End-to-End Neural Ad-hoc Ranking with Kernel Pooling

Chenyan Xiong¹, **Zhuyun Dai¹**, Jamie Callan¹, Zhiyuan Liu², and Russell Power³

¹:Language Technologies Institute, Carnegie Mellon University ²:Tsinghua University ³:Semantic Scholar, Allen Institute for AI

Motivation

Soft Match

- Soft match between queries and documents has drawn much attention in IR
- Bridges the vocabulary gap: `you-know-who' `Voldemort'

A Recent Success: The Deep Relevance Matching Model (DRMM)

- Word2vec for matching query terms to document terms
- Histogram Pooling to `count' matches of different qualities

Are the current word embeddings the right choice for IR?

- sim(hotel, motel)=0.9, sim(Tokyo, London)=0.9
- Query: `Tokyo hotels'
- Documents: `Tokyo motels'

`Hotel in London'

Key Ideas in Our Work

- Build on the ideas in the Deep Relevance Matching Model (DRMM)
- Kernel based Neural Ranking Model (K-NRM)
- Learn a word-similarity metric tailored for matching query and document in ad-hoc ranking.

End-to-end

learning a word embedding supervised by relevance signals. with a new kernel pooling layer that enforces multi-level soft match patterns

K-NRM Model: Embedding-Based Translation Model

Query-word to document-word translation model.

- Embeds a word into a continuous vector
- Cosine similarities as translation scores

• K soft-TF features for each query-term.

K-NRM Model: Kernel Pooling(2)

Aggregate per-query Soft-TF features with log-sum.

Output: $\phi(M)$, K ranking features for a query document pair

K-NRM Model: Learning-To-Rank

Experimental Methodology: Dataset

• A sample of online search log from **Sogou**, a major Chinese search engine

	Training	Testing
Queries	95,229	1,000
Documents Per Query	12.17	30.50
Search Sessions	31,201,876	4,103,230
Vocabulary Size	165,877	19,079
	No Overlap	

Experimental Methodology: Training and Testing Labels

We train and test our model using user clicks

(Manual labels not available)

Testing Scenarios:

DCTR: Document Click Through Rate model [A.Chuklin et al. 2015]
TACM: Time-Aware Click Model [Y.Liu et al. 2016]
RAW Click: Only the clicked doc is relevant (single click sessions)

Experimental Methodology: K-NRM Model & Baselines

K-NRM - Embedding

• 300-d, initialized with word2vec trained on titles

K-RNM - 11 Kernels

- 1 exact-match kernel: $\mu = 1, \sigma = 0.0001$
- 10 soft-match kernels
 - equally distributed in [-1, 1] (cosine similarity value range)
 - $\mu = -0.9, -0.7, \dots, 0.7, 0.9, \qquad \sigma = 0.1$

Baselines

- 1. Unsupervised word-based retrieval: Lm, BM25
- 2. Word-based LeToR: RankSVM, Coor-Ascent. 20 IR-fusion features.
- 3. Recent Neural IR methods: Trans, DRMM, CDSSM

Overall Performance: Testing-SAME

Testing-SAME

- Test and train using the same click model
- Easier task

Train: DCTR

Test: DCTR

Method	NDCC	6@1	NDCG@3		NDCG@10	
Lm	0.1261	-20.89%	0.1648	-26.46%	0.2821	-20.45%
BM25	0.1422	-10.79%	0.1757	-21.60%	0.2868	-10.14%
RankSVM	0.1457	-8.59%	0.1905	-14.99%	0.3087	-12.97%
Coor-Ascent	$0.1594^{rac{1}{2}}$	_	$0.2241^{\$\$\P}$	_	0.3547 ^द	_
Trans	0.1347	-15.50%	0.1852	-17.36%	0.3147	-11.28%
DRMM	0.1366	-14.30%	0.1902	-15.13%	0.3150	-11.20%
CDSSM	0.1441	-9.59%	0.2014	-10.13%	0.3329 ^{‡§}	-6.14%
K-NRM	0.2642 ^{†‡§¶}	+65.75%	0.3210 ^{†‡§¶}	+43.25%	0.4277 ^{†‡§¶}	+20.58%

Overall Performance: Testing-DIFF

Testing-DIFF

Train: DCTR

- Test with a more accurate click model
- Harder task

Test: TACM

Method	NDCG@1		NDCG@3		NDCG@10	
Lm	0.1852	-11.34%	0.1989	-17.23%	0.3270	-13.38%
BM25	0.1631	-21.92%	0.1894	-21.18%	0.3254	-13.81%
RankSVM	0.1700	-18.62%	0.2036	-15.27%	0.3519	-6.78%
Coor-Ascent	0.2089 ^{‡¶}	_	0.2403^{\ddagger}	_	0.3775 ^{‡¶}	_
Trans	0.1874	-10.29%	0.2127	-11.50%	0.3454	-8.51%
DRMM	0.2068	-1.00%	0.2491 [‡]	+3.67%	0.3809 ^{‡¶}	+0.91%
CDSSM	0.1846	-10.77%	0.2358^{\ddagger}	-1.86%	0.3557	-5.79%
K-NRM	0.2984 ^{†‡§¶}	+42.84%	0.3092 ^{†‡§¶}	+28.26%	0.4201 ^{†‡§¶}	+11.28%

Overall Performance: Testing-RAW

Testing-RAW	 Only the (only) clicked document is relevant 					
	 The most d 	 The most difficult task 				
Irain: DCTR	• The clicked	 The clicked document: 1 position higher 				
Test: Raw Click	 K-NRM fit the underlying relevance signal rather than the training click model 					
Rank = 1/MRR	Method	MRR		W/T/L		
	Lm	0.2193	-9.19%	416/09/511		
- 4.1	BM25	0.2280	-5.57%	456/07/473		
	RankSVM	0.2241	-7.20%	450/78/473		
	Coor-Ascent	0.2415 [‡]	_	-/-/-/		
	Trans	0.2181	-9.67%	406/08/522		
Rank = 1/MRR	DRMM	0.2335 [‡]	-3.29%	419/12/505		
= 3.0	CDSSM	0.2321 [‡]	-3.90%	405/11/520		
	K-NRM	0.3379 ^{†‡§¶}	+39.92%	507/05/424		

Sources of Effectiveness #1: IR-Specialized Soft-Match

Embeddings with different levels of IR-specialization

- **0. exact-match:** K-NRM using only exact-match kernel.
- 1. Word2vec: pre-trained on surrounding text
- 2. Click2vec: pre-trained with (query-term, clicked-doc-term)
- **3.** Full model: trained end-to-end, pairwise user preference
- (3) > (2) > (1) > (0): more IR-specialized embeddings are more effective.

	Testing-RAW		
K-NRM Variant	MRR		
exact-match	0.2147	-37%	
word2vec	0.2427 ^{†¶}	-28%	
click2vec	0.2667 ^{†‡¶}	-21%	
max-pool	0.2260	-33%	
mean-pool	0.2714 ^{†‡¶}	-20%	
full model	0.3379 ^{†‡§¶} *	-	

* Testing-SAME and Testing-DIFF had similar performance.

Sources of Effectiveness #2: Multi-Level Soft-Match

Three different pooling methods. All end-to-end

- 1. Max-pool: use the best-match
- 2. Mean-pool: all soft-match scores are mixed together
- 3. Full model: kernel pooling enforces multi-level soft match

(3) > (2) > (1): multi-level soft-match provides more information

	Testing-RAW		
K-NRM Variant	MRR		
exact-match	0.2147	-37%	
word2vec	0.2427 ^{†¶}	-28%	
click2vec	0.2667 ^{†‡¶}	-21%	
max-pool	0.2260	-33%	
mean-pool	0.2714 ^{†‡¶}	-20%	
full model	0.3379 ^{†‡§¶} *	_	

* Testing-SAME and Testing-DIFF had similar performance.

Effects on Word Embeddings

Recall our motivation:

" Content-based word embedding may not fit ad-hoc search "

- This proves true: **58%** of word2vec word pairs were moved across kernels by K-NRM.
- How does K-NRM move word pairs?

Effects on Word Embeddings:

Word Pair Movements

- 1. Word pairs decoupled.
 - considered related by word2vec, but not by K-NRM
 - > 90% are decoupled!

2. New soft match discovered.

- less frequently appear in the same surrounding context, but convey similar search intent
- 3. Matching strength level
 - Strong <-> Weak

Decouple

(wife, husband), (son, daughter), (China-Unicom, China-Mobile), (Maserati, car), (website, homepage)

<u>New_soft_match</u>

(MH370, search), (pdf, reader), (BMW, contact-us), (192.168.0.1, router),

Change Levels Weak->Strong (MH370, truth), (cloud, share) (oppor9, OPPOR), Strong->Weak (10086, www.10086.com)

Conclusion

- Embeddings trained for search are more effective than embeddings trained from surrounding text
- Embeddings and soft-match bins must be tuned together.
- We propose a new kernel pooling technique:
 - Allows end-to-end training of the word embedding
 - Guides the embedding to form effective multi-level soft-match patterns tailored for ad-hoc ranking

• Delivers robust soft match between query and documents

- Moved 58% of word2vec word pairs across kernels
- Decouples > 90% of word pairs that were considered related by word2vec
- Discovers new soft match patterns of different types

Thank you!

Questions?

Testing labels

• Cut-off threshold chosen to make sure the label distribution the same as TREC's

Condition	Label	Label Distribution
Testing-SAME	DCTR Scores	70%, 19.6%, 9.8%, 1.3%, 1.1%
Testing-DIFF	TACM Scores	79%, 14.7%, 4.6%, 0.9%, 0.9%
Testing-RAW	Raw Clicks	2,349,280 clicks

Performance of tail queries

Table 9: Ranking accuracy on Tail (frequency < 50), Torso (frequency 50 - 1K) and Head (frequency > 1K) queries. † indicates statistically significant improvements of K-NRM over Coor-Ascent on Testing-RAW. Frac is the fraction of the corresponding queries in the search traffic. Cov is the fraction of testing query words covered by the training data.

	Frac	Cov	Testing-RAW, MRR			
	Mac	COV	Coor-Ascent	K-	NRM	
Tail	52%	85%	0.2977	0.3230 [†]	+8.49%	
Torso	20%	91%	0.3202	0.3768 [†]	+17.68%	
Head	28%	99%	0.2415	0.3379 [†]	+39.92%	

Requirement of training data

Figure 4: K-NRM's performances with different amounts of training data. X-axis: Number of sessions used for training, and the percentages of testing vocabulary covered (second row). Y-axis: NDCG@10 for Testing-SAME and Testing-DIFF, and MRR for Testing-RAW.

Sensitivity to kernel parameters

Figure 5: K-NRM's performance with different σ . MRR and relative gains over Coor-Ascent are shown in parenthesis. Kernels drawn in solid lines indicate statistically significant improvements over Coor-Ascent.

K-NRM Model: Kernel Pooling: revisit Histogram Pooling

DRMM: Histogram Pooling

- How many word pairs' similarity score are in [1, 0.8], [0.8, 0.6]...?
 - $B_k(M_i) = \sum_{j=1}^m I\{M_{ij} \text{ in bin } k\}$

•
$$\vec{B}(M_i) = \{B_1(M_i), \dots, B_K(M_i)\}$$