PRO LIGNO Vol. 14 N° 3 2018 pp. 9-18

www.proligno.ro

NGS IDENTIFICATION OF FUNGI POTENTIALLY IMPLICATED IN THE PRODUCTION OF AGARWOOD FROM AQUILARIA SPP. TREES

Clara ZAREMSKI^{*}

AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France Address: CIRAD, UMR AGAP, F-34398 Montpellier, France E-mail: clara.zaremski@cirad.fr

Cédric MALANDAIN

ENOVEO, 7 Place Antonin Poncet 69002 Lyon, France

Olivier SIBOURG

ENOVEO, 7 Place Antonin Poncet 69002 Lyon, France

Claude ANDARY

Laboratoire AMAP (UMR 5119 CNRS-CIRAD), Boulevard de la Lironde, 34398 Montpellier Cedex 5, France

Georges MICHALOUD

Laboratoire AMAP (UMR 5119 CNRS-CIRAD), Boulevard de la Lironde, 34398 Montpellier Cedex 5, France

Marc DUCOUSSO

CIRAD - UMR 113, Laboratoire des Symbioses Tropicales et Méditerranéennes, Cirad/IRD/Inra/Agro-M/UM2 Campus international de Baillarguet - TA A - 82 / J, 34398 Montpellier Cedex 5, France

Nadine AMUSANT

CIRAD - UMR ECOFOG "Ecologie des Forêts de Guyane", Campus Agronomique de Kourou BP 701, 97387 Kourou Cedex, French Guyana

Alba ZAREMSKI

CIRAD, UMR AGAP, F-34398 Montpellier, France. AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Abstract:

Aquilaria is a tree species belonging to the Thymeleaceae family. When Aquilaria sp. is injured, it can produce agarwood. Agarwood is characterized by a darker wood colour than the healthy one and by a strong perfume that is much esteemed by perfumers and some oriental religious communities.

The production of agarwood is presumed to depend on environmental factors, among them fungi.

The aim of this work is to obtain an overview of fungi present in Aguilaria sp. from different countries. Aquilaria sp. is endemic to South East Asia including notably Cambodia, Laos and Thailand, where it is cultivated to produce agarwood. In French Guiana, farmers would like to locally produce agarwood in their field. That's why we wonder if fungal communities naturally present in French Guiana present characteristics making it compatible with the induction of agarwood.

In this study, NGS was used to characterize fungal communities associated with agarwood: 693,961 sequences that cover ITS2 estimated about 250bp have been obtained. These sequences have been grouped into 535 OTUs, displaying 100% identity. In this study, 87% were Ascomycetes and 10.5% were Basidiomycetes.

These results show also differences in fungal communities between aboveground and belowground parts of the tree. Likewise, differences between countries within fungal communities were also observed.

Key words: Aquilaria; agarwood; fungal diversity; molecular analysis; ITS.

INTRODUCTION

The genus Aquilaria contains 17 species of trees (Andary et al. 2018) and belongs to the Thymaelaeaceae family. This genus is endemic to Southeast Asia and is one of major cultural and commercial value thanks to the production of oleoresin when the wood is physically wounded or infected with fungi. This modified wood is called agarwood.

When Aquilaria wood is contaminated by a pathogen, notably Ascomycetes belonging to genera Chaetomium, Cunninghamella, Curvularia, Fusarium, Trichoderma, or Lasiodiplodia (Kaiser 2006; Naef

Corresponding author

2011), its defence strategy is to secrete an oleoresin. This wood produces an oleoresin rich in volatile and non-volatile molecules (Mei *et al.* 2008), which delay the spread of the fungus and also initiate the healing process. When *Aquilaria* wood is healthy, it is whitish and shiny. When it is loaded with oleoresin, it turns from pale beige to black as the oleoresin oxidizes, with a greater density, and becomes increasingly fragrant as the process evolves. At this stage, the *Aquilaria* is infected.

The aim of this work is to obtain an overview of fungi present in *Aquilaria* sp. from different countries. We wonder if fungal communities inducing agarwood present similar characteristics between these countries. To answer this question, samples of *Aquilaria* wood from Cambodia, Laos, Thailand and French Guiana will be studied. The analyzes will also be carried out on the soils from the tree's immediate environment for the French Guiana *Aquilaria* samples.

To study the diversity of microorganisms in these samples, illumina MiSeq sequencing, the so-called Next Generation Sequencing (NGS), will be used as it provides considerable opportunities (information?). In this study, the general principles of NGS will be presented from the amplification strategies to the associated bioinformatics analyzes.

Fungi were identified in wood and agarwood samples of the genus *Aquilaria* and in soils from the tree's immediate environment. To that end, the ITS of the fungi were mass sequenced of, and the fungus communities compared between infested samples and non-infested samples.

The main steps involved in this study were as follows: 1) Development of molecular characterization techniques: extraction and purification of the DNA of the fungus from *Aquilaria* tissues; 2) DNA sequencing; 3) Associated bioinformatics analyzes.

EXPERIMENTAL METHODS

Samples description: type, country, date of sampling

Biological material

A total of 17 samples of Aquilaria spp. were collected for this study

Samples from plantation of Cacao in French Guiana:

Twelve samples collected in April 2015 and stored at -80°C.

They were divided into four categories: root (noted "roo"), of which there were 3; trunk (noted "tru"), of which there were 3; branch (noted "bra"), of which there were 3; soil (noted "soi").

The samples were taken from 3 trees aged 3 years (noted 3a) and 4 years (noted 4a). We do not know the age of one tree; it is noted N° 2.

Samples from plantation in Thailand:

One sample collected in July 2015 and stored at -80°C.

It is noted: Th-Aga; the wood is suspected of being infected.

Samples from plantation in Vientiane Province, Laos:

One sample collected in December 2011 and stored at -80°C.

It is noted: La-Aga; the wood is suspected of being infected.

Samples from plantation "K Bal Spean Siem Reap" in Cambodia:

Two samples collected in June 2011 and stored at -80°C.

It is noted: Cam-1 and Cam-2; the wood is suspected of being infected.

Control sample:

One positive control sample: Blue wood from a forest in Montceau les Mines, Saône et Loire, France (noted "BW-Fr").

Characteristics of samples are presented in Table 1.

Table 1

List of samples studied and their main characteristics					
Reference	Lab.	Short	Sampling date	Matrix	
		name			
Aquilaria 3 years Cacao: root	1	3a-roo	27/04/2015	wood	
Aquilaria 3 years Cacao root: bottom of trunk	2	3a-tru	27/04/2015	wood	
Aquilaria 3 years Cacao root: base of ramification	3	3a-bra	27/04/2015	wood	
Aquilaria No. 2 Cacao: soil	4	N2-soi	27/04/2015	soil	
Aquilaria 3 years Cacao: soil	5	3a-soi	27/04/2015	soil	
Aquilaria 4 years Cacao: soil	6	4a-soi	27/04/2015	soil	

Vol. 14 N° 3 2018 pp. 9-18

Aquilaria 4 years Cacao: branch core sample	7	4a-bra	27/04/2015	wood
Aquilaria 4 years Cacao: core sample, bottom of trunk	8	4a-tru	27/04/2015	wood
Aquilaria 4 years Cacao: roots	9	4a-roo	27/04/2015	wood
Aquilaria No. 2 Cacao: bottom of trunk	10	N2-tru	27/04/2015	wood
Aquilaria No. 2 Cacao: core sample, main branch	11	N2-bra	27/04/2015	wood
Aquilaria No. 2 Cacao: roots	12	N2-roo	27/04/2015	wood
Branch core sample of Thailand	13	Th-Aga	September 2015	wood
Branch core sample of Laos	14	La-Aga	December 2011	wood
K Bal Spean Siem Reap Cambodia, No1, 1.5 & 1.6, [1]	15	Cam-1	June 2012	wood
K Bal Spean Siem Reap Cambodia, No1, 1.5 & 1.6, [2]	16	Cam-2	June 2012	wood
Blue wood, infected with the fungus	17	BW-Fr	21/07/2015	wood

Extraction of total nucleic acids

Nucleic acids were extracted from the wood samples and the soils using the PowerSoil DNA/RNA kit (MOBIO, USA).

Before applying this protocol, the wood samples were ground in liquid nitrogen. The kit was then used according to the manufacturer's protocol.

Quickly, the ground wood or soil samples (0.30g) were added to a bead beating for rapid and thorough homogenization. Cell lysis occurs by a combination of mechanical and chemical methods. PCR inhibitors (Humic acids, ...) were removed by a proprietary precipitation process. Total genomic DNA is captured on a silica membrane in a spin column. DNA is then washed and eluted from the membrane. The eluted DNA is ready for PCR analysis.

The quality and quantification of the extracted DNAs.

The total DNA of the extracted samples was quantified by spectrometry on a Shimadzu photo spectrometer. The concentration and purity of the DNA extracted is measured in 2µl subsamples. The purity index was calculated from the ratio of the absorbance measurements at 260 and 280nm. The value of the 260/280 ratio must approach 1.8 for the sample to be qualified as pure. Smaller values indicated the presence of impurities or contaminant proteins at around the same wavelengths.

PCR (polymerase chain reaction) amplification of the nuclear rDNA ITS

An amplification protocol adapted to mycorrhizal fungi, inspired from White *et al.* (1990) and developed at the Symbiotes and Roots Laboratory (INRA in Montpellier) was used.

The amplification reactions were carried out in clean PCR plates. The reaction volume was as follows: 4µl of dNTP, 10µl 5X buffer, 2µl of each primer (20pmol/µl): ITS3-myc and ITS4-myc (Table 2), 5µl extracted total DNA (around 50ng), 26.7µl of Millipore or sterile water (to top up to 50µl), 0.30µl of Tag polymerase.

Negative controls without DNA were set to test for any contaminations in the reagents and buffers.

The 50µl of mixture was then covered with a drop of mineral oil to prevent evaporation and condensation in the tubes. Next, the plate was covered with adhesive paper and placed in a Thermocycler programmed as follows:

- An initial denaturation phase at 96°C for 5 min.

- 30 cycles comprising a denaturation phase at 96°C for 30sec., a hybridization phase at 55°C for 30sec, then an extension phase at 72°C for 1.30min.

- Elongation of the extension phase or final elongation phase at 72°C for 7min.

- Storage of the amplification product at 4°C or freezing at -20°C.

This protocol enabled us to properly amplify the region we were interested in. However, it was necessary to search for the DNA concentration that enabled an optimum amplification reaction to be obtained.

It was checked that the amplification reaction functioned well by visualizing PCR products on a control gel. Ten μ l of PCR products was deposited on an agarose gel at 0.8% in a TAE 1X buffer. Migration was carried out by electrophoresis at 90V for one hour.

F-RISA amplification

F-RISA amplification consists in amplifying a precise region of the fungus genome. The PCR products generated of different sizes depending on the fungus species present. This therefore leads to generating a mixture of fragments of different sizes whose distribution depends on the community of the sample. In our case, this amplification was used to check for DNA integrity and the possibility of amplifying a different region of the ITS.

Analyses by NGS sequencing

The NGS sequencing was entrusted to the Research and Testing company (Illumina 2x300 sequencing).

To be a good candidate for sequencing, the genetic marker needs to have the following characteristics:

- The amplification primers has to hybridize on most fungi.

- The amplicon (amplified sequence) has to be long enough to enable efficient amplification and good quality sequencing.

- The interspecies sequence variations (between species) have to be important but the intraspecific sequence variations (within a single species) have to be limited.

- The sequences obtained have to enable alignments to most fungi (Lindahl et al. 2013).

While exhibiting a few limitations for the definition and the delimitation of the species for certain groups (Gazis *et al.* 2011), ITS (Intergenic Transcribed Spaces) are widely used in biodiversity studies. These regions are relatively easy to amplify for the entire fungus lineages. Many sequences are available in databanks. Within few exceptions phylogenetic information carried by these sequences is enough to distinguish close species (Gazis *et al.* 2011, Lindahl *et al.* 2013).

The amplicon selected covered ITS2 (amplification by primers ITS3F_MiSeq and ITS4R_MiSeq; Table 2).

Table 2

Primers used for Illumina sequencing (size of the amplicon varied between 400 and 500 bp)

Primer	Sequence (5' – 3') [adapter][target primer]
ITS3F_MiSeq	[TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG] [GCA TCG ATG AAG AAC GCA GC]
ITS4R_Miseq	[GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG] [TCC TCC GCT TAT TGA TAT GC]

The amplicon were then sequenced (MiSeq, Illumina) and the data underwent bioinformatic processing to obtain an affiliation of the sequences. The bioinformatic analyses were performed using the state-of-art workflow in Qiime (Caporaso 2010).

The taxonomic assignment was done down to the species level whenever possible. The statistical analyses were performed on the communities based on the OTU (operational taxonomic units).

When the sequence was not assigned, the closest phylogenetic parent(s) was considered.

RESULTS AND DISCUSSION

Nucleic acid extractions

The nucleic acids of all the samples were extracted. The spectrophotometry results are shown in Table 3. As the concentrations obtained were satisfactory, we proceeded with PCR quality tests.

On a new first in a state a DNA surface to

Table 3

Concentrations of the DNA extracts						
Sample No. on	Short name		NA conc.	Unit		
agarose gel		Extraction date				
1	3a-roo	16/06/2015	295.1	ng/µl		
2	3a-tru	16/06/2015	188.3	ng/µl		
3	3a-bra	16/06/2015	87.5	ng/µl		
4	N2-soi	29/07/2015	457.2	ng/µl		
5	3a-soi	16/06/2015	257.5	ng/µl		

PRO LIGNO

Vol. 14 N° 3 2018 pp. 9-18

www.proligno.ro

6	4a-soi	16/06/2015	206.3	ng/µl
7	4a-bra	16/06/2015	96.5	ng/µl
8	4a-tru	28/07/2015	69.5	ng/µl
9	4a-roo	28/07/2015	129.6	ng/µl
10	N2-tru	28/07/2015	77.8	ng/µl
11	N2-bra	28/07/2015	163.8	ng/µl
12	N2-roo	28/07/2015	147.3	ng/µl
13	Th-Aga	21/07/2015	224.7	ng/µl
14	La-Aga	21/07/2015	243.8	ng/µl
15	Cam-1	21/07/2015	37.3	ng/µl
16	Cam-2	21/07/2015	13.2	ng/µl
17	BW-Fr	21/07/2015	108.3	ng/µl

ITS and F-RISA amplifications

Some positive PCR amplifications of the expected sizes (around 500 bp) were obtained for all the samples (Fig. 1).

Photo of the electrophoresis gels for the PCR ITS amplifications.

Fig. 2. Electrophoresis migration of the F-RISA amplifications. Sample 4 was validated in another experiment.

These two steps enabled us to validate the DNA quality of each of the samples for sequencing.

General presentation of the sequencing results *OTU obtained and assignment*

Sequencing led to the generation of 693, 961 sequences which were clustered to 535 OTUs. Each OTU was representative of a group of sequences displaying 98% identity.

693,961 sequences merged into 535 OTU, with 98% of homology.

Vol. 14 N° 3 2018

pp. 9-18

Of these OTUs, 19 were assigned to other kingdoms: plants (15) and animals (4, all from one of the soil samples). 183 of them were not assigned (no available correspondence in the reference database. They were labelled "No hit").

Lastly, 333 OTUs (62%) were assigned to the fungus kingdom.

Of these 333 OTUs (Fig. 3.):

- 87% (290/333 OTUs) were assigned to Ascomycetes (Ascomycota).

- 10.5% (17/333 OTUs) were assigned to Basidiomycetes (Basidiomycota).

- 1.5% (5/333 OTUs) were assigned to Zygomycetes (Zygomycota) and more specifically the order of the Mucorales.

- 6% (17/333 OTUs) were assigned to the fungi without more detail.

Relative abundances of the assigned genera

Fig. 4.

Relative abundances of fungus species within the samples (Assigned sequences only).

Fig. 4. shows the relative abundance, which is the number of sequences assigned to a taxon compared to the total number of sequences assigned.

Arthrinium was the most frequent genus in all the samples. Several OTUs per sample were assigned to Arthrinium indicating substantial diversity of Arthrinium sp. species (26 different OTUs were found to be affiliated to Arthrinium sp.). The proportion of this genus increased in the aboveground parts of the trees in French Guiana.

The genus *Arthrinium* is ubiquitous and ecologically diverse. It is commonly saprobic or saprophytic. It has been characterized as an endophyte but also as a plant pathogen (Crous and Groenewald, 2013).

One of the assigned OTUs was present in almost all samples: *Arthrinium* sp. (OTU136). Surprisingly, the *Arthrinium* sp. Sequence (OTU136) was also found in a blue wood metagenome from a decaying trunk sampled in France.

Vol. 14 N° 3 2018

pp. 9-18

Though it cannot be ruled out that the genus may be implicated in "agarwood" production, but it is not very likely that it is a causative agent, or in any case not alone, insofar as the trees in French Guiana are not yet producing agarwood despite its consistent presence.

Among the other species of interest there were:

- The pathogenic *Fusarium oxysporum*, particularly present in the soil and root samples (non-infected trees). It was weakly present in the "agarwood", but it cannot be ruled out that it may be implicated in primary infection. A total of 58 OTUs were assigned to *Fusarium oxysporum*.

- The species *Dokmaia* sp. exhibited a similar pattern; like *Arthrinium, Dokmaia* is a saprobe (9 OTUs were assigned to *Dokmaia* sp.).

- Sporothrix sp., which was particularly represented in the Tha-Aga sample.

Differences between aboveground and belowground fungal communities

Fig. 5.

PCoA of relative abundances of the OTU table (all samples) and based on the Chao distance matrix.

Fig. 5 shows that the soil samples and the samples in contact with the soil stands out. This representation also shows that samples 3a-tru, Th-Aga and BW-Fr were relatively close. As two of these samples were infected by some fungi, one hypothesis might be that 3a-tru also displays infection or the start of infection.

Differences between countries within fungal communities

The differences in *Aquilaria* communities were also specifically addressed. In these analyzes the soil samples and the sample from France (blue wood) were omitted. Fig. 6 shows the PCoA of the samples specific to *Aquilaria*. The samples from the roots were again separated from the samples of the aboveground parts of the plant. The agarwood community from Thailand differs from the one from Laos.

PRO LIGNO

www.proligno.ro

Fig. 6.

PcoA of the relative abundances on the OTU of the samples specific to Aquilaria and based on the Chao distance matrix.

CONCLUSIONS

The soil samples and the Aquilaria spp. samples in direct contact with the soil (i.e. the root samples) had different communities from the samples of the aboveground parts of Aquilaria.

The sample from Laos displayed a community structure closer to that of the non-infected samples, which may mean: either that Aquilaria wood can be infected by different fungi and that, as it happens in our study, the two infections were not caused by the same fungi, or that others factors (post-infectious) influenced the communities and led them to diverge.

Overall, the genus Aquilaria revealed close fungi communities whatever the location of the tree.

Some candidates potentially involved in resin production by Aquilaria, following infection of the tissues, can be proposed. The candidate fungus genera are: Arthrinium, Chloridium, Fusarium (species oxysporum) and Sporothrix.

In an experiment using mechanical inoculation, Mohamed et al. (2014) monitored tree infection by three fungus species. The experiment revealed that the fungi communities evolved towards different populations in two neighbouring trees. It is therefore certain that several pathogens can induce the reaction and/or that a succession of the genera is to be expected.

To continue this study, fungal communities from infected trees non-infected trees needs to be compared, possibly in different locations. Also carrying out research on the fungi communities in surface soils from other sites in Southeast Asia would help to identify putative source of inoculum. Some colonization tests are ongoing to confirm the infectious nature of some of the candidate fungi.

ACKNOWLEDGEMENTS

This study was conducted in the framework of the project Aquilaria (Scientific and technical basis for the creation of a supply chain for top-of-the-range "Aquilaria (Agarwood) essential oils and by-products in French Guiana) funded by the European Regional Development Funds (FEDER) for French Guiana (agreement n° FEDER/2017/N°31).

REFERENCES

Andary C, Longepierre D, Le Cong K, Hul S, Zaremski A, Michaloud G (2018) Chemotaxonomy of *Aquilaria* (Thymelaeaceae) and some related genius. *Bois et Forêts des Tropiques* [Submitted].

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Godron JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) "QIIME allows analysis of high throughput community sequencing data", *Nature Methods*, vol. 303, 2010.

Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus, 4:133-154.

Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. *Molecular Ecology*, 20:3001-3013.

Kaiser R (2006) Meaningful Scents around the World. Verlag Helvetica Chimica Acta, Zürich.

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen, T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide. *New Phytologist*, 199:288-299.

Mei WL, Zeng YB, Wu J, Cui HB, Dai HF (2008) Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood. *Journal of Chinese Pharmaceutical Sciences*, 17:225-229.

Mohamed R, Jong PL, Nurul Irdayu I (2014) Succession patterns of fungi associated to wound-induced agarwood in wild *Aquilaria malaccensis* revealed from quantitative PCR assay. *World Journal of Microbiology & Biotechnology*, 30:2427-2436.

Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of *Aquilaria* species: A review. *Flavour and Fragrance Journal*, 26:73-89.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR Protocols. A guide to methods and applications*, Edition Innis MA, Gelfand DH, Sninsky JJ, White TJ Academic press, San Diego, USA, pp. 315-322.