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INTRODUCTION

The Belizean Barrier Reef (BBR) forms part of the
Meso-American Barrier Reef system, the second
largest in the world. Glover’s Reef Atoll (16° 44’ N,
87° 48’ W) is the southernmost of 3 offshore coral
atolls in the BBR. This site was declared a marine re -
serve in 1993 (Glover’s Reef Marine Reserve [GRMR];
see Fig. 1) and is managed by the Belize Fisheries De-

partment (BFD). GRMR possesses the greatest range
of reef types in the Caribbean Sea, supports high bio-
logical diversity, and is economically important. The
Glover’s Reef Living Seascape project spear headed
by the Wildlife Conservation Society (WCS) helped
develop a strategic conservation plan for the site
(Gibson et al. 2011). The approach used allowed for
stakeholder participation and involved the selection
of a suite of target species that represent the key
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ABSTRACT: The decline of sea turtle populations in the Caribbean has led to intensive recovery
efforts. In Belizean waters, hawksbill turtles are seemingly making a comeback. At Glover’s Reef
Atoll particularly, juvenile hawksbill turtles are found in the fore-reef habitat. The population sta-
tus and dynamics of this foraging aggregation were assessed to inform conservation management
and to ascertain the national and regional importance of this site. During 12 sampling periods from
2007 to 2013, turtles of all species were counted, captured, and tagged. For hawksbill turtles, the
capture-recapture histories were combined with the counts using a mark-resight analysis under a
robust design. This provided estimates of abundance as well as survival and transition rates. From
2009 onward, distance sampling was also used to estimate density and abundance of hawksbill
turtles and the less frequently encountered green and loggerhead turtles. Distance sampling pro-
vided a more cost-effective estimation method for multiple species and another more precise
source of abundance estimates for hawksbills. This is the first study known to use either mark-
resight or distance sampling methods during snorkel surveys of sea turtles. It produced reason-
ably congruent abundance estimates of >1000 juvenile hawksbills and an order of magnitude less
of green and loggerhead turtles. The mark-resight analysis estimated an apparent juvenile
hawksbill survival probability of 0.975 (95% CI: 0.936−0.99), indicating that mortality factors are
low. The Atoll provides important developmental habitat for juvenile hawksbills, contributing to
the recovery of the species on the national and regional scale.
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habitats and threats at the site and that, if conserved,
will help protect all the biodiversity sheltered under
their collective conservation canopy (Sanderson et al.
2002, Coppo lillo et al. 2004, Didier et al. 2009). The
hawksbill turtle Eretmochelys imbricata was identi-
fied as one of the target species representing key
marine and terrestrial habitats, as well as threats re-
lated to habitat loss and fisheries interactions. Selec-
tion of this species highlighted the need to maintain
both nesting beaches on the cayes of the Atoll as well
as foraging and developmental habitats within its wa-
ters. Although only sparse hawksbill turtle nesting
still occurs on these cayes, measures that protect
turtle nesting habitat will benefit this remnant
nesting population as well as the other species in the
GRMR that require this habitat, including green Che-
lonia mydas and loggerhead Caretta caretta turtles.

Hawksbills known to use nesting beaches and for-
aging habitats in Belize (e.g. Smith et al. 1992) fall
within the Atlantic West/Caribbean Regional Man-
agement Unit (RMU) identified by Wallace et al.
(2010). This RMU was classified as Low risk-High
threat based on the consideration that hawksbill pop-
ulations within this RMU were fairly robust in terms
of their extinction risk, but if threats are not reduced,
populations could de cline; hence, intervention is
necessary (Wallace et al. 2010). The current principal
threats to sea turtle rookeries include loss of nesting
beach habitat due to coastal development and ero-
sion (possibly from climate change impacts) on the
mainland and the cayes off-shore as well as preda-
tion of eggs and hatchlings by raccoons, dogs, cats,
coatis, and pigs, particularly on mainland beaches
(see review by Campbell 2014). Threats to in-water
aggregations are less well known; however, fisheries
interactions have been an important threat (Smith et
al. 1992, Brautigam & Eckert 2006, Coleman & Majil
2014). Sites such as the GRMR and others (e.g. Scales
et al. 2011), which include nesting, developmental,
and feeding habitats for hawksbills, are highly valu-
able for recovery of the species in the Caribbean
region.

Although hawksbills are widely distributed in the
Caribbean Sea and Western At lan tic (Mortimer &
Donnelly 2008, National Marine Fisheries Service &
U.S. Fish and Wildlife Service 2013, Campbell 2014),
they are currently listed as Critically En dangered on
the International Union for Conservation of Nature
(IUCN) Red List of Threatened Species (IUCN 2015).
Intensive harvest for their shells, meat, and eggs
(Meylan & Donnelly 1999, Bjorndal & Jackson 2003)
have resulted in substantial reductions in population
numbers across their range throughout the tropical

and subtropical waters of the Atlantic, Pacific, and
Indian Oceans (Rhodin & Pritchard 1999). Hawksbills
spend their early years in oceanic habitats feeding on
a variety of floating organisms (Bolten 2003, Wither-
ington et al. 2012). In the Caribbean, when hawks-
bills shift from oceanic to neritic habitats as small
juveniles, they become primarily spongivores (Mey-
lan 1988) and are typically associated with reef habi-
tats, such as the fore-reef habitat of the GRMR, but
may also use seagrass habitat (see Bjorndal & Bolten
2010). Hawksbill turtles play a key functional role in
the ecosystems they inhabit (Goatley et al. 2012), and
reductions in hawksbill density have potentially im -
portant ramifications for those marine habitats. This
is an additional reason why hawksbill turtles were
included as a conservation target for the GRMR.

Conservation management of hawksbill turtles
within the GRMR requires estimates of density and
abundance as well as of vital rates associated with
survival, fecundity, and movement. Across the range
of hawksbill turtles, only a few studies have been
conducted to estimate these parameters. This is due
to reduced hawksbill numbers and their long life
span, which encompasses multiple life stages in a
variety of marine habitats that are geographically
wide ranging. Indices that provide information on the
relative abundance or relative density of the popula-
tion of interest based on nesting beach and in-water
surveys have been used to assess turtle population
status (e.g. Diez & van Dam 2002). These relative
indices are correlated to density, but the exact rela-
tionship is usually unknown and may change over
time and space (Williams et al. 2002). Thus, actual or
absolute estimates of density or abundance provide
stronger inference and can more reliably be used to
assess baselines and population trends or to make
comparisons between sites, although studies provid-
ing such estimates are few (Bjorndal et al. 2010). To
obtain these estimates for sea turtles using foraging
habitat at GRMR, we used a unique sea turtle sam-
pling protocol that included capture as well as direct
observation of the turtles along transect lines. We
analyzed the data using mark-resight (McClintock et
al. 2009) and distance sampling methods (Buckland
et al. 2001) that provided absolute estimates of den-
sity and abundance. The latter estimate was obtained
from both analysis methods with additional insights
into population dynamics provided by the mark-
resight method.

Capture-recapture analyses based on data ob -
tained from tagging turtles over time have been
used to estimate abundance (Chaloupka & Limpus
2001, Bjorndal et al. 2005, overview in Bjorndal &
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Bolten 2000) and/or other vital rates (Krueger et al.
2006, Sasso et al. 2006, Eguchi et al. 2010). Instead
of using more traditional mark-recapture methods
(Otis et al. 1978), we used mark-resight methods to
obtain ab solute estimates of abundance for hawks-
bill turtles as well as estimates of survival and tran-
sition rates be  tween observable and unobservable
states (McClintock & White 2009, McClintock et al.
2009). The method allowed us to combine individual
turtle capture histories with in-water sightings of
turtles with and without tags that were not cap-
tured. This combination was particularly useful in
terms of robust estimation given the low recapture
probabilities for these hawksbill turtles. Current
mark-resight methods have moved beyond a single
focus on abundance estimation (Bartmann et al.
1987, Arnason et al. 1991, Neal et al. 1993, Bowden
& Kufeld 1995) and now more reliably allow for
integrated estimation of survival and transition rates
between observable and un ob servable states (Ken -
dall et al. 1995, 1997, Ken dall & Nichols 2002). This
is important for evaluating the status of this Belizean
hawksbill turtle population over time because it
provides information on long-term prospects for the
population and movements in and out of the fore-
reef study area. Mark-resight methods were initially
applied to terrestrial mam mals and birds (McClin-
tock et al. 2006, 2009, McClintock & White 2009,
Walsh et al. 2010, Win gard et al. 2011, Franzetti et
al. 2012) with later applications to fish, cetaceans
and seals in the marine realm (Hagen et al. 2010,
Cordes 2011, Ryan et al. 2011, Mansur et al. 2012).
This is the first known application of mark-resight
methods to marine turtles.

Distance sampling has been successfully applied to
a large variety of species in different habitats (Buck-
land et al. 2001, 2015). Previous distance sampling
application to turtles include both aerial (Gómez de
Segura et al. 2006, Houghton et al. 2006, Seminoff et
al. 2014, Benson et al. 2007, Lauriano et al. 2011) and
boat-based (Eguchi et al. 2007, Beavers & Ramsey
1998) surveys with turtle observations limited to the
surface or just below. To our knowledge, this is the
first use of distance sampling with snorkellers mak-
ing observations to a greater depth below the sur-
face. This approach reduces perception and avail-
ability bias that is problematic in aerial and
boat-based surveys (Henwood & Epperly 1999, Pol-
lock et al. 1996, Kenney & Shoop 2012, Fuentes et al.
2015). Distance sampling permitted the estimation of
absolute density and abundance for hawksbill turtles
as well as the less frequently encountered green and
loggerhead turtles.

MATERIALS AND METHODS

Study area

GRMR is the fourth largest marine reserve in
Belize with an area of almost 360 km2. Management
zones within the GRMR aim to maintain its incredible
biodiversity and support sustainable fishing practices
for economically important species for local and
international markets, including Caribbean spiny
lobster Panulirus argus, queen conch Lobatus gigas,
black grouper Mycteroperca bonaci, hogfish Lachno-
laimus maximus, and mutton snapper Lutjanus analis
(Koslow et al. 1994). Zones include a general use
zone (covering ~75% of the area), conservation zone
(fishing is prohibited, aside from catch and re lease
sport fishing), wilderness zone (all access is prohib-
ited), and a spawning aggregation zone (the location
of one of the Caribbean’s largest and last remaining
Nassau grouper spawning aggregations, where all
fishing is prohibited) that overlaps with the seasonal
closure zone (fishing is prohibited December through
February; Fig. 1). The Atoll comprising GRMR has a
well-developed spur and groove outer reef structure
that surrounds a shallow lagoon interspersed with
>800 patch reefs. The outer reef or fore-reef is cov-
ered by sparse and dense massive encrusting corals,
and has a low relief spur and groove, an escarpment,
wall, and deep reef (Mumby & Harborne 1999).
Long-term turtle monitoring, particularly of hawks-
bills Eretmochelys imbricata, within the GRMR is one
of the principal management goals for the reserve.
Our pilot study determined that the fore-reef area
was potentially important turtle foraging habitat for
hawksbill turtles (in contrast to the lagoon habitat
within the atoll, for example), with some occurrence
of green Chelonia mydas and loggerhead Caretta
caretta sea turtles as well. In addition, the GRMR
does not include much of the off-shore area, such as
the reef wall. Thus, the present study focuses on the
fore-reef area (approximately 22 km2) that slopes
from the reef crest to the drop-off, which was acces-
sible to the survey teams without scuba gear.

Turtle research guidelines and permits

Turtles were captured and tagged by the survey
team according to internationally recognized guide-
lines and standardized methods for marine turtle tag-
ging (Eckert & Beggs 2006) and general guidelines
for research at the Glover’s Reef Research Station
(www. wcsgloversreef.org/wp-content/uploads/ 2013/
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04/ GRRS-Research-Guidelines.pdf). The sea turtle
survey work was initially conducted under permit
number 000019-08 obtained from the BFD and sub-
sequently within the framework of a Memorandum
of Understanding between WCS and BFD.

Field survey methods

Snorkel surveys were conducted within the fore-
reef habitat of Glover’s Reef Atoll at 16 sampling sites
(Fig. 1). Sites in the fore-reef habitat were selected by
systematic design with a random start point to cover
the circumference of the atoll, with some of the orig-
inal sampling units moved or removed due to issues
of accessibility or visibility. Hawksbills composing
part of a foraging aggregation within the GRMR
were the principal target of sampling surveys in the
GRMR, with greens and loggerheads also occurring

in the fore-reef habitat included in the
study. Turtle counts of all 3 species were
collected during 1 h in-water transects by
teams of 6 to 8 snorkellers spread from ~3
m depth to the reef edge (~20 m depth)
with ~5 m between them. Snorkellers were
accompanied by a boat-based crew that
assisted with data recording (for example,
taking GPS positions to mark the locations
of turtle observations) and helped them
maintain their correct survey position
along the transect line between the start
and end point that were located using the
GPS. The same start and end points for
each transect were used to orient the ob -
servers during every survey period. The
survey protocol dictated that snorkellers
raise their hand when a turtle was sighted
to facilitate the recording of observations
and to assess their independence. To avoid
positively biased estimates of encounter
rate, only independent duplicate observa-
tions were retained.

In addition, turtles were captured and
brought to the boat by the snorkellers to
collect biometric data, to tag newly caught
individuals, or to read the tag information
from turtles caught during previous sam-
pling sessions. Because turtle capture and
observation surveys were combined for
reasons of efficiency, changes in survey
effort in terms of the number of ob servers
(due to capture activities or for other rea-
sons) were recorded. Snorkel surveys were

conducted at least twice a year from 2007 to 2010 to
investigate potential seasonality in the target hawks-
bill turtle population, and then once a year from 2011
to 2013 (12 sampling periods in total). The initial aim
was to use a capture-recapture method to estimate
abundance over time (Otis et al. 1978), as well as
other vital rates.

From 2009 onward, the perpendicular distance
from each sighted turtle to the transect line swum by
the observer was also recorded to permit assess-
ments using distance sampling methods as well
(Buck land et al. 2001). This permitted abundance
estimation of not only hawksbill but also the less fre-
quently encountered green and loggerhead turtles,
and with minimal extra effort provided abundance
estimates generated by a different method that could
be compared to estimates obtained through turtle
capture-recapture methods. This is useful because
the latter may produce biased parameter estimates if
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Fig. 1. Glover’s Reef Atoll, Belize. Shown are the management zones and
the 16 in-water sampling sites in the fore-reef habitat. Habitat classifica-

tions are based on Mumby & Harborne (1999)
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heterogeneity in capture probabilities is not ac -
counted for during the analysis (e.g. Heupel & Ben-
nett 2007). Distance sampling is robust to hetero-
geneity in detectability (Buckland et al. 2001), can
efficiently provide estimates of density and abun-
dance (Kulbicki & Sarramégna 1999) immediately for
each survey period, and provides better precision
more cost-effectively when populations are larger.
Both capture-based and distance sampling account
for catchability or detectability that may be influ-
enced by factors such as weather conditions, visibil-
ity, observer ability, or attentiveness during the esti-
mation process. This is critical for statistically
defensible comparisons in space and time, avoiding
the pitfalls of using a relative index such as en -
counter rate based on number of turtles observed
over a given distance or period of time (Williams et al.
2002, Thompson 2002).

Tagging and biometrics

Turtles captured during the surveys were flipper
tagged with Inconel #681 metal tags (National Band
& Tag, Newport, KY, USA) on the trailing edge of
each front flipper, proximal to the first scute. Straight
carapace length measurements from nuchal notch to
posterior tip (SCLnt) were taken following Bolten
(1999) using a straight-line caliper. Turtles were
weighed, except for turtles of very large size, as was
the case for some loggerhead turtles; it was too diffi-

cult to obtain accurate measurements without the
correct lifting device to weigh them, as well as being
potentially unsafe to hoist these turtles onto a 8.5 m
(28 ft) boat at sea.

Mark-resight methods

We applied a mark-resight analysis under Pollock’s
robust design (Pollock 1982) to the hawksbill turtle
data for each of the 12 primary sampling periods
from 2007 to 2013. The details of the timing and effort
for each secondary period are shown in Table 1.
Encounter histories of tagged individuals were com-
piled, and totals of marked unidentified and un -
marked individuals overall and for each primary
sampling period were obtained (Table 1; also shown
are the captures and recaptures). The number of
marked unidentified and unmarked turtles corre-
sponds to the aggregate count of animals observed,
but not captured, during the snorkel surveys that did
and did not have tags, respectively. For the former
group, the tag was seen, but because the turtle was
not recaptured, individual identification was not pos-
sible. The analysis method assumes that tags are not
lost over time, with assumption violations leading to
positively biased abundance estimates. Generally,
tag retention is high with the double tagging protocol
and type of tags used in this study (e.g. Limpus 1992,
Bjorndal et al. 2005). Tagged turtles can be uniquely
identified when recaptured; however, the number of
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Year         Month          Primary           Inter-              Secondary        Unmarked         Marked            Newly        Recaptures
                                     sampling      sampling         period effort         (no tag)           (tagged)        captured & 
                                       period         period (d)                 (d)                                       unidentified         tagged

2007           Apr                  1                                                5                       17                      0                       8                       
                   Sep                  2                   151                        4                       13                      0                      10                      

2008           Apr                  3                   207                        5                       20                      2                      19                     1
                   Jul                   4                    93                         6                       30                      0                      16                     2
                  Nov                  5                   116                        4                       33                      1                      28                     4

2009           Apr                  6                   149                        5                       38                      3                      16                     3
                  Nov                  7                   206                        5                       48                      2                      26                     4

2010           Apr                  8                   150                        6                       48                      5                      46                     4
                  Nov                  9                   208                        4                       41                      5                      25                     3

2011           Mar                 10                  120                        5                       37                      2                      27                     2

2012           Apr                 11                  387                        5                       50                      3                      14                     4

2013           Apr                 12                  360                        5                       59                      3                      20                     4

Totals                                                                                   59                     434                    26                    255                   31

Table 1. The year and month corresponding to the primary sampling periods, the number of days between primary sampling
periods, the sampling effort (in days) associated with each of the secondary survey periods, and the total and primary period 

specific number of hawksbill turtles that were unmarked, marked unidentified, newly captured or recaptured
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tagged individuals within the study area at the time
of each survey is unknown, and the same turtle can
potentially be encountered more than once during a
secondary sampling period. For this reason, we used
an appropriate model that accounts for an unknown
number of tagged individuals as well as sampling
with replacement (McClintock et al. 2009, McClin-
tock & White 2009). This model is also able to deal
with heterogeneity in turtle sightability due to physi-
cal or behavioral differences and variation over time
(McClintock et al. 2006) and functions for populations
where there is potentially no demographic or geo-
graphic closure. In the latter case, animals move in
and out of the study area during the time of a survey,
and the abundance estimates are for a wider ranging
‘superpopulation’ associated with the study area.

The data were analyzed using the MARK software
(White 2011), which provides estimates of the inter-
cept for the mean resighting rate α, amount of indi-
vidual heterogeneity σ2, the number of un marked
individuals U, apparent survival φ, and transition
rates γ” (transition from an observable to an unob-
servable state) and γ’ (remaining in an un observable
state). The abundance estimate for each survey, N, is
derived from U, the overall mean resighting rate λ,
and the total number of resightings of tagged indi-
viduals. Model selection was based on Akaike’s
information criterion values adjusted for sample size
(AICc; Akaike 1973, Burnham & Anderson 2002) cal-
culated within MARK. Models considered included
those in which certain parameters (α, σ2, U, φ, γ’ , and
γ”) were either constant or different for each of the 12
encounter occasions. We also considered models
where σ2 or the transition rates were set equal to
zero.

Distance sampling methods

A series of 7 distance sampling surveys were con-
ducted in April 2009, November 2009, April 2010,
November 2010, March 2011, April 2012, and April
2013. Survey teams generally comprised a majority
of observers with prior experience with turtle obser-
vation and capture. Survey teams were provided
training in the distance sampling method with an
emphasis on meeting the assumptions underlying the
method, namely perfect detection on or close to the
transect line, exact distance measurements, and ani-
mal detection and distances recorded before move-
ment in response to the observer occurs. Training
was repeated to refresh memories and to account for
new observers who joined the team.

Turtle density within the 22 km2 fore-reef habitat of 

the GRMR was estimated as: , where n is 

the number of turtles of a particular species observed
during the survey period, f (0) represents the proba-
bility density function of the perpendicular distances
evaluated at zero distance, and L denotes the total
transect length (Buckland et al. 2001). Whenever
there was a change in survey effort, in terms of total
number of observers actively conducting the sighting
survey (as opposed to capturing turtles or some other
activity), the time and number of observers was
recorded. The effective number of observers was cal-
culated by aggregating the proportion of survey time
that each observer grouping was in place multiplied
by the total number of observers in that group. The
effort for each transect was then calculated by multi-
plying the distance between the in-water start and
end position by the effective number of observers
over the 1 h survey period. The total effort was the
aggregate length across all transects. f (0) is inversely
proportional to the effective strip half-width μ; there
is an equal number of undetected and detected ani-
mals within and beyond half-width μ, respectively
(Buck land et al. 2001). The effective area surveyed is
given by 2μ̂L. The abundance estimate was obtained
by multiplying D̂ by the 22 km2 surface area of the
same study area covered in each sampling period.

The Distance 6 software was used to analyze the
data (Thomas et al. 2010). The variance of encounter
rate (n/L) and ̂μ was estimated empirically from the 16
transects and using maximum likelihood methods,
respectively. Data were plotted in detail to identify
potential assumption violations, such as less than
perfect detection on or close to the line, rounding of
perpendicular distances to convenient values, turtle
movement before perpendicular distance were ob -
tained. A set of key functions and adjustment term
combinations were considered to model the detec-
tion function, and to improve model fit, both right
truncation of the data and grouping distances into
intervals were considered. Buckland et al. (2001)
note that good model fit at distances near zero is par-
ticularly important to avoid biased estimates of
detectability. To ensure a sufficient number of obser-
vations to reliably fit the detection function, the data
for all turtle species were combined. Distance sam-
pling is robust to pooling data in this manner, and
results are not biased even when there is variability
in detectability between individuals because the
result is an average detectability. Once a satisfactory
truncation distance or distance intervals were identi-
fied, AICc was used in model selection. For hawks-

ˆ
ˆ 0
2

D
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L
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bills, the distance sampling density
estimates were contrasted against
each other sequentially in time using a
t-test with a 5% significance level to
determine whether a statistically sig-
nificant difference could be detected
between sampling periods.

RESULTS

Biometrics and life stages

The size distribution of green Chelo-
nia mydas and hawksbill Eretmo -
chelys imbricata turtles captured dur-
ing in-water surveys was very similar,
although green turtles tended to be
smaller, and loggerheads Caretta ca -
retta were consistently larger (Fig. 2).
The mean straight carapace length
notch to tip (SCLnt) for captured
hawksbill turtles was 43.2 cm (SE =
0.62 cm, range = 20.0−75.1 cm, n = 214;
only SCLnt for first capture was used).
For green turtles, the mean SCLnt was
38.4 cm (SE = 2.34 cm, range = 22.9−
61.8 cm, n = 18), and mean SCLnt for
loggerheadturtleswas79.2cm(SE=3.7
cm, range = 68.9− 91.2 cm, n = 6). The
mean weight for hawksbill turtles was
12.13 kg (SE = 0.56 kg, range = 1.2−
65 kg), for reen turtles was 9.53 kg (SE
= 2.18 kg, range = 1.6− 40 kg), and
for loggerhead turtles was 81.98 kg
(SE = 9.97 kg, range = 53− 125 kg). The
biometrics for loggerheads are nega-
tively biased given that 2 of the larger
turtles that were tagged in the water
could not be measured. Based on cara-
pace length, the life stages captured in
the study were small and large juve-
nile hawksbills (and possibly adults
infrequently), primarily small juvenile green turtles,
and large juvenile and adult loggerheads.

Mark-resight analysis

Given the relative sparsity of the data and the low
recapture rates (Table 1), higher-ranked models
tended to be those with fewer parameters (Table 2).
Numerical problems tended to arise for models in

which >1 parameter was allowed to vary over time.
Setting γ” to zero always improved the AICc ranking
of the model (for models in which γ” was not set to
zero, its estimated value was miniscule). This was not
the case for γ’, and setting σ2 to zero produced iden-
tically ranked models to those where σ2 was set to
constant for the 12 encounter occasions. Within the
set of highest ranked mark-resight models, when α
varied over time, U was set to constant and vice
versa. For these models, γ” was set to constant or zero,
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Fig. 2. Distribution of straight carapace length (notch to tip) of hawksbill,
green, and loggerhead turtles captured at Glover’s Reef Atoll, Belize, from 

2007 to 2013

Model                           ΔAICc     AICc weights      Model likel.     Num. par.

αtσ2 
= 0U·φ·γ”= 0γ’·               0               0.38936                    1                     14

α·σ2 
= 0Utφ·γ”= 0γ’·          0.1351          0.36393               0.9347                14

αtσ2 
= 0U·φ·γ”·γ’·             2.2324          0.12752               0.3275                15

α·σ2 
= 0Utφ·γ”·γ’·             2.3675          0.11919               0.3061                15

Table 2. The model results for the Glover’s reef hawksbill turtle mark−resight
analysis. The estimated parameters are the intercept for the mean resighting
rate α, the number of unmarked individuals U, apparent survival φ, the proba-
bility of transitioning from an observable state to an unobservable state in the
next survey γ”, and the probability of remaining in an unobservable state in
the next survey when in an unobservable state in the previous survey γ’. These
parameters were either set to constant (.), allowed to vary over time (t) or were
set equal to zero (=0). Individual heterogeneity level σ2 was fixed at zero for
the models shown. The parameterization of each model is shown (Model),
along with the difference in Akaike’s Information Criterion (AICc) value be-
tween the top-ranked model and each model listed (ΔAICc), the relative sup-
port for the model given the data using weights (AICc weights), the strength of
evidence of each model relative to the other models in the set (Model likel.)
and number of parameters estimated (Num. par.). We only show models with 

an AICc weight > 5%
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σ2 was set to zero, and the re mainder of
the parameters were set to constants
(Table 2). For the model set in Table 2
that all have good support in the data,
model averaged results were ob tained
from MARK. Hawksbill abundance esti-
mates ranged from 1014 (95% CI: 105−
1924) to 2159 (95% CI: 914− 3405) turtles
for the12surveyperiods (Table3).Mean
resighting rates ranged from 0.025
(95% CI: 0.008−  0.075) to 0.053 (95% CI:
0.026− 0.106), and the overall survival
probability estimate was 0.975 (95% CI:
0.936− 0.99; Table 3).

Distance sampling analysis

The majority of turtles observed were
hawksbills (82.1%), with a much
smaller number of greens (13.3%) and
loggerheads (4.6%) observed (Table 4).
The encounter rates (n/L) for hawksbill
turtles are comparable across the first 5
surveys, with noticeably lower num-
bers in 2013 and particularly 2012
(Table 4), which also corresponds to the
introduction of completely new and
inexperienced ob servers in 2012. The
encounter rates are more variable
between surveys for green and logger-
head turtles, which is likely due, at
least in part, to the generally low sam-
ple sizes for these 2 species. Logger-
head turtles were only encountered
during the March or April surveys. The
percent coefficient of variation (%CV)
for n/L by species decreased or was
comparable over time.

For the first 2 surveys, there were too
many observations close to zero (heap-
ing at zero), this was not evident in the
later survey data. However, for all sur-
veys, there was a tendency to round
perpendicular distances to convenient
values, e.g. 0, 5, 10, 15, 20 ft, and so on;
thus, data were grouped into intervals
for final analysis (with right-truncation
to improve model fit). The final models selected for
each of the 7 survey periods are shown in Fig. 3 (the
associated key function and adjustment terms are de-
tailed in the legend). The estimates for f̂ (0) and μ̂ are
shown in Table 5. Over the 7 sampling sessions, the

effective area surveyed fluctuated be tween 4.2% and
7.6% of the 22 km2 fore-reef habitat. The estimated
detection probability ranged from 0.50 to 0.65, and
this likely reflects the variability in visibility (water
turbidity) and observers.
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Survey            N̂m         95% CI       (%CV)        λ̂             95% CI        (%CV)

Apr 2007       1014    (105−1924)     45.76      0.028    (0.011−0.068)     46.43
Sep 2007       1141    (113−2395)     56.09      0.025    (0.008−0.075)     56.00
Apr 2008       1438    (227−2649)     42.98      0.032    (0.013−0.072)     43.75
Jul 2008        1307    (569−2045)     28.77      0.035    (0.020−0.063)     31.43
Nov 2008      1636    (748−2523)     27.69      0.039    (0.022−0.067)     28.21
Apr 2009       1319    (599−2039)     27.90      0.043    (0.025−0.075)     27.91
Nov 2009      1652    (663−2641)     30.57      0.047    (0.025−0.086)     31.91
Apr 2010       2159    (914−3405)     29.41      0.047    (0.026−0.085)     29.79
Nov 2010      1671    (776−2566)     27.35      0.044    (0.025−0.076)     27.27
Mar 2011      1713    (792−2635)     27.44      0.039    (0.022−0.068)     28.21
Apr 2012       1453    (604−2302)     29.80      0.049    (0.027−0.089)     30.61
Apr 2013       1673    (531−2816)     34.85      0.053    (0.026−0.106)     35.85

Overall             φ̂           95% CI       (%CV)        γ̂’             95% CI        (%CV)

                     0.975   (0.936−0.99)     1.23       0.559    (0.211−0.857)     35.06

Table 3. The model averaged results over the model set in Table 2 for the
Glover’s reef hawksbill turtle mark−resight analysis. Shown are estimates of
abundance N̂m and mean resighting rate λ̂ by primary season as well as the
overall apparent survival φ̂ and the probability of remaining in an unobserv-
able state γ̂’. All estimates are shown with their 95% confidence intervals 

(95% CI) and percent coefficient of variation (%CV)

Survey         Species     n      L (km)   n/L (km−1)      (%CV)          95% CI

April 2009        Ei         57     112.17        0.508           21.37       (0.322−0.802)
                        Cm       10                        0.089           48.87       (0.033−0.242)
                         Cc         3                         0.027           71.47       (0.007−0.107)

Nov 2009          Ei         68     160.55        0.424           13.88       (0.316−0.569)
                        Cm        8                         0.050           35.93       (0.024−0.105)

April 2010        Ei         88     168.83        0.521           18.04       (0.356−0.763)
                        Cm       11                        0.065           30.07       (0.035−0.122)
                         Cc         3                         0.018           73.31       (0.004−0.072)

Nov 2010          Ei         70     132.16        0.530           15.76       (0.379−0.740)
                        Cm       13                        0.098           31.06       (0.052−0.188)

March 2011      Ei         68     152.08        0.447           14.72       (0.327−0.611)
                        Cm       13                        0.086           33.65       (0.043−0.172)
                         Cc         7                         0.046           29.96       (0.025−0.086)

April 2012        Ei         41     150.37        0.273           13.33       (0.206−0.362)
                        Cm       15                        0.100           32.75       (0.051−0.197)
                         Cc         8                         0.053           51.10       (0.019−0.149)

April 2013        Ei         71     188.16        0.377           11.97       (0.293−0.487)
                        Cm        5                         0.027           48.52       (0.010−0.071)
                         Cc         5                         0.027           62.77       (0.008−0.091)

Table 4. The number of in-water observations by species (n) post right trun -
cation, survey effort L (km) and the estimate of encounter rate (n/L) in obser-
vations km−1 for each survey period by species (Ei = hawksbill, Cm = green,
Cc = loggerhead) with the corresponding percent coefficient of variation
(%CV) and 95% confidence interval (95% CI). Note that the survey effort
takes into account the periods during which observers were off-effort during 

the sighting survey, for example, when capturing turtles
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Hawksbill density estimates were consistently
higher than for greens or loggerheads, making up
>80% of turtle density in the majority of survey peri-
ods (Table 6). Abundance estimates for hawksbills
ranged from 555 (95% CI: 410−750)
to 1618 (95% CI: 1030−2540) turtles
over the 22 km2 study area (Table 6).
The estimates of density and abun-
dance were most precise for hawks-
bills because the n/L was the highest
for this species. However, even for
hawksbills, the difference in density
between sequential surveys across all
years of the surveys was not stat -
istically significant at the 5% level,
except for the April 2012 survey,
when contrasted to each of its
 neighbors.

DISCUSSION

These are the first hawksbill assessments to use ei-
ther distance sampling or mark-resight methods
based on snorkel sighting and capture surveys. The
results produced by the 2 methods are fairly congruent
and indicate a healthy population of >1000 individu-
als. Comparing abundance estimation methods as ap-
plied to the juvenile hawksbills Eretmochelys imbri-
cata in the fore-reef of the GRMR, the estimates from
the mark-resight ana lysis are generally higher than
those from the distance sampling analysis (Tables 3
& 6, respectively). This is likely explained by the cap-
ture of transient individuals or individuals that move
in and out of the fore-reef habitat, and thus, the mark-
resight abundance estimate is for a ‘superpopulation’
associated with the study region during a particular
survey. Because we do not know the exact area corre-
sponding to this ‘super popu la tion’, we cannot easily
derive density estimates from the mark-resight abun-
dance estimates.

In contrast, distance sampling estimates density di-
rectly and then permits abundance estimation if the
surface area of the study region is available. The fore-
reef area in GRMR is clearly delimited by the reef
crest and reef wall drop-off, and using the available
fine-scale habitat map, it was possible to calculate the
surface area of the fore-reef within the re serve. There
was a statistically significant change in turtle density
and abundance in April 2012 contrasted to earlier or
later surveys. However, we do not believe this is a
true change in the target population but rather an ar-
tifact of data collection problems in 2012 resulting
from lack of experience and training in a new team of
observers that season. Due to the obser vers’ lack of
understanding of distance sampling and their inexpe-
rience with turtle surveys in general, it is likely that
key assumptions underlying the method were vio-
lated. A critical assumption underlying distance sam-

Fig. 3. Detection function fitted (key + adjustment terms) to the
perpendicular distances of observations of all turtle species
(bold black line) in (a) April 2009 — half-normal, (b) November
2009 — half-normal+cosine, (c) April 2010 — uniform+cosine,
(d) November 2010 — hazard rate, (e) March 2011 — uniform +
cosine, (f) April 2012 — uniform+cosine, and (g) April 2013 —
uniform+simple polynomial. The grey bars represent the fre-
quency of observed perpendicular distances. The estimated
detection probability corresponding to these detection func-

tions is shown in the upper right corner of each panel

Survey            f̂ (0) (m−1)          95% CI           μ̂ (m)         95% CI          (%CV)

April 2009         0.245        (0.202−0.296)       4.08       (3.38−4.94)          9.57
Nov 2009           0.193        (0.162−0.230)       5.18       (4.35−6.17)          8.81
April 2010         0.212        (0.187−0.239)       4.73       (4.18−5.34)          6.16
Nov 2010           0.182        (0.145−0.229)       5.49       (4.38−6.89)        11.46
March 2011       0.193        (0.162−0.231)       5.17       (4.34−6.17)          8.89
April 2012         0.185        (0.164−0.209)       5.41       (4.79−6.11)          6.08
April 2013         0.281        (0.243−0.325)       3.56       (3.08−4.12)          7.30

Table 5. Estimates of f̂ (0), the probability density function of the perpendicular
distances evaluated at zero distance, and its inverse the effective strip width
(μ̂) obtained for each survey period with their 95% confidence intervals (95% 

CI) and corresponding percent coefficient of variation (%CV)
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pling is that animals on or close to the transect line are
seen. It seems that in particular hawksbill turtles were
missed on or close to the transect line because they
are potentially better camouflaged, especially for the
novice turtle observer. Another critical assumption
underlying distance sampling is that animals are de-
tected in their original location before responsive
movement occurs. This assumption may also have
been violated due to observer inexperience. In this
case, where there is likely responsive movement
away from observers, this would result in negatively
biased density and abundance estimates.

The mark-resight estimates were consistently less
precise, which is expected because a large propor-
tion of the target population has to be sampled to
achieve reasonable precision with this method. For

distance sampling, the achieved pre-
cision is not dependent on the propor-
tion of the population that is sampled
but is determined by the variability in
encounter rate and detectability. On
average for the 2009−2013 surveys,
the percent coefficient of variation
was 12% higher for the mark-resight
estimates. Distance sampling along
line transects was also less invasive
and more cost-effective (less labour
intensive during the survey itself, and
only a single survey was required to
obtain estimates for several species).
However, distance sampling cannot
provide information on vital rates
and thus a capture-recapture based
method was required to obtain such
information.

Both methods worked well for a
population of this size within this rela-
tively small geographic area at depths
that were accessible to snorkelers. In
addition, the flight distance of the tur-
tles made it possible to obtain dis-
tances before responsive movement
oc curred and to capture a substantial
number of turtles. Mark-resight meth-
ods could potentially be applied less
invasively using photo-based meth-
ods as has been demonstrated for
juvenile hawksbills (Dunbar et al.
2014), which also eliminates prob-
lems caused by tag loss. Mancini et al.
(2015) contrasted strip transect and
photo-identification based capture-
recapture methods for in-water sur-

veys of green turtles Chelonia mydas in the Egyptian
Red Sea. Their methods produced similar results,
with strip transects being easier to implement in the
field and with resulting data that were simpler to
analyze. For any in-water turtle survey, its particular
aims and constraints will dictate what sampling
method is used (Bjorndal & Bolten 2000, Bjorndal et
al. 2010, Man cini et al. 2015). A key advantage of the
methods we used is that they account for detectabil-
ity or catchability, which is important for the effective
long-term management of turtle populations. The
methods provided complementary results that allow
us to make statistically defensible comparisons of
population status and dynamics over time and
between sites where similarly robust methods have
been used.

220

Survey        Species       D̂              95% CI             N̂            95% CI       (%CV)

April 2009       Ei       62.22      (39.63−97.69)     1618     (1030−2540)    21.86
                       Cm     10.92        (4.21−28.33)       284       (109−737)      46.81
                       Cc        3.28        (0.80−13.41)         85         (21−349)      73.16

                     Total    76.41      (50.99−114.50)   1987     (1326−2997)    20.00

Nov 2009        Ei       40.88      (29.27−57.10)     1063       (761−1485)    16.44
                       Cm       4.81        (2.26−10.24)       125         (59−266)      36.99

                     Totala    46.30      (33.81−63.39)     1204       (879−1648)    15.60

April 2010       Ei       55.12      (37.10−81.89)     1433       (965−2129)    19.06
                       Cm       6.89        (3.65−13.00)       179         (95−338)      30.69
                       Cc        1.88        (0.46−7.62)           49         (12−198)      73.56

                     Total    63.89      (44.86−90.99)     1661     (1166−2366)    17.18

Nov 2010        Ei       48.22      (32.57−71.41)     1254       (847−1857)    19.48
                       Cm       8.96        (4.56−17.58)       233       (119−457)      33.11

                     Totala    57.86      (40.32−83.05)     1505     (1048−2159)    18. 12

March 2011    Ei       43.22      (30.45−61.33)     1124       (792−1594)    17.19
                       Cm       8.26        (4.05−16.33)       215       (105−438)      34.80
                       Cc        4.45        (2.34−8.46)         116         (61−220)      31.26

                     Total    55.93      (41.06−76.18)     1454     (1067−1981)    15.45

April 2012       Ei       25.21      (18.63−34.11)       555       (410−750)      14.65
                       Cm       9.22        (4.64−18.34)       203       (102−403)      33.31
                       Cc        4.92        (1.76−13.79)       108         (39−303)      51.46

                     Total    41.81      (31.55−55.40)       920       (694−1219)    14.19

April 2013       Ei       52.98      (39.80−70.53)     1166       (876−1552)    14.02
                       Cm       3.73        (1.39−10.00)         82         (31−220)      49.07
                       Cc        3.73        (1.09−12.80)         82         (24−282)      63.19

                     Total    62.68      (47.82−82.16)     1379     (1052−1808)    13.49

aThese global estimates of density and abundance include the single sight-
ing of indeterminate species

Table 6. Distance sampling estimates of turtle density (D̂) in number km−2 and
abundance (N̂) for each survey period by species (Ei = hawksbill, Cm = green,
Cc = loggerhead) and combined with their 95% confidence intervals (95% CI)
and percent coefficient of variation (%CV). The abundance estimates for
hawksbill turtles are in bold to facilitate comparison with abundance 

estimates obtained using the mark-resight method
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Juvenile hawksbill densities in the fore-reef of the
GRMR (e.g. 52.98 juvenile hawksbills km−2 with a
95%CI of 39.80 to 70.53 for the 2013 survey) are likely
tied to a combination of factors such as food availability
and habitat structural complexity  (Rincon-Diaz et al.
2011a). Estimates from this study are similar to those
reported elsewhere; however, given methodological
variation, comparisons should be viewed cautiously.
Based on capture effort in 2 habitat types with differ-
ent octocoral cover, Cuevas et al. (2007) estimated a
density of 30 and 38 juvenile hawksbills km−2 in Car-
ibbean Mexico. Leon & Diez (1999) re ported juvenile
hawksbill densities for 5 sites ranging from 5.6 to 96.8
turtles km−2 (combined area density was 8.1 km−2) in
the Dominican Republic, with their higher-density es-
timates found in the coral reef habitat. Diez & van
Dam (2002) reported a density index of 24.1 juvenile
hawksbills km−2 at Mona Reef, Puerto Rico. In the Pa-
cific, Limpus (1992) reported a much lower density of
3.34 turtles km−2 for predominantly juvenile hawksbill
at Heron Reef, Australia. None of the studies in the
Caribbean ac count for detectability/catchability and
in some cases are likely underestimates of actual den-
sity. In addition to differences in methodologies, there
are differences in habitat types that confound efforts
to make comparisons.

The high survival probability estimated for juvenile
hawksbills (97.5% with a 95%CI of 93.6 to 99%)
indicates a low level of natural and human-induced
mortality. This is congruent with the possible loss of
top predators in the ecosystem, e.g. the Near Threat-
ened Caribbean reef shark Carcharhinus perezi, al -
though there are indications that shark populations
are less impacted in protected areas such as GRMR
(Bond et al. 2012), but most likely due to no or little
direct or incidental take of turtles in the waters of the
Glover’s Reef seascape, unlike in many other areas
(e.g. Alio et al. 2010, and see review by Campbell
2014). Survival probabilities from 1st capture (51.2%)
and from subsequent captures (81.8%) were lower for
small juvenile hawksbills (<55 cm) and other age
classes (88.5%) in the Bahamas (Krueger et al. 2006).
Survivorship was also high for immature hawksbills
(71.1% for males and 92.2% for females) found in a
foraging aggregation in the northern Great Barrier
Reef (Bell et al. 2012).

The size distribution of captured turtles clearly indi-
cates that the population within our study area is com-
posed predominantly of juvenile hawksbill  turtles
(Fig. 2). The biometrics of this juvenile population are
comparable to aggregations found elsewhere in the
region. Leon & Diez (1999) found pre dominantly juve-
nile and sub-adult hawksbills at their study site at

Jaragua National Park and Cabo Rojo, Dominican Re-
public. The size range of those turtles was very similar
to ours, but the average size (43.2 cm) of the hawks-
bills in the GRMR fore-reef habitat was slightly larger
with more representatives in the larger size classes.
This was also the case for a study by Blumenthal et al.
(2009b) in the Cayman Islands. In contrast, the pre-
dominantly immature hawks bills in the Union Creek
Reserve, Bahamas, were larger on average (48.8 cm)
with a larger lower limit (24.3 cm) in their size range
(Bjorndal & Bolten 2010). These slight differences in
size distributions among sites may be related to a vari-
ety of factors, such as capture methods and experi-
ence, and habitat type and structure.

In our study, habitat type was broadly defined, and
thus, a more detailed assessment would improve our
understanding of specific turtle dietary and habitat
needs within the fore-reef and other habitats of the
GRMR. This could be accomplished by means of tele -
metry and towed cameras, similar to the methods de -
scribed by Walcott et al. (2014). Glover’s Reef Atoll,
despite its distance from the mainland and relatively
high level of protection, has not entirely escaped the
impacts of over-fishing that are evident throughout
the Caribbean and that make systems less resilient to
other impacts (Loh et al. 2015). A  dramatic phase
shift from coral-dominated to algal-dominated envi-
ronments has already occurred at Glover’s Reef Atoll
(McClanahan & Muthiga 1998), and further habitat
changes are likely to occur at this and other sites in
the Caribbean due to warming waters (McClanahan
et al. 2009, González-Rivero et al. 2011). Hawksbill
turtles seem to exhibit substantial flexibility in their
selection of food items (Rincon-Diaz et al. 2011b, Bell
2013), which bodes well for their survival in a chang-
ing marine environment. However, further studies of
habitat diversity and distribution (e.g. Acosta et al.
2015) and monitoring in conjunction with studies
quantifying the most important food sources and
sheltering habitat are needed. Ensuring that the spa-
tial configuration of the GRMR covers resistant and
resilient areas in the key fore-reef and other habitats
is important for the long-term survival of this juvenile
hawksbill feeding aggregation and all the biodiver-
sity that depends on this ecosystem for their survival.

Hawksbill turtles cover extensive geographic areas
throughout their lives intheWestAtlantic (Bolten2003,
Horrocks et al. 2011, Meylan et al. 2011, Hawkes et al.
2012), which requires a regional ap proach to their
management and conservation (Horrocks et al. 2011,
Moncada et al. 2012, Campbell 2014). Investigations
of long-range movements (in cluding ontogenetic
habitat shifts) of turtles from Glover’s Reef add to the
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body of knowledge from previous studies in the re-
gion (e.g. Velez-Zuazo et al. 2008, Blumenthal et al.
2009a,b, Browne et al. 2010, Agusa et al. 2011, Hor-
rocks et al. 2011, Rincon-Diaz et al. 2011a, Scales et
al. 2011, Hart et al. 2012, Hawkes et al. 2012, Leroux
et al. 2012, Dunbar et al. 2013) and advance our un-
derstanding of hawksbill ecology and management
needs in Belize, as well as the relationship between
this site and rookeries and feeding ag gregations in
the wider Caribbean region falling within the ‘At-
lantic, Western Caribbean/USA’ RMU (Wallace et al.
2010). In addition, comprehensive genetic and con-
taminant analyses of the samples collected from 2010
to 2013 will provide further insights into the relation-
ships between this population and others in the re-
gion. Preliminary genetic stock assessment results in-
dicate a relatively high haplotype diversity (0.71) in
this fore-reef habitat, with at least 10 haplotypes rep-
resenting 8 rookeries (Otero et al. 2012). This di -
versity provides more evidence for GRMR’s impor-
tance to hawksbill populations throughout the region.

Although much work remains to be done to in -
crease our understanding of this population of juve-
nile hawksbills and to inform management for their
recovery within the regional context, these estimates
of their density and abundance can be used to assess
the efficacy of conservation actions over time, as well
as providing a baseline to look at potential changes
due to climate change. With upward of 1000 juvenile
hawksbills estimated within the 22 km2 fore-reef
habitat in the GRMR and an estimated high survival
probability, this area provides extremely important
developmental habitat for Caribbean hawksbills and
undoubtedly contributes to their recovery in the
region.
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