A Simulation-Based Method for Aggregating Markov Chains

Kun Deng

Department of Mechanical Science and Engineering
University of Illinois at Urbana Champaign

48th IEEE Conference of Decision and Control
December 16, 2009

In collaboration with Prashant Mehta and Sean Meyn
Nearly Completely Decomposable Markov Chains (NCDMC)

Phillips and Kokotovic 1981
“Over a longer period the weak interactions become significant, while each group of the coupled states can be replaced by an aggregate state.”
Summary of our previous work

An information-theoretic framework to aggregate MC

- The metric to compare two Markov chains
 - Kullback-Leibler divergence rate

- The optimal aggregated Markov chain
 - Can be found for any fixed partition function

- The optimal partition function
 - 2nd eigenvector \Rightarrow Bi-partition

Assumption (Ergodicity)

- All Markov chains are assumed to be irreducible and aperiodic.
- Unique invariant distribution

\[\pi_j = \sum_i \pi_i P_{ij}, \quad j \in \mathcal{N}. \]

Definition (Partition function)

\[\phi : \mathcal{N} \mapsto \mathcal{M} \]

where

\[\mathcal{N} = \{1, 2, \ldots, n\}, \quad \mathcal{M} = \{1, 2, \ldots, m\}. \]
Kullback-Leibler divergence rate

Markov chains \((\pi, P)\) and \((\varpi, Q)\) on the same state space

\[
R(P \parallel Q) = \sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}} \right).
\]

Markov chains \((\pi, P)\) and \((\varpi, Q)\) on different state spaces

\[
R^{(\phi)}(P \parallel Q) := \min_{\mu \in \mathcal{P}(\mathcal{N})} R(P \parallel \hat{Q}^{(\mu)}(\phi)).
\]
100-state Markov chain

Figure: The colorplot of Markov chain transition probabilities.
Aggregation via spectral partition

100x100 Original Markov Chain

K-L Divergence Rate

Error Bound

I-partition
Aggregation via spectral partition

100x100 Original Markov Chain

K-L Divergence Rate

Error Bound

1-partition
2-partition
Aggregation via spectral partition

100×100 Original Markov Chain

Error Bound

K-L Divergence Rate

1-partition 2-partition 3-partition
Aggregation via spectral partition

100×100
Original Markov Chain

K-L Divergence Rate

1-partition
2-partition
3-partition
4-partition
Aggregation via spectral partition

100×100 Original Markov Chain

Error Bound

K-L Divergence Rate

1-partition 2-partition 3-partition 4-partition 5-partition
Aggregation via spectral partition

100x100 Original Markov Chain

K-L Divergence Rate

Error Bound

1-partition 2-partition 3-partition 4-partition 5-partition
Roadmap of simulation-based method

<table>
<thead>
<tr>
<th>Aggregation via spectral partitioning (previous work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kullback-Leibler rate metric as aggregation error</td>
</tr>
<tr>
<td>• Spectral method to find suboptimal partition</td>
</tr>
<tr>
<td>• Not tractable for large-scale Markov chains!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregation via learning (topic of this presentation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• K-L metric = Average cost ⇒ Dynamic Programming</td>
</tr>
<tr>
<td>• The dimension of policy space is m^n!</td>
</tr>
<tr>
<td>• Randomized policy space ⇒ Approximate DP</td>
</tr>
<tr>
<td>• Stochastic-gradient algorithm ⇒ Suboptimal policy</td>
</tr>
<tr>
<td>• Just need a single sample-path of Markov chain!</td>
</tr>
</tbody>
</table>
Average cost representation

One-step cost

The *one-step cost* is defined as

\[
g_i(\phi) = \sum_{j \in \mathcal{N}} P_{ij} \log \left(\frac{P_{ij}}{\hat{Q}_{ij}(\pi)(\phi)} \right), \quad i \in \mathcal{N}.
\]

Average cost

The *average expected cost* is given by

\[
\lambda(x_0; \phi) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} g_{X(t)}(\phi) \mid X(0) = x_0 \right],
\]

where \(X(t) \in \mathcal{N} \) denotes the state at time \(t \).
Dynamic Programming formulation

Average cost problem

- Under the ergodicity assumption, for any $x_0 \in \mathcal{N}$,

$$
\lambda(x_0; \phi) = \lambda(\phi) := \sum_{i \in \mathcal{N}} \pi_i \sum_{j \in \mathcal{N}} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}^{(\pi)}(\phi)} \right)
$$

- Average cost problem

$$
\lambda^* = \min_{\phi} \left\{ \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} g_X(t)(\phi) \right] \right\}
$$

Dynamic Programming approach

$$
\lambda^* + h_i = \min_{\phi \in \Phi} \left\{ g_i(\phi) + \sum_{j \in \mathcal{N}} P_{ij} h_j \right\}, \quad i \in \mathcal{N}
$$
Approximate Dynamic Programming

Complexity of DP approach
For m-partition problem, the dimension of policy space is $m^n!$

Randomized and parameterized policy
The *randomized and parameterized* policy:

$$\eta_\phi(\cdot, \theta) : \mathcal{N} \mapsto [0, 1]^{m^n},$$

where $\theta \in \mathbb{R}^K$ is the parameter vector $K \ll m^n$. The quantity $\eta_\phi(i, \theta)$ represents the probability that the partition function ϕ is assigned to the state i.

Jump to bi-partition case

DP and ADP

Average cost for DP ($|\phi| = m^n$)

$$\lambda(\phi) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} g_X(t)(\phi) \right] = \sum_i \pi_i g_i(\phi).$$

Randomized average cost for ADP ($\theta \in \mathbb{R}^K$)

$$\lambda(\theta) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \mathbb{E}_{\eta_\phi} \left[g_X(t)(\phi) \right] \right] = \sum_i \pi_i g_i(\theta),$$

where

$$g_i(\theta) := \mathbb{E}_{\eta_\phi} [g_i(\phi)] = \sum_{\phi} \eta_\phi(i, \theta) g_i(\phi), \quad i \in \mathcal{N}.$$
Gradient-descent algorithm to minimize $\lambda(\theta) = \sum_i \pi_i g_i(\theta)$

- **Idealized gradient-descent algorithm:**
 \[
 \theta(t+1) = \theta(t) - \gamma_t \nabla \lambda(\theta(t)).
 \]

- **Simulation-based gradient-descent algorithm:**
 \[
 \theta(t+1) = \theta(t) - \gamma_t \nabla g_{X(t)}(\theta(t)).
 \]
Bi-partition of a 4-state Markov chain

Original model

The partition function $\phi^* = [1, 1, 2, 2]$ is optimal for

$$P = \begin{bmatrix}
0.5 & 0.4 & 0.0 & 0.1 \\
0.4 & 0.5 & 0.1 & 0.0 \\
0.0 & 0.1 & 0.5 & 0.4 \\
0.1 & 0.0 & 0.4 & 0.5
\end{bmatrix}.$$

Aggregation using Dynamic Programming

- The optimal aggregated Markov chain is

$$Q^* = \begin{bmatrix}
0.9 & 0.1 \\
0.1 & 0.9
\end{bmatrix}.$$

- Policy Iteration Algorithm of DP shows the optimal average cost $\lambda^* = 0.0749.$
Bi-partition of a 4-state Markov chain

- Idealized gradient-descent algorithm:

- Simulation-based gradient-descent algorithm
Bi-partition of an 100-state Markov chain

Figure: Colorplot (left) and 2nd eigenvector (right) of transition matrix.
Bi-partition of an 100-state Markov chain

- Simulation-based gradient-descent algorithm:

- Global optimum v.s. local optimum
Conclusions

- K-L minimization as an average cost problem
- Randomization and parameterization to obtain ADP
- Stochastic-gradient method to search for the optimum

Thank you!
Objectives

Markov model reduction via state aggregation

- How to compare two Markov chains?
- What’s the optimal aggregation?
- Can we find the optimal solution?

Figure: Original and Aggregated Markov Chain
Partial Literature

<table>
<thead>
<tr>
<th>Lumpable, NCD, and Singular perturbation methods</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Spectral methods</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HMM reduction methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>- HMM model reduction: Kotsalis 2006.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information related methods</th>
</tr>
</thead>
</table>
Modeling error as K-L rate

Modeling error in terms of uncertainty

The modeling error between P and Q is defined as

$$\Delta \mathcal{H} := \hat{\mathcal{H}}(x) - \mathcal{H}(x),$$

where

$$\mathcal{H}(x) = \lim_{t \to \infty} \mathbb{E}_{p(x_0^t)}[-\ln p(x_t|x_0^{t-1})],$$

$$\hat{\mathcal{H}}(x) = \lim_{t \to \infty} \mathbb{E}_{p(x_0^t)}[-\ln q(x_t|x_0^{t-1})].$$

Modeling error for Markov chains

$$\Delta \mathcal{H} = R(P \parallel Q) = \sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}} \right).$$
Model reduction error as K-L rate

K-L rate on different state spaces

Markov chains \((\pi, P)\) on \(\mathcal{N}\) and \((\vartheta, Q)\) on \(\mathcal{M}\)

\[
R^{(\phi)}(P \parallel Q) := \min_{\mu \in \mathcal{P}(\mathcal{N})} R(P \parallel \hat{Q}^{(\mu)}(\phi)),
\]

where \(\mu\) is a probability measure and \(\mu^* = \pi\), and

\[
\hat{Q}^{(\mu)}_{ij}(\phi) = \frac{\mu_j}{\sum_{k \in \phi^{-1} \circ \phi(j)} \mu_k} Q_{\phi(i)\phi(j)}, \quad i, j \in \mathcal{N}.
\]
Optimal partition function

Optimization problem

The m-partition problem is equivalent to only finding the optimal partition function ϕ^* such that

$$\phi^* \in \arg \min_{\phi: \mathcal{N} \leftrightarrow \mathcal{M}} R(\phi)(P \parallel Q^*(\phi)).$$

Spectral partitioning approach

- 2nd eigenvector \Rightarrow bi-partition
- recursive bi-partition \Rightarrow m-partition
Optimal aggregation for a fixed partition

m-partition problem

The optimal aggregated chain is found by minimizing K-L rate

\[
\min_{\phi, Q} \quad R(P \parallel Q)
\]

s.t.

\[
Q_{kl} \geq 0, \quad k, l \in \mathcal{M}, \\
\sum_{l \in \mathcal{M}} Q_{kl} = 1, \quad k \in \mathcal{M}.
\]

Optimal solution

For a fixed partition function ϕ, we obtain

\[
Q_{kl}^*(\phi) = \frac{\sum_{i \in \phi^{-1}(k)} \sum_{j \in \phi^{-1}(l)} \pi_i P_{ij}}{\sum_{i \in \phi^{-1}(k)} \pi_i}, \quad k, l \in \mathcal{M}.
\]

\[
\omega_k^*(\phi) = \sum_{i \in \phi^{-1}(k)} \pi_i, \quad k \in \mathcal{M}.
\]
Optimal partition function

Optimization problem
The m-partition problem is equivalent to only finding the optimal partition function ϕ^* such that

$$\phi^* \in \arg \min_{\phi \colon \mathcal{N} \leftrightarrow \mathcal{M}} R(\phi)(P \parallel Q^*(\phi)).$$

Two approaches
- Spectral partition: 2nd eigenvector.
- Simulation-based partition: a single sample path.
Optimal partition function

Optimization problem

The m-partition problem is equivalent to only finding the optimal partition function ϕ^* such that

$$\phi^* \in \arg \min_{\phi: \mathcal{N} \mapsto \mathcal{M}} R(\phi)(P \parallel Q^*(\phi)).$$

Two approaches

- **Spectral partition:** 2nd eigenvector

 Curse of Dimensionality!

- **Simulation-based partition:** a single sample path

 More computable and tractable!
Parameterized optimization

Optimization problem

The optimization problem is

$$\theta^* \in \arg \min_{\theta \in \mathbb{R}^K} \lambda(\theta),$$

where for ergodic Markov chain,

$$\lambda(\theta) = \sum_i \pi_i g_i(\theta) = \sum_i \pi_i \sum_{\phi \in \Phi} \eta_{\phi}(i, \theta) g_i(\phi).$$
Bi-partition randomized policy

Randomization and Parameterization

- The parameter vector is \(\theta = [\theta_1, \theta_2, \ldots, \theta_n]^T \).
- The probability of group assignment for state \(i \) is

\[
P(\phi(i) = 1) = \frac{1}{1 + \exp(\theta^T i)}, \quad P(\phi(i) = 2) = \frac{\exp(\theta^T i)}{1 + \exp(\theta^T i)}.
\]

Randomized and parameterized policy

\[
\eta_\phi(i, \theta) = \frac{1}{1 + \exp(\theta^T i)} \mathbb{I}_{\phi(i) = 1} + \frac{\exp(\theta^T i)}{1 + \exp(\theta^T i)} \mathbb{I}_{\phi(i) = 2}, \quad i \in \mathcal{N}.
\]
ODE method for convergence analysis

ODE representation

- Simulation-based algorithm:
 \[
 \theta(t+1) = \theta(t) - \gamma_t \nabla g_X(t) (\theta(t)), \\
 \tilde{\lambda}(t+1) = \tilde{\lambda}(t) + \gamma_t (g_X(t)(\theta(t)) - \tilde{\lambda}(t)).
 \]

- ODE analogy:
 \[
 \dot{\theta}_t = -\nabla \lambda(\theta_t), \quad \dot{\tilde{\lambda}}_t = \lambda(\theta_t) - \tilde{\lambda}_t.
 \]

Convergence analysis for ODE

\[
\lambda(\theta_t) \geq 0, \quad \dot{\lambda}(\theta_t) = -\|\nabla \lambda(\theta_t)\|^2 \leq 0
\]

\[
\Rightarrow \lambda(\theta_t) \to \lambda(\theta_\infty), \quad \tilde{\lambda}_t \to \lambda(\theta_\infty), \quad \text{as } t \to \infty.
\]