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Abstract

Agent-based modeling is a computational approach in which agents with a specified set of 

characteristics interact with each other and with their environment according to predefined rules. 

We review key areas in public health where agent-based modeling has been adopted, including 

both communicable and noncommunicable disease, health behaviors, and social epidemiology. We 

also describe the main strengths and limitations of this approach for questions with public health 

relevance. Finally, we describe both methodologic and substantive future directions that we believe 

will enhance the value of agent-based modeling for public health. In particular, advances in model 

validation, comparisons with other causal modeling procedures, and the expansion of the models 

to consider comorbidity and joint influences more systematically will improve the utility of this 

approach to inform public health research, practice, and policy.
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INTRODUCTION

Agent-based modeling is an increasingly popular method for visualizing, analyzing, and 

informing complex dynamic systems in public health. Although agent-based models 

(ABMs) hold promise for providing insight into population-level health outcomes and 

interventions, careful consideration of the limitations and challenges of these models is 

required to realize their full potential. In this article, we provide an overview of: agent-based 
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modeling in public health, including the central properties and assumptions of the models 

and how they complement other complex systems approaches; key areas in public health 

where this method has been adopted; the advantages of this method for questions with public 

health relevance; the limitations and challenges of these models; and critical future 

directions, both methodologic and substantive, that we believe will enhance the value of 

ABMs for public health research, practice, and policy. For additional reading, we direct the 

reader to commentaries (1, 24, 25, 27, 31, 41) and systematic reviews of agent-based 

modeling in public health (84, 95) as well as tutorials on agent-based modeling (42, 72, 88).

PROPERTIES OF ABMs

Agent-based modeling is a computational approach in which agents with a specified set of 

characteristics interact with each other and with their environment according to predefined 

rules (1, 27, 67). Agents may represent individuals, households, governments, or any other 

entities of interest. They may adapt their behavior in response to their experiences, 

interactions with other agents, and interactions with their environment. A defining feature of 

agent-based modeling is that it allows the emergence of population-level phenomena that are 

greater than or different from what would be expected based only on the aggregate of 

individual behaviors (7). Agent-based modeling is thus referred to as a bottom-up approach, 

in which behaviors at the micro level give rise to dynamics at the macro level (32). As 

illustrated in Figure 1, which presents a diagram of a hypothetical ABM of individuals 

embedded in multiple contexts, ABMs may include a variety of individual-level 

characteristics (ranging from endogenous factors to socioeconomic status) as well as 

community-level characteristics and other social influences that work together to shape 

individual health behaviors, health outcomes, and health service utilization. ABMs can also 

explicitly incorporate the effects of ongoing processes like aging and movement between 

communities. Together, these interactions and biologic, behavioral, and social processes 

make up the system from which population health emerges.

Other distinct properties of ABMs include autonomy, heterogeneity, feedback, and 

stochasticity. Autonomy implies that agents make decisions about how to act given their 

current circumstances and programmed behavioral rules (72, 84). Heterogeneity is reflected 

in the differences among agents and among parts of the environment, which may have 

multiple static and time-varying characteristics in an ABM (1, 27). Changes in agent and 

environmental characteristics may be amplified in unexpected ways over time through 

feedback, whereby past experiences change the course of future responses (2, 24). 

Stochasticity allows the model to unfold in a probabilistic (as opposed to deterministic) 

fashion, with randomness influencing behaviors and changes in the model (1). As a result of 

these properties, ABMs can be used to consider nonlinear relations influenced by multiple 

levels and interpersonal interactions in ways that are often more flexible than those offered 

by other approaches. As such, ABMs (and complex systems approaches more generally) 

permit a broader array of research questions than traditional analytic approaches can answer, 

with the potential to shed new light on population health problems.

Agent-based modeling shares objectives and capabilities with other complex systems 

approaches, including system dynamics modeling and network analysis. System dynamics 
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models use a series of differential equations to reflect stock variables (e.g., population 

subgroups) and flows into and out of stocks, including bidirectional relationships (54). Such 

models are particularly well suited to modeling high-level system behavior in large 

populations (66, 67). However, typically system dynamics models do not finely specify the 

micro-level behaviors of individuals, including interactions between individuals and 

adaptations over time. By contrast, network models can accommodate complex network 

structures, including the transfer of information, behaviors, and disease across connections 

(27, 67). Network analysis can be used to examine how and why networks change over time 

and to test hypotheses regarding their structural and social influences on the development of 

health behaviors and outcomes. However, network analysis is not well suited to considering 

higher-level system properties. ABMs complement and extend these approaches by 

incorporating network dynamics while also accounting for multiscale interactions and 

bidirectional feedback loops.

Systems science approaches like ABM have long been used in fields outside of public 

health. ABM grew out of the computational and information processing advancements in 

computer science, mathematics, physics, game theory, and evolutionary science that 

occurred during the twentieth century, including Von Neumann’s cellular automata, 

Conway’s Game of Life, and Holland’s genetic algorithms (67, 79). As evidence 

accumulated that population health outcomes reflect more than the sum of individual risks, 

emerging from interactions between individuals over time (56), ABMs began to be viewed 

as a useful tool for public health problems as well. Applications of ABMs in ecology, 

business, political science, and the social sciences (7, 8, 30, 69, 73, 88) have been influential 

in the development of ABMs in public health, as well as in the formalization and 

standardization of these approaches across disciplines (46–48).

APPLICATIONS OF ABMs IN PUBLIC HEALTH

In public health, agent-based modeling has historically been used almost exclusively to 

model infectious disease transmission and control in populations. ABMs are a natural fit for 

modeling infectious disease transmission because interactions between individuals, and 

individual interactions with local environments, often give rise to population patterns of 

infectious disease incidence and persistence. However, in the last 15 years, these methods 

have been increasingly applied to noncommunicable diseases, health behaviors, social 

epidemiology, and other issues relevant for population health that do not involve traditional 

infectious processes (84). These ABMs fall along a wide continuum, from abstract 

representations of a simplified system (43) to realistic simulations of a well-defined 

population (6).

ABM Applications in Infectious Disease Epidemiology

Many ABMs of infectious disease transmission rely on the susceptible-infected-recovered 

(SIR) framework proposed by Kermack and McKendrick in the 1920s (94), in which the 

flows between susceptible, infected, and recovered states are governed by differential 

equations (32). ABM extensions of SIR models have been used to introduce individual 

heterogeneity and more complex network interactions into these traditionally aggregate, 
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compartmental models, providing further insight into infectious processes in real-world 

settings (15, 32). ABMs of infectious disease have also been widely used to evaluate 

infection control policies and have thus informed the development of containment strategies 

by the Centers for Disease Control and Prevention (CDC) and other government agencies 

(87). Notable ABMs in infectious disease epidemiology include comparisons of vaccination 

strategies to address a deliberate bioterrorist introduction of smallpox (33, 51), tuberculosis 

control strategies (82), use of targeted antiviral prophylaxis and social distancing measures 

to prevent an H5N1 influenza A (bird flu) pandemic (38), contact tracing and quarantine to 

reduce measles transmission (28), treatment and hygiene procedures to reduce Clostridium 
difficile infection transmission in health care settings (17), evacuation plans in the event of 

airborne contamination (34), and vaccination strategies against influenza pandemics, 

including their impact on health care personnel (19, 59). This work includes the Models of 

Infectious Disease Agent Study (MIDAS), which has brought together a collaborative 

network of researchers to inform national responses to outbreaks of existing and emerging 

infectious diseases (101). Recent ABMs have also considered interventions to reduce human 

immunodeficiency virus (HIV) incidence (35, 74, 76), including combination strategies 

addressing both HIV transmission risks and underlying drug use behaviors. ABMs of 

infectious disease have thus advanced to include increasingly sophisticated parameterization 

of social networks and environmental influences to best inform public health policy and 

planning. Furthermore, many of the modeling capabilities developed, extended, and refined 

through infection-related ABM programs like MIDAS [e.g., census-based synthetic 

populations, and the Framework for Reconstructing Epidemic Dynamics (FRED)] (45, 104) 

can be applied to public health problems beyond infectious disease.

ABM Applications in Noncommunicable Disease Control

The increasing recognition that dependence between individuals and feedback over time are 

also important to noncommunicable diseases (16, 83) has led to increased applications of 

ABMs in this area. Obesity and its correlates have been the subject of a plurality of these 

investigations (84), given the urgency of obesity as a public health problem and the complex 

influences of biological, behavioral, social, and environmental factors on the risk of obesity 

over the life course (44, 67). Some of this work was developed by the National Collaborative 

on Childhood Obesity Research through the Envision project, which aimed to apply systems 

science methods to identify potential points of intervention to reduce population levels of 

obesity (70). ABMs of obesity have emphasized the importance of accounting for the 

clustering of obesity in social networks and neighborhoods, including simulations of social 

network influences on body weight (52) and joint neighborhood and individual influences on 

Black/White disparities in body mass index (86). ABMs have also been utilized to study 

diabetes, illuminating the progression of diabetic retinopathy and the influence of screening 

on vision loss among diabetic patients (22, 23), as well as the influence of patient-provider 

interactions on the adoption of continuous glucose monitoring (102). These models have 

thus made inroads into the understanding of noncommunicable disease development, 

progression, and treatment, including the role of communities, peers, and providers.
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ABM Applications to Health Behaviors

In addition to assessing disease endpoints in the population, ABMs have also been used to 

gain insight into health behaviors that increase the risk of disease, as well as potential 

interventions to reduce risky behaviors like smoking, alcohol consumption, physical 

inactivity, and unhealthy eating.

ABMs have highlighted the role of social influences on tobacco control policies and 

smoking behaviors in the population. ABMs of smoking have explored the effects of 

transitions to electronic cigarette use on population smoking prevalence (14) and the roles of 

socioeconomic status and social influence on smoking behaviors (13, 90). By explicitly 

incorporating interactions between individuals, this work has extended conclusions from 

previous system dynamics models of smoking (61, 62). A recent Institute of Medicine report 

summarized the usefulness of ABMs for studying the complex, dynamic influences on 

smoking initiation, cessation, and relapse, and it included recommendations for developing 

and evaluating ABMs for tobacco control (18). One advantage of these methods over more 

traditional analytic approaches is their ability to identify the potential unintended 

consequences of alternative tobacco control strategies. This is important given the tobacco 

industry’s history of successfully adapting its marketing and lobbying plans to address 

control policies like increased taxation and restrictions on advertising, thereby undermining 

efforts to reduce smoking in the population (100).

ABMs have also considered the unintended consequences of policies aimed at alcohol 

consumption and related harms. The SimDrink ABM simulated the behaviors of young 

people (aged 18–25 years) during a night out, including the types of venues (e.g., private 

versus public) visited by groups of friends and the decisions they made about when to go 

home (93). Population experiences of alcohol-related harms (e.g., verbal aggression and 

ejection from outlets because of intoxication) were compared under different simulated 

policies, including extending public transportation hours and instituting “lockout” times 

after which no one could be admitted to a venue (e.g., two hours before closing). The 

authors explicitly addressed the possibility that these policies may increase alcohol-related 

harms by keeping drinkers out later or may merely displace harms from public to private 

settings. Gorman and colleagues used a more abstract ABM to explore social and 

environmental influences on drinking behavior (43). Agents could move left or right on a 

one-dimensional lattice, with movements and transitions between drinking states (e.g., 

nondrinker, current drinker, former drinker) influenced by the drinking behaviors of other 

agents they encountered on the lattice. The authors also introduced an on-premise alcohol 

outlet (i.e., a bar) onto the lattice that attracted current drinkers. ABM results indicated that 

contact between nondrinkers and drinkers would eventually eliminate nondrinkers from the 

population, though the amount of time required for that to occur varied according to the 

frequency of agent movement and contact between agents and to whether there was a bar on 

the lattice around which current drinkers clustered, thus limiting their interaction with 

nondrinkers and former drinkers. These findings highlight how contacts between individuals 

and between individuals and alcohol outlets shape population levels of drinking behavior. 

This supports theoretical work by Gruenewald (49) on “assortative drinking,” whereby 
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individuals with similar preferences and behaviors cluster together at particular drinking 

venues, reinforcing potentially hazardous drinking norms.

ABMs have been used to demonstrate the importance of environmental influences on 

physical activity, independent of individual and peer preferences. For example, Yang and 

colleagues (107) developed an ABM that modeled individual walking behaviors in a 

simulated city. Walking ability was a function of age, whereas walking preferences were 

influenced by previous walking experiences, by seeing others walking, and by the walking 

attitudes of friends and family members, thereby incorporating learning and adaptation. 

Population patterns, including inequalities in walking across socioeconomic status, were 

observed under different distributions of land use and safety, thereby accounting for 

environmental influences. This model was extended to also consider the influence of 

different interventions (e.g., improving the safety level of certain areas, increasing positive 

attitudes towards walking) on walking behaviors (108). Yang and colleagues also developed 

other ABMs to investigate influences on children’s active travel to school (106), including 

optimizing the so-called walking school bus, in which students walk to school in groups led 

by adults, following a planned route with designated “bus stops” (109). These studies all 

highlighted the importance of land-use distributions and equity of environmental resources 

on walking behaviors and on the effectiveness of interventions aimed at increasing physical 

activity. Other scholars have developed additional ABMs to examine changes in 

transportation infrastructure on walking behaviors (60) and to implement a customizable 

tool aimed at enhancing walkability around designated areas (5), further capitalizing on the 

ability of these models to incorporate feedback between individuals and their environment.

ABMs of diet have also highlighted the importance of feedback between individuals and the 

environment. Auchincloss and colleagues used an ABM to explore determinants of income 

inequalities in diet (3). Households could decide to patronize specific stores based on food 

prices, store distance, and preferences for healthy foods, whereas stores could decide to 

relocate or change their offerings based on customer preferences. Model results indicated 

that income differentials in diet emerged as a result of the segregation of healthy food 

sources and high-income households from less healthy food sources and low-income 

households. The authors proceeded to show that changing food preferences among low-

income households in combination with reducing the prices of healthy foods could eliminate 

income differentials in diet. Blok and colleagues developed a related model simulating 

household food consumption and food outlet distribution and changes in a city in the 

Netherlands (6). Income inequalities in healthy food consumption were reduced by 

eliminating residential segregation, lowering the prices of healthy foods, and increasing 

preferences for healthy food consumption through mass media education campaigns. Li and 

colleagues (63) also explored the potential effect of education campaigns on healthy food 

consumption by using an ABM to simulate individuals, social networks, and food outlets in 

New York City (NYC) neighborhoods. Individuals’ daily dietary choices were influenced by 

demographic characteristics, food access, price sensitivity, taste preferences, and health 

beliefs, with taste preferences and health beliefs in turn influenced by the individuals’ 

friends in the model. A mass media marketing campaign and community nutrition education 

program was assumed to increase the influence of healthy peers on food consumption 
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choices by 10%, resulting in a substantial increase in fruit and vegetable consumption and 

thus highlighting the positive influence of social norms.

ABM Applications in Social Epidemiology

As demonstrated by the ABMs exploring social network and place effects on health, agent-

based modeling is particularly well suited to examining questions of interest in social 

epidemiology, which often involve collective behaviors, distributions of resources, and other 

social conditions that serve as fundamental causes of disease (39, 65). In line with this work, 

a recent ABM by our group has explored the social production and propagation of violence 

and tested alternate strategies for reducing violence and its consequences (10–12). 

Specifically, we created a virtual representation of the adult population of NYC, distributed 

across NYC neighborhoods. Violent experiences among individuals in the model were 

governed by interactions with other agents, sociodemographic characteristics, mental health 

symptoms, past histories of violence, and neighborhood characteristics, in addition to the 

actions of police officers and, in some model specifications, “violence interrupters” (i.e., 

community members trained to mitigate occurrences of violence and retaliation). The model 

compared universal and targeted experiments increasing neighborhood collective efficacy to 

reduce violence. The universal experiment was characterized by a small increase in 

collective efficacy across the whole city, whereas the targeted experiment intensified efforts 

to increase collective efficacy but only in high-violence neighborhoods (10). The results of 

these experimental conditions were contrasted under different hypothetical scenarios, 

including complete racial and economic residential segregation versus complete random 

mixing. We found that the universal experiment led to greater reductions in violent 

victimization across all groups, but racial/ethnic inequalities in violence persisted in the 

presence of racial and economic segregation. Only by reducing segregation through artificial 

random mixing across the environment were racial/ethnic inequalities in violence eliminated 

through increased neighborhood collective efficacy. In a subsequent iteration of the model, 

we investigated whether a population-level violence prevention intervention (i.e., hot-spots 

policing) versus an individual-level treatment intervention (i.e., increased access to cognitive 

behavioral therapy) could lead to a greater reduction in violence-related posttraumatic stress 

disorder (PTSD) in the population (12). Each approach resulted in only a modest reduction 

in violent victimization and violence-related PTSD, with the joint implementation of both 

approaches resulting in similar reductions in a shorter time frame. We then compared hot-

spots policing with Cure Violence (9, 11), a community-based approach to violence 

prevention in which violence interrupters and outreach workers engage with high-risk 

individuals in the community to reduce the risk of violence. We found that combining the 

criminal justice approach of hot-spots policing with the public health approach of Cure 

Violence produced greater reductions in population levels of violence than either approach 

alone, reiterating the advantages of investing in multiple synergistic strategies.

Yonas and colleagues (110) also explored universal versus targeted approaches to crime in 

an ABM in which juvenile agents committed offenses according to their individually 

perceived risk and reward of doing so, which was influenced by the levels of adult criminal 

reporting near their location. Community-wide and spatially focused interventions aimed at 

increasing reporting by adults reduced offenses, with community-wide interventions 
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affording greater reductions but also requiring greater resources. Lum and colleagues 

extended this work on the individual interactions that give rise to violence and other criminal 

offenses in an ABM that investigated the transmission of incarceration (68). The authors 

used a susceptible-infected-susceptible (SIS) model, in which individuals move between 

susceptible and infected states, to simulate incarceration transmission in a social network 

consisting of friends and family across multiple generations. The model reproduced 

observed racial inequalities in incarceration by applying differential Black and White 

sentences for drug possession, but it also showed that the transmission of incarceration 

between connected individuals was necessary to produce the incarceration and recidivism 

patterns observed in reality. The authors concluded that harsher sentences may increase, 

rather than deter, criminal behavior within social networks, and they recommended efforts to 

reduce the transmission of incarceration within networks, echoing other recent calls for 

further work aimed at understanding the transmission of violence within social networks 

(98).

These examples illustrate the wide applicability of agent-based modeling to public health 

problems, from infectious disease to violence. Scholars have also developed ABMs to 

inform the provision of health care services, including access to primary care services after a 

disaster (50), care coordination among patients with serious mental health problems (55), 

and participation in community-based oral health programs (78). Together, this body of work 

illustrates the ability of agent-based modeling to test competing theories and evaluate 

interventions in the presence of complex nonlinear influences.

STRENGTHS OF ABMs APPLIED TO PUBLIC HEALTH PROBLEMS

Fundamentally, the two primary objectives of ABMs in public health are to explain and to 

predict population health outcomes, accounting for aspects of the complex system in which 

population health arises. These objectives also lead to the primary strengths of ABMs for 

public health research, practice, and policy: These models provide insight into the 

underlying mechanisms that give rise to health behaviors and outcomes (as well as 

inequalities in those behaviors and outcomes), and they can be used to conduct virtual 

experiments of interventions and policies to reduce the population burden of disease.

Insight into Causal Mechanisms

Given their bottom-up nature, ABMs have been touted as one way to gain further insight 

into the mechanisms through which population patterns arise. In the words of Joshua Epstein 

(29, p. 43), “if you didn’t grow it, you didn’t explain its emergence,” which highlights the 

importance of generating a pattern to understand how that pattern came about (32). In a now 

classic example of using an ABM to generate an observed pattern, Schelling (91, 92) used a 

simple checkerboard model in which households preferred that a certain proportion of their 

neighbors be their own color to demonstrate the generation of population patterns of racial 

segregation that were much starker than individual preferences seemed to imply. Other 

ABMs mentioned above also exemplify this generation approach: Racial disparities in 

violence and income disparities in diet resulted from residential segregation in the ABMs 

developed by Cerdá and colleagues (10) and Auchincloss and colleagues (3), respectively, 
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and patterns of incarceration and weight change were driven by social network influences in 

the ABMs developed by Lum and colleagues (68) and Hammond & Ornstein (52), 

respectively. In an example from infectious disease epidemiology, Kumar and colleagues 

(57) used an ABM to test whether differential exposure to influenza in areas with larger 

household size, higher population density, and younger age distributions was sufficient to 

generate area-level inequalities in influenza rates, finding that differential susceptibility was 

also necessary. ABMs are well suited to the exploration of causal mechanisms given their 

ability to incorporate multiple interacting causes and to test competing theories about 

causation, thus further elucidating what we do and do not know about how a given outcome 

arises (41, 83, 99). One challenge to the use of ABMs for identifying causal mechanisms is 

the fact that several model configurations may successfully generate the expected population 

patterns, so scholars cannot always be certain that they have hit on the right explanation (1, 

27). However, with appropriate attention to the plausibility of model assumptions, ABMs 

have great potential for providing causal insights that are intractable using other approaches.

Insight into Public Health Policy

In addition to providing clues into causal mechanisms, ABMs can be used to implement 

counterfactual simulations that may be infeasible in the real world, allowing what-if 

scenarios and virtual policy experiments. In particular, multiple simulations of the model can 

be run, observing population outcomes under different treatment conditions and thereby 

enabling counterfactual contrasts in which all other aspects of the population remain the 

same (27, 75). Not only can multiple policies or interventions be compared, but ABMs can 

also be used to identify the minimum “dose” of an intervention or the optimal combination 

of interventions needed to achieve a desired effect. For example, in Cerdá and colleagues’ 

(11) ABM of violence, a combined intervention approach led to an 11% reduction in the 

annual prevalence of violent victimization. Implementing each intervention alone would 

have required far greater resources and time to achieve the same result. Because ABMs are 

simplified versions of reality, researchers, policy makers, and other stakeholders are 

cautioned to interpret results of these in silico experiments qualitatively, as indicating what 

approaches may be maximally effective, rather than quantitatively, as providing precise 

numbers of health crises that will be averted or lives that will be saved (25, 27, 97). Recent 

methodological work in this area has attempted to explicate the conditions under which 

ABMs may best be interpreted as counterfactual simulations, including when multiple 

causal effects interact, when interference (i.e., the situation in which one individual’s 

exposure affects other individuals’ outcomes) is of explicit interest, and when system 

behavior is well defined and not overly sensitive to initial conditions (75).

Besides facilitating the comparison of population health outcomes under alternate 

intervention or policy scenarios, ABMs also allow exploration of the conditions under which 

these interventions may achieve their best results as well as their unintended consequences. 

As described above, we showed that racial disparities in violence remained intractable when 

residential racial and economic segregation was high, despite substantial increases in 

neighborhood collective efficacy under simulated interventions (10). Similarly, in Yang and 

colleagues’ (108) model of walking behavior, changes in attitudes towards walking or 

improvements in safety levels were not sufficient to induce changes in walking behaviors if 
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other features of the environment (e.g., land-use mix) were not conducive to walking. The 

ability of ABMs to incorporate feedback and adaptation is particularly important in 

evaluating hypothetical interventions, especially when interventions may change behaviors, 

social networks, or environments in ways that may negate the desired positive intervention 

effects (96). ABMs can also provide insight into the net effect of an intervention that may 

positively influence one outcome (e.g., increased use of active transport modalities to reduce 

obesity) but negatively influence another outcome (e.g., increased risk of injuries through 

active transport) (77, 97).

The process of developing an ABM is often presented as a major strength of this approach 

(1, 2, 25, 26). Creating a conceptual framework for an ABM (like that pictured in Figure 1) 

brings together diverse stakeholders and lays bare assumptions about the aspects of a 

particular system and how they work together to produce population health outcomes. Model 

development and calibration highlight gaps in knowledge and empiric data about the 

underlying system. As a whole, this process generates new hypotheses and allows more 

expansive research questions to be considered.

LIMITATIONS OF ABMs APPLIED TO PUBLIC HEALTH PROBLEMS

Despite the insights made possible by these methods, ABMs also have several important 

limitations and challenges that derive from the nature of ABM development and 

parameterization and warrant careful consideration when interpreting model results.

One of the foremost challenges in designing and implementing an ABM is the palpable 

tension between model simplicity and model realism. Modelers are repeatedly cautioned to 

follow the KISS principle (keep it simple, stupid), championed by Robert Axelrod (4), but 

they are also encouraged to take advantage of the complexity permitted in ABMs to capture 

critical elements of the system in well-defined populations in order to generate meaningful 

results for potential interventions and public health planning (53, 58). Finding a balance 

between the desire for simplified representations of reality and the need to include enough 

complex elements to provide new insights, then, becomes a true art (53), which is developed 

through trial and error and openness to adaptation in the face of mistakes. We must not be 

too wedded to the idea of our model that we fail to recognize when its complexity limits its 

meaningful interpretation, thereby defeating the purpose of modeling. Rather, we must take 

a sensible approach to building our models, gradually adding in complexity when warranted 

and working with diverse stakeholders to identify the essential elements needed for our 

model to be credible and useful (2, 25, 95). We can also consider including random effects in 

our model to capture other unspecified influences, as in Gorman and colleagues’ (43) and 

traditional statistical approaches, with the potential of further parsing out these effects in 

subsequent iterations of the model.

Compounding the uncertainties of model resolution are the challenges of model 

parameterization in the absence of empiric data. When empiric data are available, they often 

come from observational studies conducted in specific populations that may have different 

distributions of causal partners than the intended target population of the ABM (54, 103). As 

such, we may base our model specification on data that are subject to confounding as well as 
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questionable transportability. There is a fundamental conundrum here: We want to use these 

models to gain insight into causal mechanisms and counterfactual contrasts, but we often 

rely on observational data from studies that were incapable of exploring causal mechanisms 

and counterfactual contrasts (26). Furthermore, we are often left with little to no empiric 

data on the very elements of the model that represent its greatest advantage over more 

traditional approaches: social network influences and the strength of interactions between 

units. These situations highlight the need for creativity in developing our models to reflect 

both quantitative and qualitative knowledge (85), for transparency about model assumptions 

and their implications (83), and for refined validation techniques to bolster confidence in our 

model results (53). Validation itself is challenging when empiric data are scarce because, 

ideally, data used for validation purposes should be independent of those used to build and 

calibrate the model.

In addition to the difficulties in defining the appropriate scope of the model and in 

parameterizing and validating it, simulating interventions and policies often proves 

challenging, though it is a key objective of this work. Many public health–related ABMs 

estimate population health outcomes assuming that interventions had a certain level of effect 

(for example, reduced unhealthy eating by 10% or 20%), but do not as of yet have sufficient 

data to simulate the steps of the intervention that would lead to such a reduction. Although 

these modeling exercises may be useful in making qualitative comparisons between 

interventions theorized or observed in randomized trials to have different magnitudes of 

effects, they do not advance the desired outcome of ABMs, which is to understand how and 

why different interventions are successful at improving population health (89).

Finally, as others have noted (2, 27), there are many logistical hurdles to successful 

implementation of ABMs in public health. Such hurdles include lack of training in these 

modeling techniques among public health students, researchers, and professionals (67, 71, 

88), as well as the significant burden of time and computing resources needed to develop, 

run, and validate these models.

FUTURE DIRECTIONS FOR AGENT-BASED MODELING IN PUBLIC HEALTH

Despite these limitations and challenges, ABMs remain a promising tool for informing 

public health research, practice, and policy. We now discuss future methodologic and 

substantive directions in agent-based modeling that we believe will move this field forward 

and address some of the challenges noted above.

Improving the Methodology of ABMs in Public Health

Given the need for reproducibility as agent-based modeling becomes more widely used in 

public health, we echo others in calling for the widespread adoption of systematic protocols 

for calibration, verification, validation, and model reporting (2, 33, 95). Many ABM studies 

in public health follow the ODD (overview, design concepts, and details) protocol in 

describing the methods used (45, 46; for examples, see the supplementary materials of 

References 10 and 12), and we agree that this aids in understanding what was done in a 

particular simulation and how it could be replicated or extended. Given that the ODD 

protocol was developed by modelers in disciplines other than public health (primarily 
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ecology) (46, 47), we note that the public health modeling community has much to learn 

about best practices in ABM methodology from other disciplines that have been involved in 

this work far longer. This is particularly true with respect to validation, which has been 

rather underdeveloped in public health ABM applications, contributing to skepticism and a 

perceived lack of robustness of these methods (100). Extensive reviews of ABM validation 

have been offered in other disciplines, including ecology and economics (36, 40, 64, 105). 

Besides increasing confidence in model results, validation techniques like uncertainty 

analysis and global sensitivity analysis have the potential to at least partially resolve the 

tension of model resolution discussed earlier, by elucidating whether particular parameters 

contribute to the explanatory power of the model or a simpler model would be just as 

informative (64). As others have noted (2, 75), ABMs in public health would benefit from 

the adoption of systematic protocols for ABM validation, including best practices identified 

in other disciplines such as observing model behavior when parameters are set to extreme 

values and behavioral rules are modified (20). Alternative approaches to empirical 

validation, including consideration of face validity and companion modeling [in which 

subject matter experts are involved in the modeling process and assessment of model 

credibility (20, 80)] may be particularly relevant for public health questions for which 

empiric data are lacking. To this end, academic-public partnerships may be critical in 

bringing together both the modeling and the substantive expertise necessary to develop a 

credible ABM for a particular public health problem (37). Creating accessible, user-friendly 

interfaces through which public health practitioners and policy makers could tailor ABM 

specifications to their particular settings would also promote further adoption of these 

methods, greater usefulness of the model results, and more opportunities for independent 

assessments of their credibility (5).

In addition to drawing on methodologic work from other disciplines, the field of public 

health offers its own unique methodological contributions to agent-based modeling. This 

includes efforts to formalize the role of these models in causal inference (75). In particular, 

explicit comparisons of ABMs with other causal modeling approaches like marginal 

structural models and the parametric g-formula would highlight the assumptions required by 

each method and the particular insights made possible by an agent-based modeling 

approach. Recently, Murray and colleagues (81) used a comparison of ABMs with g-

formula strategies to estimate the causal effect of antiretroviral therapy on 12-month 

mortality among a simulated sample of persons with HIV. They demonstrated that ABMs 

result in bias when assumptions are not met regarding time-dependent confounding, 

mediation, and the transportability of causal estimates. Such limitations are not unique to 

ABMs, yet they highlight the methodological work that remains to be accomplished in 

promoting ABMs that yield insights for public health.

Many ABMs in public health utilize abstract representations of the physical environment, 

which may be perfectly appropriate if environmental influences are not of central 

importance to the model objectives. Following the lead of the MIDAS group and others (21, 

101), however, public health modelers may want to consider the potential for additional 

insight through explicitly integrating in their models geographic information systems (GIS) 

data, which can be accommodated in most ABM software packages. The availability of big 

data from electronic medical records and mobile devices may also present opportunities for 
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ABMs—for example, by including the use of cell phone data to simulate social network 

connections and interactions between individuals (58)—especially given the limited 

collection of network data in observational studies. One challenge in this area will be to 

continue weighing the value of increased model complexity against the need to derive 

meaningful inferences from the model output.

Model complexity in terms of multiscale interactions also presents unique challenges for 

agent-based modeling in public health. In many cases, these interactions are of central 

interest when modeling the system in which health arises: Are forces acting synergistically, 

antagonistically, or additively? However, data on these joint effects are scarce. Just as 

systems modeling may provide insight into the causal pathways leading to health outcomes 

(83), the agent-based modeling process itself presents an opportunity to systematically test 

alternative specifications of interaction effects in order to gain insight into plausible joint 

effects.

Finally, despite the advantages of ABMs in terms of highlighting the data that are needed to 

understand a particular public health system (1, 2), examples of data collection that have 

resulted from ABM exercises (which could then be used in future ABM development) are 

difficult to find. However, following the modeling cycle through its circular path (i.e., from 

model development to model implementation to data collection and back to model 

development) would present real opportunities to advance knowledge about public health 

problems. Similarly, our understanding of many public health problems would benefit from 

using complementary modeling approaches in an iterative fashion rather than relying too 

heavily on one statistical or systems science approach (54, 85). Many of the current ABM 

applications in public health end with tentative statements about their potential usefulness, 

with the implicit caveat that the model assumptions may be questioned and that empirical 

data grounding the model may be lacking. It is time we address these weaknesses through 

improved validation efforts, targeted data collection, and complementary modeling 

approaches in order to increase the payoffs from the modeling enterprise and to enable real 

conclusions about public health practice and policy.

Broadening the Substantive Focus of ABMs in Public Health

In addition to methodological improvements, the substantive focus of current ABM 

applications also needs attention. We suggest that ABMs in public health would benefit from 

less of a focus on one particular health condition or behavior and more of a broader 

consideration of interrelated health conditions and behaviors. This would allow for the 

exploration of the net effects of given policies on population health (97) and lead to greater 

understanding of comorbidity and other adaptive relations between health behaviors and 

outcomes. We expect that formulating a life course approach within ABMs (e.g., evaluating 

the influence of experiences and interventions at different developmental stages on 

trajectories of disease) will be particularly fruitful in understanding the origin and 

perpetuation of health disparities (24). Finally, we would encourage researchers to include 

multiple types of risk factors in their models in order to identify linkages across scales; this 

may include genetics, biology, behavior, environment, and networks. Although empiric data 

may not be available to parameterize the joint effects of these multiple levels of influence 
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and to model the interrelations between them, the process of modeling may provide insight 

into how these factors work together to produce disease. At the same time, an appropriate 

balance is needed in identifying the aspects of the system that are most relevant for a 

particular problem, rather than trying to model the system as a whole (85). With this balance 

in mind, expanding the application of ABMs in public health in these and other ways stands 

to increase our ability to understand and intervene to improve population health.
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Figure 1. 
An illustration of a hypothetical agent-based model. Individual characteristics such as 

demographics, health behaviors, health conditions, and health service utilization (blue) 

influence and are influenced by community characteristics ( green), social ties (brown), and 

other contacts ( purple), as well as ongoing processes such as aging and movement through 

the environment (orange). Taken together, these static and time-varying characteristics at 

multiple levels and the often bidirectional processes that connect them create a system from 

which population health emerges.
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