On the non-existence of tight Gaussian 6-designs on two concentric spheres

Suogang Gao
(Joint work with Bo Hou, Ran Zhang and Panpan Shen)
Hebei Normal University

2012-08
Outline

1. Introduction
2. Distance sets
3. Euclidean t-designs
4. Gaussian t-designs
5. Main results

On the non-existence of tight Gaussian 6-designs on two concentric spheres
Introduction

3Ei. Bannai, Et. Bannai, M. Hirao, M. Sawa, On the non-existence of minimal cubature formulas for Gaussian measure on \mathbb{R}^2 of degree t supported by $\left\lfloor \frac{t}{4} \right\rfloor + 1$ circles, J. Algebr Comb. 35 (2012) 109–119.
Introduction

- Gaussian tight 4 and 9-designs are solved by Ei. Bannai and Et. Bannai\(^1\).

\(^3\)Ei. Bannai, Et. Bannai, M. Hirao, M. Sawa, On the non-existence of minimal cubature formulas for Gaussian measure on \(\mathbb{R}^2\) of degree \(t\) supported by \(\left\lfloor \frac{t}{4} \right\rfloor + 1\) circles, J. Algebr Comb. 35 (2012) 109–119.
Introduction

- Gaussian tight 4 and 9-designs are solved by Ei. Bannai and Et. Bannai\(^1\).
- Hirao and Sawa\(^2\) proved that there exists no Gaussian tight \(t\)-design support by \(k + 1\) concentric spheres for \(t = 4k + 1(k \geq 2)\) and \(t = 4k + 3(k \geq 1)\).

\(^3\)Ei. Bannai, Et. Bannai, M. Hirao, M. Sawa, On the non-existence of minimal cubature formulas for Gaussian measure on \(\mathbb{R}^2\) of degree \(t\) supported by \(\left\lceil \frac{t}{4} \right\rceil + 1\) circles, J. Algebr Comb. 35 (2012) 109–119.
Gaussian tight 4 and 9-designs are solved by Ei. Bannai and Et. Bannai\(^1\).

Hirao and Sawa\(^2\) proved that there exists no Gaussian tight \(t\)-design support by \(k + 1\) concentric spheres for \(t = 4k + 1 (k \geq 2)\) and \(t = 4k + 3 (k \geq 1)\).

Ei. Bannai, Et. Bannai, Hirao, and Sawa\(^3\) showed that there exists no Gaussian tight \(t\)-design of \(\mathbb{R}^2\) supported by \(\left\lfloor \frac{e}{2} \right\rfloor + 1\) concentric circles for \(t = 2e (e \geq 2)\) except \(e = 2\).

\(^3\)Ei. Bannai, Et. Bannai, M. Hirao, M. Sawa, On the non-existence of minimal cubature formulas for Gaussian measure on \(\mathbb{R}^2\) of degree \(t\) supported by \(\left\lfloor \frac{t}{4} \right\rfloor + 1\) circles, J. Algebr Comb. 35 (2012) 109–119.
Introduction

- Gaussian tight 4 and 9-designs are solved by Ei. Bannai and Et. Bannai1.
- Hirao and Sawa2 proved that there exists no Gaussian tight t-design support by $k + 1$ concentric spheres for $t = 4k + 1 (k \geq 2)$ and $t = 4k + 3 (k \geq 1)$.
- Ei. Bannai, Et. Bannai, Hirao, and Sawa3 showed that there exists no Gaussian tight t-design of \mathbb{R}^2 supported by $\left\lceil \frac{e}{2} \right\rceil + 1$ concentric circles for $t = 2e (e \geq 2)$ except $e = 2$.
- In this talk, we discuss tight Gaussian 6-Designs of \mathbb{R}^n, where $n \geq 2$.

3Ei. Bannai, Et. Bannai, M. Hirao, M. Sawa, On the non-existence of minimal cubature formulas for Gaussian measure on \mathbb{R}^2 of degree t supported by $\left\lceil \frac{t}{4} \right\rceil + 1$ circles, J. Algebr Comb. 35 (2012) 109–119.
Notation

- $\mathcal{P}(\mathbb{R}^n) = \mathbb{R}[x_1, x_2, \cdots, x_n]$: the vector space of polynomials in n variables x_1, x_2, \cdots, x_n.
- $\text{Hom}_l(\mathbb{R}^n)$: the subspace of $\mathcal{P}(\mathbb{R}^n)$ spanned by homogeneous polynomials of degree l.
- $\text{Harm}(\mathbb{R}^n)$: the subspace of $\mathcal{P}(\mathbb{R}^n)$ which consists of all the harmonic polynomials.
- $\mathcal{P}_e(\mathbb{R}^n) := \sum_{l=0}^e \text{Hom}_l(\mathbb{R}^n)$, $\mathcal{P}_e^*(\mathbb{R}^n) := \sum_{l=0}^{[\frac{e}{2}]} \text{Hom}_{e-2l}(\mathbb{R}^n)$.
- $\text{Harm}_l(\mathbb{R}^n) := \text{Harm}(\mathbb{R}^n) \cap \text{Hom}_l(\mathbb{R}^n)$.
- For a subset $Y \subseteq \mathbb{R}^n$, $\mathcal{P}(Y) := \{ f|_Y | f \in \mathcal{P}(\mathbb{R}^n) \}$. $\text{Hom}_l(Y)$, $\text{Harm}(Y)$, $\text{Harm}_l(Y)$, $\mathcal{P}_e(Y)$, and $\mathcal{P}_e^*(Y)$ are defined in the same way.
Notation

- $(\ , \)$: the usual inner product between the vectors in \mathbb{R}^n
 $\|x\| = \sqrt{(x, x)}$: the length of the vectors in \mathbb{R}^n.

- (X, ω): a weighted finite set in \mathbb{R}^n whose weight satisfies $\omega(x) > 0$ for $x \in X$.

- $\{r_1, r_2, \cdots, r_p\} := \{\|x\| | x \in X\}$. Assume $r_1 > r_2 > \cdots > r_p \geq 0$.
- $S_i = \{x \in \mathbb{R}^n | \|x\| = r_i\}$: the sphere of radius r_i centered at the origin for $1 \leq i \leq p$. In this case, we say that X is supported by p concentric spheres.

- $X_i := X \cap S_i$, $R_i := r_i^2$ and $\omega(X_i) := \sum_{x \in X_i} \omega(x), 1 \leq i \leq p$.

Definitiona (P. Delsarte, M. Goethals and J.J. Seidel, 1977) A subset X in \mathbb{R}^n is called an \textit{s-distance set}, if $|A(X)| = s$, where $A(X) = \{d(x, y) | x, y \in X, x \neq y\}$, $d(x, y)$ is the Euclidean distance of x and y and $|A(X)|$ denotes the cardinality of $A(X)$.

Lemma (P. Delsarte, J.M. Goethals, J.J. Seidel 1977): Let $X \subset S^{n-1}$ be an s-distance set. Then

$$|X| \leq \dim(\mathcal{P}_s(S^{n-1})).$$

Theorem\(^a\) (H. Nozaki 2011): Let \(X\) be an \(s\)-distance set in \(\mathbb{R}^n\) with \(s \geq 2\), and \(A(X) = \{\alpha_1, \alpha_2, \ldots, \alpha_s\}\). Let \(N = \binom{n + s - 1}{s - 1} + \binom{n + s - 2}{s - 2}\). If \(|X| \geq 2N\), then

\[
\prod_{j=1,2,\ldots,s, j \neq i} \frac{\alpha_j^2}{\alpha_j^2 - \alpha_i^2}
\]

is an integer for each \(i = 1, 2, \ldots, s\).

In the proof of our main result we will use the following corollary.

Corollary 1: Let X be a 3-distance set in \mathbb{R}^n and $A(X) = \{\alpha_1, \alpha_2, \alpha_3\}$. Let $A_1 = \alpha_1^2$, $A_2 = \alpha_2^2$, $A_3 = \alpha_3^2$. Then

$$k_1 = \frac{A_2 A_3}{(A_2 - A_1)(A_3 - A_1)}, \quad k_2 = \frac{A_1 A_3}{(A_1 - A_2)(A_3 - A_2)}, \quad k_3 = \frac{A_1 A_2}{(A_1 - A_3)(A_2 - A_3)}$$

are integers. Moreover,

$$k_1 k_2 + k_1 k_3 + k_2 k_3 = -\frac{A_1 A_2 A_3^2}{(A_1 - A_2)^2 (A_1 - A_3)(A_2 - A_3)} + \frac{A_1 A_2^2 A_3}{(A_1 - A_2)(A_1 - A_3)^2 (A_2 - A_3)} - \frac{A_1^2 A_2 A_3}{(A_1 - A_2)(A_1 - A_3)(A_2 - A_3)^2}$$

is an integer.
The concept of Euclidean t-designs was defined by Neumaier and Seidel.

Euclidean t-designs

Definition (Neumaier and Seidel 1988): Let X be a finite set in \mathbb{R}^n supported by p concentric spheres. Let ω be a positive weight function on X. X is called a *Euclidean t-design* if

$$\sum_{i=1}^{p} \frac{\omega(X_i)}{|S_i|} \int_{S_i} f(x) d\sigma_i(x) = \sum_{x \in X} \omega(x) f(x)$$

holds for any polynomial $f(x) \in \mathcal{P}_t(\mathbb{R}^n)$.

Euclidean t-designs

Equivalent condition for Euclidean t-designs

Lemma 1 (Neumaier and Seidel 1988): Let X be a finite set in \mathbb{R}^n. Let ω be a positive weight function defined on X. Then the following conditions are equivalent:

(i) X is a Euclidean t-design with weight ω.

(ii) $\sum_{x \in X} \omega(x)f(x) = 0$ for any polynomial $f \in \|x\|^{2j}\text{Harm}_l(\mathbb{R}^n)$ with $1 \leq l \leq t$, $0 \leq j \leq \left\lfloor \frac{t-l}{2} \right\rfloor$.
Euclidean t-designs

Euclidean tight 2e-design

Definition (Ei. Bannai, Et. Bannai 2005) Let X be a Euclidean $2e$-design supported by S, the union of p concentric spheres. If $|X| = \dim(\mathcal{P}_e(S))$, then X is called a *Euclidean tight 2e-design on p concentric spheres*. If $|X| = \dim(\mathcal{P}_e(S)) = \dim(\mathcal{P}_e(\mathbb{R}^n))$, then X is called a *Euclidean tight 2e-design of \mathbb{R}^n*.

Some properties of Euclidean tight $2e$-design

Lemma 2 (Ei. Bannai, Et. Bannai 2005): Let X be a Euclidean tight $2e$-design of \mathbb{R}^n. If $0 \in X$, then e is even and $p = \frac{e}{2} + 1$.

Lemma 3a (Et. Bannai 2006): Let X be a Euclidean tight $2e$-design on p concentric spheres. If $e - p + \varepsilon_S \geq 0$, then each X_i is similar to a spherical $(2e - 2p + 2\varepsilon_S + 2)$-design.

Gaussian t-designs

Definitiona (Ei. Bannai, Et. Bannai 2005): Let $X \subset \mathbb{R}^n$ be a finite set. We say X is a *Gaussian t-design* if the following condition holds for any polynomial $f(x)$ in n variables x_1, x_2, \ldots, x_n of degree at most t:

$$
\frac{1}{V(\mathbb{R}^n)} \int_{\mathbb{R}^n} f(x) e^{-\alpha^2 \|x\|^2} \, dx = \sum_{x \in X} \omega(x) f(x)
$$

where α is a positive real number, $V(\mathbb{R}^n) = \int_{\mathbb{R}^n} e^{-\alpha^2 \|x\|^2} \, dx$, and ω is a weight function on X satisfying $\omega(x) > 0$ for any $x \in X$ and $\sum_{x \in X} \omega(x) = 1$.

The relationship between Gaussian and Euclidean t-designs

Tight Gaussian $2e$-designs

Definition (Ei. Bannai, Et. Bannai 2005): Gaussian $2e$-design X is said tight if $|X| = \binom{n+e}{e}$ holds.

The structure of tight Gaussian t-designs

Lemma 5 (Ei. Bannai, Et. Bannai 2005): Let X be a tight Gaussian $2e$-design. Suppose that X is supported by p concentric spheres. Then the followings hold:

(i) $p \geq \left\lceil \frac{e}{2} \right\rceil + 1$.

(ii) $\omega(x)$ is constant on each X_i, for $i = 1, \cdots, p$.

(iii) Each X_i is an at most e-distance set, for $i = 1, \cdots, p$.

On the non-existence of tight Gaussian 6-designs on two concentric spheres
Two important equations

Assume that $X = \bigcup_{i=1}^{p} X_i$ is a tight Gaussian $2e$-design with a weight function ω. Let $u, v \in X_i$. Write $R_i = r_i^2 = \|u\|^2 = \|v\|^2$.

Ei. Bannai and Et. Bannaia obtained the following important equations:

$$\omega(u) \sum_{l+2j \leq e} R_i^l g_{l,j}(R_i)^2 Q_l(1) = 1,$$ \hspace{1cm} (2)

$$\sum_{l+2j \leq e} R_i^l g_{l,j}(R_i)^2 Q_l\left(\frac{(u,v)}{R_i}\right) = 0.$$ \hspace{1cm} (3)

where $g_{l,j}(R)$ is a polynomial in one variable R of degree j and

$$\frac{1}{\int_0^{\infty} r^{n-1} e^{-\alpha^2 r^2} dr} \int_0^{\infty} g_{l,j_1}(r^2) g_{l,j_2}(r^2) r^{n-1+2l} e^{-\alpha^2 r^2} dr = \delta_{j_1,j_2},$$ \hspace{1cm} (4)

holds.

Main result

Theorem

There exists no tight Gaussian 6-design supported by two concentric spheres in \mathbb{R}^n for $n \geq 2$.
In order to prove the main result we need calculate Equations (2) and (3) for the case $e = 3$ and the values of $R_i, \omega_i, \ (i = 1, 2)$.

Lemma 6: Assume that $X = X_1 \cup X_2$ is a tight Gaussian 6-design on two concentric spheres in \mathbb{R}^n. Pick $i \ (i = 1, 2)$ and let $u, v \in X_i$ with $u \neq v$. Write $R_i = \|u\|^2 = r_i^2$ and $\|u - v\|^2 = A$. Then

\[
\frac{4}{3} \alpha^6 R_i^3 - 2\alpha^4 R_i^2 + \alpha^2 R_i n + 2\alpha^2 R_i + \frac{n}{2} + 1 = \frac{1}{\omega(u)}, \tag{5}
\]

and

\[
-\frac{\alpha^6 A^3}{6} + (\alpha^6 R_i + \frac{\alpha^4}{2}) A^2 - (2\alpha^6 R_i^2 + \frac{\alpha^2 n}{2} + 2\alpha^2) A
\]

\[
+ \left(\frac{4\alpha^6 R_i^3}{3} - 2\alpha^4 R_i^2 + \alpha^2 n R_i + 2\alpha^2 R_i + \frac{n}{2} + 1 \right) = 0. \tag{6}
\]
Proof. To show the assertion we need compute the polynomials $g_{l,j}(R)$ of degree j satisfying equation (4) for $l + 2j \leq 3$ and $l, j \geq 0$. We note that

$$
\int_0^\infty r^{l+1} e^{-\alpha^2 r^2} dr = \frac{l}{2\alpha^2} \int_0^\infty r^{l-1} e^{-\alpha^2 r^2} dr
$$

(7)

holds for all $l > 0$. Combining equations (4) and (7), we obtain
\begin{align*}
g_{0,0}^2 &= 1, \quad (8) \\
g_{0,1}^2(R) &= \frac{2\alpha^4}{n}(R - \frac{n}{2\alpha^2})^2, \quad (9) \\
g_{1,0}^2 &= \frac{2\alpha^2}{n}, \quad (10) \\
g_{1,1}^2(R) &= \frac{\alpha^2}{n}\left(\frac{2\alpha^2}{\sqrt{n+2}}R - \sqrt{n+2}\right)^2, \quad (11) \\
g_{2,0}^2 &= \frac{4\alpha^4}{n(n+2)}, \quad (12) \\
g_{3,0}^2 &= \frac{8\alpha^6}{n(n+4)(n+2)}. \quad (13)
\end{align*}
Evaluating equations (2) and (3) by using equations (8)-(13), and $Q_0 \equiv 1$, $Q_1(y) = ny$, $Q_2(y) = \frac{n+2}{2}(ny^2 - 1)$, and $Q_3(y) = \frac{n(n+4)}{6}((n + 2)y^3 - 3y)$, we get Lemma 6.
Next, we give the values of R_i, ω_i.

Lemma 7: Let $X = X_1 \cup X_2$ be a Gaussian 6-design on two concentric spheres in \mathbb{R}^n. Let $\omega(u) = \omega_1$ and $R_1 = r_1^2 = \|u\|^2$ for $u \in X_1$ and let $\omega(u) = \omega_2$ and $R_2 = r_2^2 = \|u\|^2$ for $u \in X_2$. Then

\[
R_1 = \frac{(n + 2) + \sqrt{2n + 4}}{2\alpha^2},
\]

(14)

\[
R_2 = \frac{(n + 2) - \sqrt{2n + 4}}{2\alpha^2},
\]

(15)

\[
\omega_1 = \frac{\sqrt{2n + 4} - 2}{2|X_1|\sqrt{2n + 4}},
\]

(16)

and

\[
\omega_2 = \frac{\sqrt{2n + 4} + 2}{2|X_2|\sqrt{2n + 4}}.
\]

(17)
Proof. Taking $f(x) = \|x\|^{2j} (0 \leq j \leq 3)$ in the definition of Gaussian 6-design we get

$$\frac{1}{V(\mathbb{R}^n)} \int_{\mathbb{R}^n} \|x\|^{2j} e^{-\alpha^2 \|x\|^2} \, dx = |X_1| \omega_1 R_1^j + |X_2| \omega_2 R_2^j$$

for $0 \leq j \leq 3$. Thus, we obtain

$$|X_1| \omega_1 + |X_2| \omega_2 = 1,$$

$$|X_1| \omega_1 R_1 + |X_2| \omega_2 R_2 = \frac{n}{2\alpha^2},$$

$$|X_1| \omega_1 R_1^2 + |X_2| \omega_2 R_2^2 = \frac{n(n+2)}{4\alpha^4},$$

and

$$|X_1| \omega_1 R_1^3 + |X_2| \omega_2 R_2^3 = \frac{n(n+2)(n+4)}{8\alpha^6}. $$

Solving the system of equations, we obtain Lemma 7.
Sketch of proof. Suppose $X = X_1 \cup X_2$ is a tight Gaussian 6-design on two concentric spheres in \mathbb{R}^n. Note that the following facts:

- $0 \notin X$ by Lemma 2.
- If $n = 2$, there is nonexistence Gaussian tight 6-designs on two concentric spheres4.
- If $3 \leq n \leq 8$, there is nonexistence tight Gaussian 6-designs on two concentric spheres5.

Proof of main results

So, we may assume $0 \notin X$, $n \geq 9$ and $|X_1| \geq |X_2|$. Then

- Each $X_i(i = 1, 2)$ is similar to a spherical 4-design by Lemma 3.
- Each $X_i(i = 1, 2)$ is an at most 3-distance set by Lemma 5.

Moreover, by calculating the maximum cardinality of the 2-distance sets in \mathbb{R}^n and since $|X_1| > \frac{n^2 + 3n}{2}$ for $n \geq 3$, we obtain X_1 is a 3-distance set.

Taking $i = 1$ and replacing R_1 and ω_1 in equation (5) by (14) and (16), respectively, we have

$$|X_1| = \frac{(n - 1)(2n + 3)(n + 2)}{6\sqrt{2n + 4}} + \frac{(n + 3)(n + 2)(n + 1)}{12}.$$

Since $|X_1|$ is an integer, obviously, $\sqrt{2n + 4}$ is an integer by the above equation, namely, $n = 2m^2 - 2$ for some integer m.
Proof of main results

Clearly, there exists no Gaussian tight 6-design supported by two concentric spheres in \mathbb{R}^n when $n \neq 2m^2 - 2$.
Proof of main results

Next we discuss \(n = 2m^2 - 2 \). Taking \(i = 1 \) and replacing \(R_1 \) in equation (6) by (14), we obtain

\[
-\frac{\alpha^6 A^3}{6} + (\alpha^4 m^2 + \alpha^4 m + \frac{\alpha^4}{2})A^2 - (2\alpha^2 m^4 + 4\alpha^2 m^3 + 3\alpha^2 m^2 + \alpha^2)A
\]
\[
+ \left(\frac{4m^6}{3} + 4m^5 + 4m^4 - \frac{2m^3}{3} - m^2 \right) = 0.
\]

(18)

Let \(A_1, A_2, A_3 \) be the roots of equation (18). By Vieta’s theorem, we have

\[
A_1 + A_2 + A_3 = -\frac{b}{a}, \quad A_1 A_2 + A_1 A_3 + A_2 A_3 = \frac{c}{a}, \quad A_1 A_2 A_3 = -\frac{d}{a}.
\]

(19)

Here,
\[
a = -\frac{\alpha^6}{6}, \quad b = \alpha^4 m^2 + \alpha^4 m + \frac{\alpha^4}{2}, \quad c = -(2\alpha^2 m^4 + 4\alpha^2 m^3 + 3\alpha^2 m^2 + \alpha^2)
\]
and \(d = \frac{4m^6}{3} + 4m^5 + 4m^4 - \frac{2m^3}{3} - m^2 \).
Proof of main results

Combining (1) and (19), we get

\[k_1k_2 + k_2k_3 + k_1k_3 = \frac{9a^2d^2 + b^3d - 4abcd}{27a^2d^2 + 4b^3d - 18abcd + 4ac^3 - b^2c^2}. \tag{20} \]

Evaluate \(a, b, c, d \) in (20) using

\[a = -\frac{\alpha^6}{6}, \quad b = \alpha^4m^2 + \alpha^4m + \frac{\alpha^4}{2}, \quad c = -(2\alpha^2m^4 + 4\alpha^2m^3 + 3\alpha^2m^2 + \alpha^2) \]

and \(d = \frac{4m^6}{3} + 4m^5 + 4m^4 - \frac{2m^3}{3} - m^2 \). Then

\[k_1k_2 + k_2k_3 + k_1k_3 = \frac{m^2(4m^4 + 12m^3 + 12m^2 - 2m - 3)(4m^4 + 12m^3 + 8m^2 + 2m - 5)}{-6(8m^6 + 48m^5 + 84m^4 + 16m^3 - 42m^2 + 12m - 5)}. \tag{21} \]

is an integer by Corollary 1. That is

\[-6k_1k_2 + k_2k_3 + k_1k_3 = 2m^4 + 7m^2 - 16m + 41 \]

\[-\frac{848m^5 + 2972m^4 + 1408m^3 - 1964m^2 + 572m - 205}{8m^6 + 48m^5 + 84m^4 + 16m^3 - 42m^2 + 12m - 5}. \]
For notational convenience, let

$$f(m) = \frac{848m^5 + 2972m^4 + 1408m^3 - 1964m^2 + 572m - 205}{8m^6 + 48m^5 + 84m^4 + 16m^3 - 42m^2 + 12m - 5}.$$

Then $f(m)$ is an integer. Now, we divide the argument into three cases.
Proof of main results

Case 1: When $m > 10^3$, since the numerator and the denominator of $f(m)$ are positive integers and the numerator of $f(m)$ is less than the denominator, $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.

Case 2: When $m \leq 10^3$ and m is an odd integer, the numerator of the right side of formula (21) is an odd integer, and the denominator is an even integer, so $k_1k_2 + k_2k_3 + k_1k_3$ is not an integer, a contradiction.

Case 3: When $m \leq 10^3$ and m is an even integer, we compute $f(m)$ explicitly for each m and find out $f(m)$ is not an integer (see the following table), and hence $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.
Proof of main results

- Case 1: When $m > 103$, since the numerator and the denominator of $f(m)$ are positive integers and the numerator of $f(m)$ is less than the denominator, $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.

- Case 2: When $m \leq 103$ and m is an odd integer, the numerator of the right side of formula (21) is an odd integer, and the denominator is an even integer, so $k_1k_2 + k_2k_3 + k_1k_3$ is not an integer, a contradiction.

- Case 3: When $m \leq 103$ and m is an even integer, we compute $f(m)$ explicitly for each m and find out $f(m)$ is not an integer (see the following table), and hence $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.
Proof of main results

- **Case 1**: When $m > 103$, since the numerator and the denominator of $f(m)$ are positive integers and the numerator of $f(m)$ is less than the denominator, $-6(k_1 k_2 + k_2 k_3 + k_1 k_3)$ is not an integer, a contradiction.

- **Case 2**: When $m \leq 103$ and m is an odd integer, the numerator of the right side of formula (21) is an odd integer, and the denominator is an even integer, so $k_1 k_2 + k_2 k_3 + k_1 k_3$ is not an integer, a contradiction.
Proof of main results

- **Case1:** When $m > 103$, since the numerator and the denominator of $f(m)$ are positive integers and the numerator of $f(m)$ is less than the denominator, $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.

- **Case2:** When $m \leq 103$ and m is an odd integer, the numerator of the right side of formula (21) is an odd integer, and the denominator is an even integer, so $k_1k_2 + k_2k_3 + k_1k_3$ is not an integer, a contradiction.

- **Case3:** When $m \leq 103$ and m is an even integer, we compute $f(m)$ explicitly for each m and find out $f(m)$ is not an integer (see the following table), and hence $-6(k_1k_2 + k_2k_3 + k_1k_3)$ is not an integer, a contradiction.
(When \(m \leq 103 \) and \(m \) is an even integer, we give the values of \(f(m) \) in the table, which shows all \(f(m) \) are not integers.)
Acknowledgement

We thank very much professor Eiichi Bannai and professor Etsuko Bannai for their advice!

Thank you for your attention!