Figure 9. Diurnal variation of: a) downwelling longwave radiation in U5 (black) and C3 (red) experiments; b) 2 m temperature, in U5 (black), C3 (red) and 3 hourly observations (black dots); c) same as (a) except for U6 and C4 experiments and; d) same as (b) except for U6 and C4 experiments.