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ABSTRACT 
A review of the ground state confinement energy term in the Brus 

equation for the bandgap energy of a spherically shaped semiconductor 
quantum dot was made within the framework of effective mass 
approximation. The Schrodinger wave equation for a spherical 
nanoparticle in an infinite spherical potential well was solved in spherical 
polar coordinate system. Physical reasons in contrast to mathematical 
expediency were considered and solution obtained. The result reveals that 
the shift in the confinement energy is less than that predicted by the Brus 
equation as was adopted in most literatures.

 
1. INTRODUCTION 
 
Solid state materials, in general are classified either as metals, semiconductors or insulators. As the name 

implies, semiconductors are materials whose electrical/electronic properties are intermediate between those of 
metals and insulators. These intermediate properties are determined by their crystal structures, bonding 
characteristics, electronic energy level, just to mention but a few (Pillai, 2010). The energy band model or structure 
of materials dictates that unlike metals, gap, often referred to as forbidden energy gap exist between the valence 
band and the conduction band of semiconductors and insulators at room temperature. Thus, in loose terms, 
materials with zero energy gap are metals while those with energy gap greater than 3 eV are commonly referred to 
as insulators (Yu & Cardona, 2005).  Semiconductors are one of the most useful class of materials ever known to 
man. Despite that they occupy mainly the groups III and IV in the periodic classification of elements, semiconductors 
also exist in many different chemical compositions with a large variety of crystal structures. Examples include silicon, 
germanium, gallium arsenide, cadmium selenide, cadmium sulphide, etc (Yu & Cardona, 2005).    
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The versatility and usefulness of a semiconductor lies in its band gap energy which in turn govern its 
optoelectronic properties. Band gap engineering refers to the process of altering the band gap energy of a 
semiconductor to meet specific requirement and application. It is distinct from doping which only shifts the femi 
level (or energy) within the bandgap of a given semiconductor, thereby creating band tail states either close to the 
valence band (acceptor state) or conduction band (donor state), leading to the formation of either P-type or N-type 
semiconductor respectively. Common bandgap engineering techniques include the use of heterostructures (Esaki & 
Tsu, 1970) and by alloying composition (Fox & Ispasoiu, 2017). Decreasing the physical size of a semiconductor into 
the nanometric region can also be regarded as a bandgap engineering technique as it alters the bandgap due to 
quantum confinement effects. Semiconductors have made in road into our lives as they are the workhorse of modern 
electronics. They form the foundation of both industrial and consumer electronics. Improvement in theoretical 
understanding of the physics of semiconductors coupled with advances in crystal growth and circuit fabrication 
techniques has led to the development of integrated circuits which come in sizes ranging from small scale integration 
(SSI) to ultra large scale integration (ULSI) depending on the number of components per chip (Gupta, 2014). This 
process, often referred to as miniaturization is not without an end. When the material or circuit dimension scales 
down into the nanometric region, quantum effects become prominent leading to confinement of carriers (electrons 
and holes). Carriers can be confined in one, two, or three dimensions leading to a quantum well, quantum wire or 
quantum dot respectively (Davies, 2005). Thus, quantum dots are semiconductor nanostructures (nanoparticles) in 
which carriers are confined in all three dimensions (Brus, 1984). They are formed predominantly by Stranski-
Krastanow growth mode, a molecular beam epitaxy technique (Pohl, 2013) and by solution or wet chemistry (Brus, 
1983), used to realize colloidal or stand alone quantum dots. Quantum dots exist in different shapes depending on 
the growth and material conditions. These include spherical, lens, pyramidal, cylindrical shapes, etc. (Pohl, 2013). 

Carrier confinement increases the band gap energy of a semiconductor and alters the density of state of the bulk 
semiconductor material (Pohl, 2013).  It therefore extends the frontiers of application of the semiconductor. The 
energy increase in the band gap is referred to as the confinement energy of the quantum dot.  

Brus (1984) gave the first theoretical calculation for a spherical semiconductor colloidal (or stand alone) 
nanocrystal with CdS and CdSe as examples, based on effective mass approximation. The band gap energy according 
to Brus is  

 
𝐸𝐸𝑔𝑔(𝑞𝑞𝑞𝑞)  =  𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  + ℎ

2

8𝑅𝑅2
 ( 1

𝑚𝑚𝑒𝑒
∗  +  1

𝑚𝑚ℎ
∗  ) − 1.8𝑒𝑒2

4𝜋𝜋𝜋𝜋0𝜋𝜋𝑟𝑟𝑅𝑅2                                                            (1) 

 
Where,  

  
𝐸𝐸𝑔𝑔(𝑞𝑞𝑞𝑞) = band gap energy of quantum dot 
  
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  = band gap energy of bulk semiconductor 
  
R  = radius of quantum dot 
  
𝑚𝑚𝑒𝑒
∗   = effective mass of excited electron 

  
𝑚𝑚ℎ
∗   = effective mass of excited hole 

  
h  = planck’s constant 
  
𝜀𝜀0  = permittivity of vacuum 
  
𝜀𝜀𝑟𝑟  = relative permittivity 
 
The first term in the right hand side of equation (1) denotes the band gap energy of the bulk semiconductor. The 

second additive term in the right hand side of equation (1) represents the additional energy due to quantum 
confinement. It can be thought of as the infinite square-well contribution to the band gap energy. The third 
subtractive term stands for the exciton’s columbic interaction energy. The numerical factor in this term originates 
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from calculations of wave function overlap integrals. Thus, according to the brus equation, the confinement energy 
𝐸𝐸𝑐𝑐  is explicitly stated as (Brus, 1984): 

 
𝐸𝐸𝑐𝑐 =  ℎ

2

8𝑅𝑅2
 ( 1

𝑚𝑚𝑒𝑒
∗  +  1

𝑚𝑚ℎ
∗  )                                                              (2) 

 
One of the short comings of the Brus equation is its failure to account for the electron-hole spatial correlation 

effect (Kayanuma, 1988). However, our focus in this paper is on the confinement energy term. Quantitatively, the 
effect of quantum confinement on the band gap energy of a semiconductor is chiefly determined by this term. The 
Brus equation shows that for a spherical shaped semiconductor nanocrystal, the confinement energy is inversely 
proportional to the square of the radius of the nanocrystal. The goal of this paper is to investigate this relationship 
and also ascertain the veracity or otherwise of the confinement energy term.  The vast applications of quantum dots 
in technology is emission based. The confinement energy is important because it determines the emission energy as 
well as the wavelength of the quantum dot. 

 
2. FORMALISM 
 
An ideal spherical quantum dot is a spherical shaped semiconductor nano crystal in which excitons are confined 

in an infinite spherical well (Delerue & Lannoo, 2004). This corresponds to an impenetrable hard spherical wall. The 
confining potential is given by 

 
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.(𝑟𝑟) = {∞,             𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

0,               𝑟𝑟    ≤      𝑎𝑎                                                             (2) 
 

Where,  
  

R = radius of the confining potential 
 

a = radius of the nanocrystal 
  

Following Schrodinger’s time-independent wave equation (Davies, 2005): 
 
−ℎ2

2𝜇𝜇
 ∇2Ψ (𝑥𝑥, y, z) + V(𝑥𝑥,𝑦𝑦, 𝑧𝑧)   = EΨ (𝑥𝑥,𝑦𝑦, 𝑧𝑧)                                                          (3) 

 
Where, 

 
μ = mass of particle 
 
E  = energy of particle 
 
Ψ  = wave function associated with particle 

 
Since the potential depends on the radius from a fixed point of a spherical quantum dot, the Laplacian ∇2  of the 
spherical polar coordinate is independent of the angular part and is given as  

 
∇2=  1

𝑟𝑟2
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2 𝜕𝜕

𝜕𝜕𝑟𝑟
�                                                              (4) 

 
Putting equation (4) into equation (3) for V = 0: 

 
−ℎ2

2𝜇𝜇
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2 𝜕𝜕

𝜕𝜕𝑟𝑟
� = EΨ (𝑥𝑥,𝑦𝑦, 𝑧𝑧)                                                           (5) 
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The confinement energy depends only on r. 
 
Assume Ψ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = R(r)G(𝜃𝜃)Q(∅) ; The radial part of equation (5) by the method of separation of variables yields:  

 
1
𝑅𝑅
𝑞𝑞
𝑞𝑞𝑟𝑟

(𝑟𝑟2 𝑞𝑞𝑅𝑅
𝑞𝑞𝑟𝑟

) + 2𝜇𝜇𝜇𝜇𝑟𝑟
2

ℎ2
 =  𝑙𝑙(𝑙𝑙 + 1)                                                            (6) 

 
Where  𝑙𝑙 = orbital angular momentum 
 
Equation (6) is simplified and the result is stated as :  

 
𝑞𝑞2𝑅𝑅
𝑞𝑞𝑟𝑟2

 + 2
𝑟𝑟

 𝑞𝑞𝑅𝑅
𝑞𝑞𝑟𝑟

 + � 𝑘𝑘2 −    𝑏𝑏(𝑏𝑏+1)
𝑟𝑟2

 �  𝑅𝑅(𝑟𝑟) = 0                                                               (7) 
 

Where k = �2𝜇𝜇𝜇𝜇
ℎ

  
 
Equation (7) is reminiscent of spherical Bessel differential equation. The solutions are the spherical Bessel function 
of order 𝑙𝑙, 𝑗𝑗𝑏𝑏(𝑘𝑘𝑟𝑟)  and the spherical Neumann function of order 𝑙𝑙, 𝑛𝑛𝑏𝑏(𝑘𝑘𝑟𝑟) .  
 
The general solution is : 

 
𝑅𝑅𝑐𝑐,𝑏𝑏 (𝑟𝑟) = 𝐶𝐶𝑏𝑏 𝑗𝑗𝑏𝑏(𝑘𝑘𝑟𝑟) + 𝐷𝐷𝑏𝑏 𝑛𝑛(𝑘𝑘𝑟𝑟)                                                            (8) 
 
Where 𝐶𝐶𝑏𝑏  and 𝐷𝐷𝑏𝑏 are constants. 

 
Unlike the spherical Neumann function, the behavior of the Bessel function is such that it is finite at the origin (Weber 
and Arfken, 2003). The finite requirement of the wave function suggest that D must be equal to zero. This reduces 
equation (9) to: 

  
𝑅𝑅𝑐𝑐,𝑏𝑏 (𝑟𝑟) = 𝐶𝐶𝑏𝑏 𝑗𝑗𝑏𝑏(𝑘𝑘𝑟𝑟)                                                              (9) 
 
Where,  

 𝐶𝐶𝑏𝑏 = normalization constant 
  
      𝑅𝑅𝑐𝑐,𝑏𝑏 (𝑟𝑟) = eigen function 
 

The wave function must varnish at the boundary. However, in the formulation, due to mathematical expediency, one 
had used a confining potential that is central, which implies that there exist an explicit hard core potential at the 
centre. But, according to the physical description of the system, no boundary exist at r = 0, which would introduce a 
node in the wave function at that point. Rewriting equation (11) in consonance with Dey et al (2012) yields:  

 
𝑅𝑅𝑐𝑐,𝑏𝑏 (𝑑𝑑) = 𝐶𝐶𝑏𝑏 𝑗𝑗𝑏𝑏(𝑘𝑘𝑑𝑑)                                                                         (10) 
 
Where, 

  d = diameter of the sphere (distance between two directly opposite points on the sphere). 
Also, the infinite potential barrier requires that R(d) = 0. This translates into 

 
𝑗𝑗𝑏𝑏(𝑘𝑘𝑑𝑑) = 0                                                                           (11) 
 
Where kd is a zero of the 𝑙𝑙𝑙𝑙ℎ-order spherical Bessel function. 

Unfortunately, the zeros are not located at good (sensible) points (like n or n𝜋𝜋). 
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The boundary condition requires that: 
 

K = 1
𝑞𝑞

 𝑋𝑋𝑐𝑐,𝑏𝑏                                                            (12) 
 

Where 𝑋𝑋𝑐𝑐,𝑏𝑏  is the nth zero of the 𝑙𝑙𝑙𝑙ℎ-order spherical Bessel function. 
 

Putting equation (12) into equation (7) yields:  
 

1
𝑞𝑞2

 𝑋𝑋𝑐𝑐,𝑏𝑏
2  = 2𝜇𝜇𝜇𝜇

ℎ2
                                                                          (13) 

 
Following equation (13), the allowed energies 𝐸𝐸𝑐𝑐 become 

 
𝐸𝐸𝑐𝑐 =  ℎ2

2𝜇𝜇𝑞𝑞2
 𝑋𝑋𝑐𝑐,𝑏𝑏

2                                                                           (14) 
 

Putting 𝜇𝜇 =  𝑚𝑚𝑒𝑒
∗   into equation (14) yields the electron confinement energy 𝐸𝐸𝑒𝑒𝑐𝑐  as : 

 
𝐸𝐸𝑒𝑒𝑐𝑐  = ℎ2

2𝑚𝑚𝑒𝑒
∗𝑞𝑞2

 𝑋𝑋𝑐𝑐,𝑏𝑏
2                                                            (15) 

 
Where 𝑚𝑚𝑒𝑒

∗  is the effective mass of electron 
 

Similarly, the hole confinement energy 𝐸𝐸ℎ𝑐𝑐    is obtained as: 
 

𝐸𝐸ℎ𝑐𝑐 =  ℎ2

2𝑚𝑚ℎ
∗ 𝑞𝑞2

 𝑋𝑋𝑐𝑐,𝑏𝑏
2                                                            (16) 

 
Where 𝑚𝑚ℎ

∗  is the effective mass of hole. 
 

Adding equations (15) and (16) gives the total confinement energy (simply confinement energy), 𝐸𝐸𝑐𝑐  as: 
 

𝐸𝐸𝑐𝑐 =  ℎ
2

2𝑞𝑞2 
 � 1
𝑚𝑚𝑒𝑒
∗ +  1

𝑚𝑚ℎ
∗�𝑋𝑋𝑐𝑐,𝑏𝑏

2                                                             (17) 

 
Where,  

 
n = radial quantum number 
 

The ground state corresponds to n = 1 and  𝑙𝑙 = 0. 𝑋𝑋1,0 = 3.142 (Abramowitz and Stegun, 1970) which coincides with 
the well-known constant 𝜋𝜋. Therefore equation (19) becomes: 

 
𝐸𝐸𝑐𝑐 =  𝜋𝜋

2ℎ2

2𝑞𝑞2 
 � 1
𝑚𝑚𝑒𝑒
∗ +  1

𝑚𝑚ℎ
∗�                                                                         (18) 

 
3. CONCLUSION 
 
The confinement energy is inversely proportional to the square of the diameter of the quantum dot, in contrast 

to the Brus equation which predicts an inverse square relationship in the radius. The confinement energy based on 
the brus equation is not entirely new. Very few researches are ground breaking and entirely new. A good number of 
researches today are innovative and the brus equation is no exception. A “bird eye" view of the brus equation reveals 
that it is nothing but a Schrodinger equation modified to account for the effect of an electron-hole pair (exciton) 
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confined to a nanometric spherical shaped semiconductor referred to as quantum dot. It is blind to the varied crystal 
structures that exist for semiconductors. 

The confinement energy obtained in equation (18) is less (about a quarter) than that predicted by the brus 
equation adopted in some articles and literatures (Chukwuocha & Onyeaju, 2012;   Ikeri, Onyia, & Vwavware, 2019)  
. Unlike the brus equation, equation (19) gives values of the confinement energy for all excited states possible. 
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